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1 Composition

Compositionality refers to the evident ability of humans to represent enti-
ties as hierarchies of parts, with these parts themselves being meaningful
entities, and being reusable in a near-infinite assortment of meaningful com-
binations. Compositionality is generally considered to be fundamental to
language (Chomsky [5], [6]), but many believe, as do we, that it is fun-
damental to all of cognition. Objects and scenes, for example, decompose
naturally into a hierarchy of meaningful and generic parts. Furthermore,
compositions help us to identify parts unambiguously: It is often the case
that components can not be correctly interpreted in the absence of the con-
textual constraints imposed by their incorporation into a larger whole, i.e. a
composition. Indeed, such compositions are sometimes called “higher-level
constraints.”

It has been argued that artificial neural networks, by virtue of their abil-
ity to learn by example, reasonably approximate the workings of natural
neural networks. But as pointed out by Foddor and Pylyshyn ([13]), these
artificial networks are not compositional, and therefore they fail to mimic a
basic attribute of human cognition. (See, however, von der Malsburg [35],
Smolensky [34], Prince and Smolensky [28], Bienenstock [2], Hummel and
Biederman [20], and Mjolsness [24] for efforts to address compositionality
within a neural network framework.)

As early as 1812 Laplace discussed the compositional nature of perception:
In his Essay on Probability ([22]), he remarks on one’s overwhelming pref-
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erence to interpret the string CONSTANTINOPLE as a single word, rather
than a collection of fourteen letters. In some sense, it is “more probable”
that the letters came together in the context of a known word than that they
found their placements by coincidence. Of course the Gestalt psychologists
were getting at very much the same thing (cf. [9]), as are today’s cogni-
tive scientists studying modern compositionality (see, especially, the work
by Feldman [12], which connects closely with the development here).

I will outline here, through a discussion of a particular application—on-
line character recognition, a possible formulation of the principle of composi-
tionality. This is taken from a more complete and rigorous account proposed
previously in [16] in collaboration with Zhiyi Chi and Daniel Potter.

A primary goal is to make a contribution to machine vision: We believe
that this formulation can be a basis for building vision systems that system-
atically exploit contextual constraints, and thereby address the many levels
of ambiguity that arise in image interpretation. Many others have taken a
similar approach for similar reasons—see, for example, Narasimhan ([25]),
Shaw ([32]), Pavlidis ([26]), Fu ([15]), Biederman ([1]), Grenander ([17]), and
Casadei & Mitter ([4]).

2 Application to On-Line Character Recog-

nition

The best introduction is perhaps by example. I will present here a more-
or-less informal introduction through a more-or-less simple (but nonetheless
largely unsolved) application: on-line upper-case character recognition.

Figure 1 shows some simple images of the type that we wish to interpret.
Strokes and characters are drawn on a pad with a stylus whose position is
sampled at a constant rate. The markings in Figure 1 represent the locations
of sampled points. Of course there is order information, and this can be quite
useful, but for the purposes of this illustration the order information will be
ignored: The data is simply the collection of sampled locations.

As a first step, we will need to develop hierarchical representations for
objects in the object library. The library will certainly include the upper-
case letters, but in addition there are numerous other object types that will
emerge from the intermediate-level representations, including, for example,
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Figure 1: On-line images. Stylus position is sampled at regular intervals.
Sampled locations are indicated with “+” symbol.

“lines,” “arcs,” “T-junctions,” and “L-junctions.”
It might be expected that compositional hierarchies would be most con-

veniently defined via production rules within a formal grammar. But to the
contrary, it turns out to be more convenient and more natural to come at
this from the other direction, which is to say via composition rules rather
than productions. Composition rules are syntactic rules under which enti-
ties are composed to form composite entities, very much like the process of
unification in Unification Grammars ([33], [21]).

Recursive application of the composition rules defines the set of recog-
nizable objects. The process is initiated with a “primitive” class of objects,
which in this case is the set of individual points at which the stylus could be
sampled. Let us suppose that the set of possible sampled locations consists
of M2 points arranged on an M × M grid. Let T be the subset of objects
representing these M2 primitives (so that each t ∈ T is a particular location
on the M × M grid).

A simple composition rule would allow two primitives to be composed
into a kind of mini-stroke, which we might term a linelet: Given a radius r,
two points, t1 and t2, can join if their distance does not exceed r. See Figure
2a.

What sort of compositions give rise to a straight line? A straight line
could be grown by adjoining a single point (primitive) to either a linelet or
to an already-existing straight line. Let λ be the linelet or the straight line
which is to be bound to the primitive. The object λ itself comprises a set of
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Figure 2: Syntactic constraints for two points forming a linelet (panel a) and
a point joining a line to make a larger line (panel b).

primitives (just two, in the case of a linelet). Define e1 and e2 to be two points
that achieve the maximum distance among pairs of points in this set, and let
this distance be d. Fix two positive numbers w and l, and situate a rectangle
of length d+2l and width 2w symmetrically around the line segment joining
e1 and e2 (refer to Figure 2b). Allow λ to bind to a primitive t provided that
t is contained in this rectangle.

Composition rules can be added that allow two colinear straight lines
to bind to form a larger straight line, or two straight lines to bind to form
an L or a T junction. Linelets can be combined with primitives to form
arcs, and arcs together with primitives, or arcs together with arcs, can form
larger arcs. Xiaohua Xing, while a student in the Division of Applied Math-
ematics at Brown University, and Dan Potter, as reported in his thesis on
Compositional Pattern Recognition ([27]), have each run on-line character
recognition experiments. Compositional hierarchies involving dozens of rules
were constructed, giving rise to the twenty-six upper-case characters as well
as numerous intermediate object types, including primitives, straight-lines,
various junction types, arcs, and so-on.

Any collection of composition rules together with the set T of primitives
defines a set, or library, of objects, Ω. To make this precise it is necessary
to interpret objects as trees in which the leaves are primitives, and in which
each non-leaf node is labeled with an object type (linelet, line, etc.). The
label of the tree itself (i.e. the object type) is the label of its root node. If,
for example, the object arose from the rule straight line binds to straight line
to form straight line, then the root node and each of its daughters would
be labeled “straight line,” and the remaining interior nodes would either be
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labeled “straight line” or “linelet.” The library Ω is the set of trees such that
for each non-terminal node n with label l there exists a composition rule
under which the daughters of n can bind to form an object of type l. The
set T of primitives is viewed as a set of single-node objects: T ⊆ Ω.

The set of objects is unimaginably large, even if we were to restrict our-
selves to composition rules for just linelets and straight lines. Furthermore,
given any collection of primitives that can be interpreted as a particular ob-
ject with label “l” (in other words, the primitives constitute the terminal
nodes of an object with label l), there will typically be a large number of
distinct objects of the same type (same label) containing the same primi-
tives. Because of this, in formal language theory, systems such as ours are
termed “ambiguous.” This may turn out to be a virtue: All of the many
explanations which share a common root-node label are essentially equiva-
lent, and therefore there are many computational paths to what amounts to
a “correct” solution. This kind of redundancy may open the door to prun-
ing, or coarse-to-fine, or other heuristic search methods. (But K.S. Fu, who
pioneered syntactic pattern recognition, would probably disagree: in a book
on the subject ([14], page 27) he writes: “In pattern description languages,
it is clear that ambiguity should be avoided; therefore, to find a family of
unambiguous grammars is a problem of interest in this area.”)

Within this framework, an “interpretation” is the assignment of each el-
ement of an image (in the present example, each primitive) to an object.
One easy-to-compute interpretation simply labels each sampled point as a
primitive; no aggregations, or compositions, are offered. This of course is
not what we are after. In the left-hand panel of Figure 1, we would prefer to
join the seven nearly-colinear points in the upper left region and label them,
collectively, as a straight line segment. The evident tendency of humans to
manufacture such compositions is of course the cornerstone of compositional-
ity. (See Feldman, [10] and [11], for recent work making use of psychophysical
and analytic tools to explore the aggregation process in human subjects.)

Aggregation is an instance of Occam’s Razor, and it can be formulated
rather conveniently using Rissanen’s Minimum Description Length (MDL)
Principle ([29]). The idea is to encode, for example in a binary code, each
object hierarchy, as if it were to be transmitted over a channel or stored
on a disk. A “sensible” encoding would assign shorter codes to intuitively-
succinct descriptions, such as the description of the seven points in terms of a
straight line segment versus their description as individual and independent
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locations. There is a more-or-less natural encoding induced by the hierar-
chical structure, and in this regard the use of composition rules instead of
productions is a central feature of the approach. In particular, each rule can
be appended with a formula for encoding the composition in terms of the
already-encoded components; the encoding scheme is recursive. Let us put
aside the general scheme and examine, instead, some specific instances based
upon the composition rules defined earlier.

We suppose that there are L object types (primitives, linelets, straight
lines, etc.) in our object library. For simplicity, we will assign a uniform
encoding to the different object types, meaning that we will use log2(L) bits
to indicate an object label. (Bit counts will usually be fractions. These
should be rounded, generally upward, but it is easier and more clear to just
work with real numbers.) A specific instance of a primitive would be most
naturally encoded with 2 log2(M) bits, indicating the values of each of the
two coordinates. (Recall that we are working on an M × M grid.) Thus a
primitive encoding involves log2(L)+ 2 log2(M) bits. Consider now a linelet.
The label, “linelet,” requires log2(L) bits. Referring to Figure 2a, the “seed”
point, t1, requires 2 log2(M) bits to specify (the label, “primitive,” is now
superfluous—linelets always consist of two primitives), and t2, by virtue of its
restriction relative to t1, can be encoded with log2(πr2) bits (corresponding
to—approximately—πr2 allowed lattice locations). Thus a linelet is encoded
with log2(L)+2 log2(M)+log2(πr2) bits. There is a savings: coded separately,
t1 and t2 would require a total of 2 log2(L) + 4 log2(M) bits, and πr2 is of
course substantially smaller than M2.

The encoding of straight lines proceeds similarly, but in this case the
labels of the constituents need to be specified. The first constituent could
be a linelet or a line, and this specification will require one bit (still a saving
over the log2(L) bits associated with the unbound item). Similarly, if the first
constituent is a line, then an additional bit is required to specify whether
the second constituent is a primitive or itself a line. In either case, the
position of the second constituent is constrained by the location of the first
constituent. Hence there is a further savings over an independent encoding
of the constituents.

In principle, the encoding of lines is recursive: When two straight lines are
joined to form a straight line, the code of the composite embeds the codes of
the constituents. Actually, however, a recursive form is difficult to construct.
This is discussed further in [16], both from the point of view of coding as well
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as a more traditional probabilistic viewpoint. (Of course, the two viewpoints
are essentially equivalent if we adopt a Shannon code when given a probability
distribution—see [8], or take code lengths as log-probabilities when given a
code.) In any case, there are many details concerning the existence and scope
of codes (and/or probability measures) satisfying such recursive relationships,
extensions to nonuniform encodings of labelings, and so on. See [16]. Here
we wish only to point out that compositional codes promote aggregation by
assigning more succinct codes to compositions than to constituents, and that
these codes give an explicit formula for evaluating competing interpretations
as may be associated with either inconsistent aggregations or inconsistent
labelings of a common region.

Recall that an “interpretation” is the assignment of each element of an
image to an object. An optimal interpretation is an assignment that achieves
the minimum total description length. We have experimented with a simple
algorithm for computing an approximately optimal interpretation. Briefly,
the algorithm proceeds in two steps: In the first step, the observed primi-
tives are recursively aggregated under the composition rules. This creates
a large collection of labels, with many contradictory and multiple coverings
of the original image. Usually some sort of pruning, based upon description
length, is used in order to maintain a manageable list size. In the second
step, a greedy algorithm chooses a subset from this collection by choosing
successively the next best labeling (shortest description length) among those
not chosen, until the original image is entirely labeled. The greedy algorithm
is fast, and can be restarted dozens or even hundreds of times, from different
choices of the first label.

The algorithm is simple and easy to implement. There can be no doubt
that more sophisticated search strategies will be needed for more complex
applications. Nonetheless, systems based on this approach have been able
to read overlapping and highly irregular characters, as demonstrated in ex-
periments by Xiaohua Xing (see Figures 1 and 3) and by Dan Potter (see
[27]).

More levels of composition can be included in the hierarchy. For ex-
ample, under more-or-less straightforward composition rules, characters can
be grouped to form strings. At this point, an on-line dictionary can be
used to create thousands of virtual composition rules: strings can be viewed
as specific words, with a saving of label bits accrued for each character.
These high-level compositions can resolve ambiguities. In fact, many single-
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Figure 3: Examples of images interpreted by on-line character recognition
algorithm.
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character confusions are impossible to resolve in isolation, but easily resolved
in the context of words.

The MDL procedure is exactly Bayesian MAP: use code lengths as “en-
ergies” and use the associated Gibbs distribution as the prior. Among other
advantages (see [16]), the Bayesian viewpoint suggests the possibility of es-
timating (learning) composition costs. Consider, for example, the joining of
two lines to form an L-junction. In principle, the distribution on the relations
between end points of the two component lines could be estimated. The uni-
form encoding used in the examples discussed here could then be replaced by
a Shannon code associated with the estimated distribution—atypical joinings
would then be appropriately penalized with long code words.

The idea of using description lengths to define an energy functional, and
thereby a prior for Bayesian inference, is not new to machine vision. In one
form or another the “MDL Principle” has been applied to image segmentation
(cf. Leclerc [23], Zhu and Yuille [36]), image restoration (cf. Saito [30]),
motion analysis (cf. Schweitzer [31], Gu et al. [18]), and image interpretation
(cf. Canning [3], Hinton et al. [19]). Our approach is in the same spirit as
these, although the emphasis here is on compositionality, very much along
the lines proposed by Cooper (see [7]): We use description lengths to guide
the development of distributions that promote hierarchical aggregations of
parts.
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