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1. INTRODUCTION
Image analysis embraces a wide range of image
processing tasks, including blur and noise removal,

segmentation and boundary finding, and object
location and identification. Traditional approaches
have addressed these problems on a largely
individual basis, defining new theoretical

frameworks and computational algorithms for each
task. We hope to achieve a unification through a
Bayesian framework. The idea is to articulate, in
the form of a prior probability distribution, knowledge
and expectations about the spatial smocothness of
pixel intensities, the straightness or constant
curvature of ecdges, and other such attributes of
real-world images. In this set-up image analysis is
by maximization, over all possible assignmenis of
pixel intensities, locations of edges, and so on, of a
posterior distribution, given an observed (possibly
degraded) image. This program is layed out in
detail in Geman & Geman [4] and Grenander [6],
together  with the descriptions of numerous
cxperiments.

This paper is about an application of the
approach to single photon ecmission tomography
(SPET). The problem is to reconstruct a two or
three dimensional profile of isotope intensity from a
series of (respectively) one or two dimensional
observations of photon cmissions. The prior
distribution will be on the set of possible isotope
intensities. Through this distribution we will
attemmpt to harness some very simple prior
knowledge: ncarby locations tend to have similar
intensity levels. We shall present the results of
simulation experiments in which the Bayesian
restoration is compared to the maximum likelihood
restoration, the latter determined by an
implementation of the EM algorithm.

The next section (S.2) will provide a brief
introduction to SPET, together with a mathematical
formulation of the reconstruction problem. In §.3
we will examine the maximum likelihood solution
and its computation by the EM algorithm. In S4
we will turn to the Bayesian approach, and construct
a simple prior distribution for this problem. The
posterior distribution will be derived in S.5, and in
S6 we will cxamine reconstructions obtained by
approximately maximizing the posterior distribution
in some simulation experiments. We will conclude
(in 8.7) with a discussion of parameter estimation
for the prior distribution.

This paper is intended as an introduction. A
more complete discussion of our approach to the
SPET problem will be provided in a following
paper.

2, SINGLE PHOTON EMISSION TOMOGRAFPHY
Single photon emission tomography is used to
determine the distribution of a pharmaceutical
(injected or inbhaled compound) in a part of the
body such as brain, liver, or heart, Depending
upon the pharmacecutical used, this concentration can
be takem as a measure of local blood flow
("perfusion”) and/or local metabolic  activity.
Glucose, for cxample, is taken up by neuronal cells
in proportion to metabolic activity, and the latter
generally mirrors recent electrical activity. Thuys
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arcas of brain most used in performing a cognitive
or motor task will demonstrate a relatively increased
uptake of glucose immediately following the task,
For the heart, pharmaceuticals can be chosen whose
uptake reflects local perfusion, The concentration
of these pharmaceuticals can thereby be used to
assess the adequacy of blecod flow to the different
parts of the heart.

In SPET, pharmaccutical concentration is
estimated by dectecting photon emissions from an
injected or inhaled quantity of the pharmaceutical
that has been chemically combined with a
radioactive isotope. This combined molecule is
called a radiopharmaceutical. The goal of SPET
is to determine radiopharmaceutical concentration
(equivalently, isotope concentration) as a function of
position in a target tissue, such as brain, heart, or
liver. Detectors with collimators arc strategically
placed around the appropriatc region of the body,
and these are able to count photons emitted by the
isotope. A detector will capture those photons
which avoid attenuation, and whose (trajectories
carry them down the barrel of the collimator.

The determination of isotope concentration from

photon counts is called reconstruction. The
reconstructions that we develop are based on (i) a
well-defined mathematical model relating isotope

concentration to the observable photon counts, and
(ii) classical principles of statistical inference which

vicw the concentration as a “parameter” to be
estimated.
Let X(s) denote the concentration of the

radiopharmacecutical at the point s=(x,y) in the
domain 0 of interest. For the present discussion,
we shall take 1 to be a compact two-dimensional
region, though for the models and methods we will
describe there are no fundamental changes when 0
is three-dimensional,

We will assume that the detectors are arranged in
a linear array, at equally spaced lateral sampling
intervals, and that the detector array can  be
positioned at any orientation @ relative to the x-axis,
{Sce Figurc 1.) The detectors are assumed to be of
so-called paraillel-bore type, meaning that they detect
only those photons im the small interval

[o- 4% ,o+ 4R) when the array has orientation e,

Let 1. denote the total number of detectors in the
array and let Ao denote the spacing between
detectors.

The physical effects incorporated in the model
are the spatial Poisson process that describes the
sites of the radioactive decays from which photons
cmanate and the process of photon attenuation by
which photons arc annihilated and their energy is
absorbed by matter through which their trajectories
pass. Attenuation is accurately described by a lincar
attenvation function p{s} on @ The function u(-)
is assumed to be¢ known; indeed, it can be measured
by transmission tomographic methods. Attenuation is
a memoryless process; comsequently we can deduce
the functional form of the probability that a photon
survives to reach the detector array. When a photon
trajectory has direction ® and it emanates from site
s = (x,y) in 0, then

Reprinted from the 1985 Statistical Computing Section
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P(photon survival) = exp{- I
Lix,y)
where the line integral is taken over the segment

L(x,y) from (x,y) to the detector and d1 is
differential arc length (see figure 1).

p{t,n)de},

Figure 1

For our sampling design, we shall position the
detector array at n cqually-spaced angles o, for
duration T time units at each angle. Then at each
angle, we observe the random variables Y(1), for
teDy = {(s;.6x), j=1,...,L} that give the numbers
of photons” reaching the respective detectors during
the sampling interval, Assuming that (i} photons
are gencrated by a nonhomogeneous Poisson process
with intensity X(s} per time unit, and (ii) the
oricntations @ of photon trajectories are uniformly
distributed on [0,2w), we can show that Y(t), for
n
U Dy,
k=1
gencons intensity function described in terms of the
attenuated Radon transform (ART) of X(.). The
ART of X(.) is defined as

teD = is a Poisson process with a nonhomo-

o oeltmdrr)de
L(x,y)

where L is the line with orientation e , through
point ¢ , of the detector array, L(x,y) is the segment
of L starting at point (x,y) in 0 , and d? and dp*
are differential arc length in the two line integrals.
The intensity function of Y(.) is then given by

ajrde

(R, rXX0.0) = [ TX(x,y)exp{-
L

ek+§9- f
EY(t) = I I

Ok-ge- o= gg-

where t = (cj,ek).

(R, TXXa,0)dcdo,

The important feature of this representation is that
the intensity function of Y is the result of a
positive linear integral operator A7 applied to X:
@n EY = ArX.

This model includes the predominant physical

effects. Other effects, such as photon scattering
and background radiation, are assumed for now to
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be negligible. We observe, however, that the
reconstruction methods described below, since they
arc based on the generally applicable principles of
maximum likelihood and Bayes optimality, are
readily adaptable to models incorporating additional
effects.

3. MAXIMUM LIKELIHOOD AND EM

A variety of reconstruction algorithms for
emission tomography are described by Budinger etal.
[2 The algorithms that are traditionally used are
based on ideas of extracting a signal in the presence
of noise and related methods of linear filtering.

More recently, attention has beer given to
algorithms that wuse fuller information of the
mathematical model sketched above along with the
principle of maximum likelihood (ML). Shepp and
Vardi [B] laid the mathematical foundations and
developed  effective algorithms based on EM
{Dempster, Laird and Rubin [3]}) for implementing
ML reconstructions in positron emission tomography;
in positron emission tomography, attenuation does
not corrupt the model relating the radio-
pharmaccutical concentration to the observables.
McClure and Accomando [1] have developed the
foundations for applying ML to SPET reconstructions
and have implemented EM algorithms on a variety
of computer systems.

The likelihood function is readily expressed since
the observables are mutually independent and have
distributions of known form. To carry out a ML
reconstruction, we first discretize the domain Q into
pixels parameterized by discrete points s in a square
lattice 8. Now (X(s)lg.g represents a piecewise
constant approximation of the isotope concentration
on the continuuous domain. (One of the underlying

theoretical questions is to wunderstand how the
quality of the reconstruction depends on the
resolution of the domzin 0 enforced by its

discretization.) When © is discretized, them equation
(2.1} takes the form
EY = X,
where @t is a matrix 8¢ = {a{t8))ip st
typically, the order of @y is enormous. i
The log-likelihood function is

In L(X) = ED[-ln(Y(t)!) + Y(In{(@pX)1)] - (@rX)(1)].
te

The necessary conditions for maximizing In L{X)
obtained by setting derivatives to zero do not yield
explicit solutions for the maximizing X. Nonetheless,
-In L(X) is globally convex, and the ML optimiz-
ation problem coaveniently adapts to the EM
method. (In general, -lma L{X) is not strictly
convex; conditions for strict convexity are analyzed
by Accomando [1])

The EM algorithm leads to anm iterative
reconstruction procedurc. We initialize the iteration
with {Xg (s))g,s and update X; by the formula

X;41 = (ALY QarX)IQari@X;,

where 1 is the
identically one,

vector whose components are
denotes component-by-component
division, and @ cnotcs the component-by-component
product. At each step, the iteration requires two
(large) matrix multiplications. The sequence of
iterates is proven to converge to an X* that
maximizes In L(X). Consistency results that depend
on the sampling design and on the discretization of
0t can be proved.




4. PRIOR DISTRIBUTION

We turn now to the Bayesian reconstruction of
X, based upon an observation Y and the operator
AT. We shall construct a prior distribution that
captures some simple prior expectations about the
form of the isotope density, X. Mainly, we wish to
exploit the anticipated smoothness of X; neighboring
locations will typically have similar intensity levels.
But we must also accommodate sharp changes in
concentration, as may be- seen, for example, across
an arterial wall, or across a boundary between two
tissue types. .

In principal, the prior could be constructed on a
suitable space of functions X0 - R, where 0 C R is
a continuous domain. It is much more convenient,
however, to specialize to a discrete domain, such as
the square lattice used in 8.3: § = {(i,j): [%i,jsN). In
our experiments, N=32. The prior, thercfore, is on
the array X={X(i,jk1¢i,j¢<N}, although we will avoid
double indices by simply writing X={X(5)}SES- The
components, X(s), will be confined to an interval,
such as [0,255] which is customary in digital image
processing. As a further convenience, we will restrict
ourselves to Gibbs priors:

.0

where Z is the normalizing constant, Z = J' e'U(X)dX,

Ax(X)= L UX)

and URISI-R is known as the "energy". As it
stands, this is only mildly restrictive, singe U is
arbitrary. But we will {imit U to be a "nearest
neighbor energy”, as we shall sce shortly.

We use the Gibbs formulation because it is easier
to construct an energy function, U, than it is to
directly conmstruct a distribution, ly. We will design
U so that the expected configurations have low
energy, as they do in a real physical system. The
expected configurations are those for which typical
neighboring sites, ste S, have similar intensities,
X{s), X(t). This is a local constraint, and it is
conveniently captured by a locally-composed energy
function U:

DU = T BXEIXD) + T o o(X(5)X(E)).
<s,t> {s,t}"z

Here, we use «<s,t> to indicate that s and t are
nearest horizontal or vertical neighbors in the square
lattice, and {s,t} to indicate diagonal neighbars, The
constant § is positive and the function &(f) is even
and minimized by ¢=0. Thus U is minimized by
configurations of constant intensity. Under the Gibbs
distribution, (4.1), the mote likely isotope densities
are those with small site-to-site  variation in
intensity.

The exact form for ¢ is probably not important,
but its qualitative features can make a difference.
We have experimented with @'s that are increasing

in ¢ for £ » O (recall that ¢ is even): roughly
speaking, the more different two neighboring
intensities, _the less likely. An obvious choice is
) = &2, but then under [y large intensity
gradients, as would be associated with certain
natural boundaries, are exceedingly unlikely.
Instead, we will use here functions of the form

43 -

1+ (_g_).‘-!

where 8, like §, is a2 constant which will be fixed later.
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Depending upon § and B, a “typical” sample from
Nx will have large regions of near-constant
intensity, with rather discrete changes of intensity
defining region boundaries. A sample from [y
with & =7, B=5, and X(s} confined to [0,15] seS, is
shown in figure 2, panel A. The sampie was
generated by an iterative Monte Carlo technique
called Stochastic Relaxation (SR), details of which
are layed out in Geman and Geman [4], Geman and
Hwang [5), and Grenander [6]. SR is a modification
of the well-known Metropolis algorithm (see [7]} for
sampling from Gibbs distributions.

5. THE POSTERIOR DISTRIBUTION AND THE
MAP ESTIMATOR
Recall that Y(t) is

t-component of apX:

Poisson, with mean the

I oft;s)X(s)
seS
where, as before, 81 = {q(t,s)}teD’SGS. Given X, the
components of Y are independent, and hence their
joint distribution is
@xo¥®  a xm
lyx(¥W= 0 —— e 1
teD Y(t)!
(5.1}
= cxp{zD [=1n(¥(t)!)+¥(t)In[(ATX)1t)]
te
- @pXXO])

The posterior distribution, “X|Y’ is therefore

(5.2) exp{-U(X) + EY(OIn[@pX)(t)-(ArX)t))

1
Z(Y) teD
where Z(Y) is a normalizing constant and depends
on Y.

We will experiment with the MAP estimator of X
given Y. This is the maximum aposteriori X given
Y, which is to say the most likely X under the
posterior distribution n . Notice that MAP
estimation amounts to minu!uzing
(5.3) UX) - L {Y(OIn[{arX)0)] - (@pX)1)],

teD

which quantity might be called the “posterior
energy”. Notice also that we have the usual
equivalence between Bayesian MAP estimation and
so-called penalized maximum likelihood. Maximum
likelihood maximizes

I [Y(Nn[(@TX)(t)] - (BpX)(1)],
teD

whereas MAP estimation includes the "penalty term”
-U(X), which penalizes lack of smoothness. One
advantage, we believe, of the Bayesian viewpoint is
that it suggests mechanisms for estimating the
required degree of smoothness, which amounts to
estimating the pivotal parameter 8 appearing in the
prior (see 4.2). We will return to the estimation
problem in S.7.

6. EXPERIMENTS

We will present the results of two simulation
experiments. In the first, a sample drawn from
the prior distribution {4.1), with U as in (4.2) and
with f=5 and 6-.7, was used as the isotope intensity
function, X. | This is shown in figure 2, panel A.
Y was generated, Monte Carlo, using the conditional
Y-distribution (5.1), given the isotope density X




displayed in 2A, and matrix @ resulting from the
attenuation function p displayed in 2D {see S5.2)
Panel B is the maximum likelihood reconstruction,
obtained by an implementation of EM as described
in §.3. Maximum likelihood was achieved after 77
iterations of the algorithm. Panel C is an
approximate MAP reconstruction. This was obtained
by a gradicat descent of the posterior energy (5.3),
starting with the maximum likelihood reconstruction.
Of course the cxperiment is highly artificial, since
the prior was known cxactly.

The second experiment was based on the isotope
density shown in figure 3, Panel A, This also is
artificial, but was not drawn from a prior

T5P0 ISODEN
ISOTOFE DENSITY
CIBES PRIOR, § = 5.0

T55R154 RECON
MAF (EM-SR) RECONSTRUCTION
# =50

figure 2
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distribution. The Poisson process Y was again Monte
Carlo generated using the conditional Y- distribution
(3.1), based upon the attenuation function shown in
2D, but this time conditioned on the density shown
in 3A, Panel B is the maximum likelihood
reconstruction, achieved after 54 iterations of EM.
Panels A, B, and C of figure 4 are approximate
MAP reconstructions, under the prior distribution
(4.1) with 6=7. Each of these was obtained by
gradient descent of the posterior encrgy, startmg at
maximum likelihood. In panel A, B=25; in B,
B=2, and in C, B=6. Obviously, § is an important
parameter. We will discuss a possible estimation
technique in the next section.

TSEM77 - RECON
EM RECONSTRUCTION
n = 60, L = 64, COUNTS = 1,754 542
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7. PARAMETER ESTIMATION

The choice of B (see 4.2) is critical. With g=<0
the estimator is undersmoothed, and in fact MAP
estimation is just MLE, since the prior is uniform.
If B is too large, the observation, Y, has little
influence; the estimator is too faithful to the prior,
and too smooth. The parameter § (see 4.3) is also
important, although it appears to be less critical
than 8. In any case, the brief discussion here will
be about f, which is easier from the point of view
of parameter estimation. - -

Suppose that we are given samples Yiraeer Yy
which are the observables in ,a series of tompgraphy
experiments. The isotope densities, XX, are
assumed to have been drawn, independently, from a
common {prior} distribution (4.1}, which is known
except for B Our main concern is_ with recon-
struction: we¢ want to estimate XXy - However,
our Bayesian program will have to begin with a
suitable choice for B, and this we intend to estimate.
We¢ are often interested in the case n=I1, which is
not hopeless since an observation, Y, contains a
large amount of data. In what follows we will
gpecialize to this case and denote the observation by
Y and the isotope density by X ; the extension to
n > 1 is trivial.

To be more cxplicit about the dependency on g
of the prior and posterior distributions, we introduce
the function

I o{X(s)»-X(t).
{s.t)

V(X)= [ e(X(s)-X(1)) +
<, t> v2

V is just U/B (see 4.2) and ¢ is as it was in (4.3).
The prior is now written

) agX) = ;— BV (X)

B

and the posterior, given Y, is

1
I (X) = —; .
X|Y ZB(Y) exp{-BY(X)

(7.2) .
+ ID[Y(t)ln[(aTX)(t)] - (@pX)(1)])
te

We use the subscript 8, in Z, and Zﬂ(‘}), to remind
the reader of the dependency on A of these
normalizing constants ("partition functions” in the
language of statistical mechanics). This latter
dependency is quite complicated, and is the chiefl
reason that the problem of estimating § is hard.

We shall present a method for estimating B that
was supgested to us by Donald Geman. Since this
is a maximum likelihcod (ML} based method, we
shall begin with a discussion of thg ML estimator of
p _givcn Y. Let Eﬂ[.] and Eg[.-|Y ] denote expec-
tations with respect to the prior (7.1) and posterior
(7.2) distributions. The subscript B is again used
to emphasize dependency on § . Unfortunately, the
likelihood equation,

(73)  EgV(X)] = Egv(X)|¥],
typically has multiple solutions,
concavity of the likelihogd. The basic problem is
that we can not observe X. If we could, then the
likelihood would be concave, and the likelihood
equation wouid be

reflecting non-

(14 EgIv(X)] = V(X).
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It is not hard to show that the left hand side is
monotonic (decreasing) in 8 . Given X we could in
principal find the unique g satisfying (7:4). In
practice, we would proceed as follows: (1) Using
SR, generate multiple samples of X from (7.1) at
each of a range of values of P (2) estimate the
monotonic function Eg[V(X)] by evaluating ¥V at the
sampled values of X; (3) From the curve, B versus
Eq[V(X)}, find § such that (7.4) is satisfied. of
course, steps {1} and (2) require a great deal of
computation, but this is to be donec only onge,
"off-1ine". Thereafter, given a new gbservation of X,
ML estimation of B is trivial.

Of course we wish to solve (7.3) instead, and this
is complicated by the fact that the RHS is also a
function of 8. Even EM (see, for example [3]), which
is designed for analogous situations, is computa-
tionally prohibitive in this case. Instead, D. Geman
has proposed the following variation oen EM, which
we intend to implement in the coming weeks and
will report on in our talk.

As with the full observation case, we begin by
constructing the graph of Eﬂ{V(X)} versus B (steps
(1) and (2) of the previous paragraph). The
estimate of B is then derived iteratively: .

{a) Perive the ML estimate (call it X,) of X given
Y

(b} Treat X, as the actual isotope density, and
determing the ML estimate of B (call it f), as in
step (3) of the previous paragraph;

{¢c) Use SR, with starting configuration Xy, to
sample from the posterior (7.2) with p=f| (call the
sample X5);

(d} Repeat (b), using X5 in place of Xj, and call
the result By instead of By;

(¢) Repeat (c), starting with X5, and setting B=§,,
and call the result X4

etc.

D. Geman has performed preliminary experiments
with one dimensional Ising model priors, and these
suggest fast convergence and good resulting
reconstructions.
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