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Abstract of “Statistics on Manifolds with Applications to Modeling Shape Deformations”
by Oren Freifeld, Ph.D., Brown University, May 2014

Statistical models of non-rigid deformable shape have wide application in many fields,

including computer vision, computer graphics, and biometry. We show that shape defor-

mations are well represented through nonlinear manifolds that are also matrix Lie groups.

These pattern-theoretic representations lead to several advantages over other alternatives,

including a principled measure of shape dissimilarity and a natural way to compose de-

formations. Moreover, they enable building models using statistics on manifolds. Con-

sequently, such models are superior to those based on Euclidean representations. We

demonstrate this by modeling 2D and 3D human body shape. Shape deformations are

only one example of manifold-valued data. More generally, in many computer-vision and

machine-learning problems, nonlinear manifold representations arise naturally and provide

a powerful alternative to Euclidean representations. Statistics is traditionally concerned

with data in a Euclidean space, relying on the linear structure and the distances associ-

ated with such a space; this renders it inappropriate for nonlinear spaces. Statistics can,

however, be generalized to nonlinear manifolds. Moreover, by respecting the underlying

geometry, the statistical models result in not only more effective analysis but also consis-

tent synthesis. We go beyond previous work on statistics on manifolds by showing how,

even on these curved spaces, problems related to modeling a class from scarce data can be

dealt with by leveraging information from related classes residing in different regions of the

space. We show the usefulness of our approach with 3D shape deformations. To summarize

our main contributions: 1) We define a new 2D articulated model – more expressive than

traditional ones – of deformable human shape that factors body-shape, pose, and camera

variations. Its high realism is obtained from training data generated from a detailed 3D

model. 2) We define a new manifold-based representation of 3D shape deformations that

yields statistical deformable-template models that are better than the current state-of-

the-art. 3) We generalize a transfer learning idea from Euclidean spaces to Riemannian

manifolds. This work demonstrates the value of modeling manifold-valued data and their

statistics explicitly on the manifold. Specifically, the methods here provide new tools for

shape analysis.

viii
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I am in shape. Round is a shape.

Garfield



Chapter 1

Introduction

1.1 Deformable Shape Models

Statistical generative models of non-rigid deformable shape have numerous applications

in computer vision, biometry, computer graphics, medical imaging, robotics, and other

domains. The choice of shape representation has a great influence on the effectiveness of

the statistical models. While shape representations come in different flavors, in the context

of statistical modeling of deformable shape there are several properties we may desire the

representation to possess. In particular, it is often desirable that the representation should:

1. support shape synthesis, not just shape analysis;

2. lend itself to composition of more than one type of shape deformations (e.g ., two

human shapes may differ from each other due to differences not only in physique but

also in pose);

3. be differentiable;

4. allow for a meaningful notion of shape (dis)similarity.

2
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While the vast literature on shape analysis provides a variety of different shape represen-

tations, many of which exhibit the first property, the second property suggests focusing

on transformations of shapes, rather than on the shapes themselves. In particular, this

brings to mind the notion of a group of transformations. The algebraic structure of a group

implies certain favorable closure properties, which in turn are translated into a consistent

representation. Of course, a group structure alone is not enough – to build meaningful

statistical models one needs to be able to do calculus (e.g ., take derivatives - as mentioned

in the third property) and, more importantly, to measure distances. Thus, the groups of

interest here belong to a special class called (finite-dimensional) Lie groups. These math-

ematical objects are, among other things, smooth manifolds – usually nonlinear – upon

which, once endowed with a Riemannian structure, geodesic distances can be measured;

this provides a principled way to accommodate for (dis)similarity – the last property in

the above list.

To be more concrete, later on we will describe how the shape deformations of 2D

polygonal curves can be represented through a particular nonlinear Lie group. While this

group was previously considered applicable only for open curves [53] we will show that in

fact there is a way to employ this group for closed curves as well. We will also define a

novel nonlinear Lie group for the representation of shape deformations of 3D triangular

surfaces.

Remark 1.1.1 (Statistical generative shape models). The way we use the term statistical

generative model in this work involves a slight abuse of terminology. Our meaning here is a

statistical model that can be used for not only assigning (non-normalized) probabilities to

features of a shape but also generating a new shape. In other words, we mean a statistical

model of shape that supports shape synthesis; implicitly, this also assumes that the shape

representation too supports shape synthesis1. We do not necessarily require, however, that

every possible new shape can be generated from the model. Thus, for example, for our

purposes we are content to include Principal Component Analysis under the category of

statistical generative models of shape, although strictly speaking, PCA is not a generative

1The notions of synthesis and analysis will be explained in more detail later on.
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model [125].

At first, switching to manifold-based representation seems to introduce a major obsta-

cle. After all, classical statistics is concerned with Rn-valued data, and relies on both the

linear structure and the distances associated with Rn; consequently, it is not suitable for

such nonlinear spaces. It turns out, however, that many statistical tools can be generalized

from Rn to manifold-valued data. The branch of statistics that addresses these general-

izations is often called statistics on manifolds. Moreover, statistical models on manifolds

are usually superior to their Rn-counterparts. In fact, when the underlying geometry of

the space of interest is taken into account, the statistical modeling results in not only

more effective analysis but also consistent synthesis; namely, a sample from the model is

guaranteed to lie on the manifold.

Another possible concern is whether these benefits come at a dire computational cost.

Fortunately, this is not the case as usually the computations are only slightly more com-

plicated than the in case of Rn. In fact, sometimes the use of manifolds lowers the com-

putational burden due to a (usually) lower number of degrees of freedom.

In Chapter 3 we will focus on deformations of 2D contours, while 3D deformable surfaces

are the topic of Chapter 4. In both cases, the building blocks creating a global non-rigid

deformation are local transformations acting on basic units – also known as primitives –

that comprise the template. As we will see, in the 2D case the primitives are the small

directed line segments that form the polygon while in the 3D case these are the triangles

that the mesh consists of, expressed through pairs of directed (3D) line segments.

1.1.1 Modeling Transformations Acting on a Template

Modeling transformations, rather than modeling the transformed objects themselves, is

pivotal in Ulf Grenander’s Pattern Theory [51, 52, 55]; see also [107]. One motivation for

such an approach is that usually it simplifies the resulting statistical models. A second
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Figure 1.1: SCAPE [6]: a deformable template model that enables the composition of
shape and pose deformations.

motivation is related to the fact that transformations lend themselves more easily to com-

position of different sources of variation. In practice this means that a deformation can be

factored into its different types, and each type can be modeled separately (perhaps with

statistical dependence between those types). Then, upon sampling from the model, differ-

ent types of deformations are composed to produce the resulting total deformation. For

example, SCAPE [6] is a factored model of 3D shape and pose that enables the composi-

tion of two types of deformations; see Fig. 1.1. In Chapter 3 we will introduce a 2D model

designed for composition of three types of deformations: pose, body-shape, and camera

variation.

Remark 1.1.2 (Composition vs. compositionality). Note that the notion of composition, as

used here, is different from the notion of compositionality in computer vision as advocated

by Bienenstock, S. Geman, and their colleagues [11,47] (see also theses by Potter and Zhang

[117, 153]). There, the compositional aspect refers to a multi-layer hierarchical structure

and re-usability of parts. Likewise, and for similar reasons, our notion of composition

is also different from the notion of composition as used in the inference-by-composition

approach of Irani et al . [29, 74].
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(a) Pictorial Structures (b) Contour Person (c) 3D model

Figure 1.2: The Contour Person model. Most 2D body models are based on a simple shape
representation that consists of a simple articulated collection of geometric primitives (a)
while 3D models have become increasingly detailed and realistic (c). The Contour Person
model is based on a more detailed representation of 2D shape (b), leading to realism akin
to modern 3D models but with computational benefits not far from those of traditional
2D models.

1.1.2 2D Deformable Shapes

The detection of people and the analysis of their pose in images or video has many applica-

tions and has drawn significant attention. In the case of uncalibrated monocular images and

video, 2D models dominate while in calibrated or multi-camera settings, 3D models are pop-

ular. In recent years, 3D articulated models of the human body have become sophisticated

and highly detailed, with the ability to accurately model human shape and pose [6,16,63,72]

Fig. 1.2c). In contrast, 2D articulated models typically treat the body as a collection of

polygonal regions that only crudely capture body shape Fig. 1.2a) [18,32,71,76,119]. Two-

dimensional models are popular because they are relatively low dimensional, do not require

camera calibration, and admit computationally attractive inference methods (e.g. with be-

lief propagation [4, 30, 86, 133]). For many problems such as pedestrian detection, full 3D

reasoning many not be needed, and 2D models suffice. While such 2D models predominate,

they have changed little in 20 or more years [71,76].

In Chapter 3 we describe a new 2D model of the human body that has many of the

benefits of the more sophisticated 3D models while retaining the computational advantages

of 2D. This Contour Person (CP) model (Fig. 1.2b) provides a detailed 2D representation

of natural body shape and captures how it varies across a population. It retains, however,
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the part-based representation of current 2D models as illustrated by the different colors in

Fig. 1.2b. An articulated, part-based, model is required for pose estimation using inference

methods such as belief propagation. Importantly, the CP model also captures the non-rigid

deformation of the body that occurs with articulation. This allows the contour model to

accurately represent a wide range of human shapes and poses. Like other 2D body models,

the approach is inherently view-based with 2D models constructed for a range of viewing

directions.

1.1.3 3D Deformable Shapes

Three dimensional mesh models of objects play a central role in many computer vision

algorithms that perform analysis-by-synthesis [16,62,91,128,149]. Capturing the variabil-

ity of 3D meshes for an object class is critical and the increasing availability of 3D mesh

data enables the employment of statistical learning methods for building such models. In

particular, for capturing human shape variation, deformable template models are popular

for representing non-rigid deformations and articulations [6, 16, 48, 58, 62, 72, 149]. Such

models have wide application in computer vision, computer graphics, virtual reality, shape

compression, biometrics, and the fashion industry. With some notable exceptions [63],

current methods typically use a Euclidean representation of deformations and measure

distance in a Euclidean space, ignoring the geometry of the space of deformations. These

methods model triangle deformations as elements of R3×3 while deformations live, in fact,

in a 6 dimensional nonlinear manifold. Despite the use of heuristics to remove excessive

degrees of freedom (DoF) their deformations might still be noisy or have negative deter-

minant (especially during synthesis). The latter is physically impossible (e.g. reflections).

In contrast, in Chapter 4 we propose a novel manifold representation of shape deforma-

tions that eliminates the above problems and has many other benefits, both practical and

theoretical. In particular, respecting the underlying geometry enables better statistical

learning methods, distance computation, shape interpolation, and the valid composition

of multiple causes of shape deformation.
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1.2 Manifold Representations

Shape deformations are only one example for manifold-valued data. More generally, in

many computer-vision and machine-learning problems, nonlinear manifold representations

arise naturally, while in others such representations provide a powerful alternative to their

Rn counterparts. In this work we show how these ideas lead to better statistical deformable-

template shape models and that, more generally than the spaces of shape deformations,

certain transfer learning2 problems – traditionally limited to Rn-valued data – can be solved

even on such curved metric spaces. Thus, while a large part of this thesis is dedicated to

the topic of statistical modeling of shape deformations, many of the ideas we will see later

on have a broader scope. In particular, see Chapter 5.

As stated before, classical data analysis is concerned with Rn-valued data. Namely, it

assumes that the data points, usually denoted by {x1, x2, . . . , xN}, satisfy

{x1, x2, . . . , xN} ⊂ Rn , (1.1)

N being the number of data points. In fact, this assumption is often made automatically

without stopping to reflect about its implications; the main ones pertain to the linear

structure of Rn and to its associated distance functions. While the simplicity of Rn conveys

an understandable appeal, there are numerous situations where a different point of view is

in order.

A finite-dimensional manifold, to be defined in Chapter 2, is a certain generalization of

a Euclidean space3, and is usually nonlinear. In what follows, we describe several of the

motivations for manifold representations.

2Transfer learning means, in our context, an approach that utilizes knowledge obtained from learning
a model of one class in order to improve the modeling of another related class.

3Analogously, infinite-dimensional manifolds are a generalization of infinite-dimensional Hilbert spaces.
Infinite-dimensional are beyond the scope of this work.
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1.2.1 Nonlinearity

Frequently, it is known that the data, while being Rn-valued, must satisfy one or more

constraints that render the linear structure assumption invalid. In other words,

{x1, x2, . . . , xN} ⊂ S ⊂ Rn , (1.2)

where S is the set of all points that satisfy the constraints, but S is not linear. We now

give several important examples.

1.2.1.1 Spherical Data

There are numerous cases in computer vision where the data are known to be living on

a sphere. To give a few examples, spherical data appear in the context of panoramic

mosaics or omni-directional images [100], normalized SIFT features [79], Kendall’s pre-

shape spaces [80], and 3D surface normals.

As we will see in Chapter 2 (see Examples 2.1.1 and 2.1.2), a sphere is not a linear

space. In fact, it is not even convex4. One statistical implication of the lack of convexity

is that µ̂
def
= 1

N

∑N
i=1 xi, the sample mean5 of the data, usually falls outside the space of

interest: µ̂ /∈ S. In section 1.2.2 we will see that even when the sample mean happens to

fall inside the space, the result typically leaves much to be desired.

4A convex set S is a set that is closed under convex combinations: x1, x2 ∈ S implies (1−c)x1 +cx2 ∈ S
for every c ∈ [0, 1]; this is a weaker requirement than closure under linear combinations.

5As is common in statistics, we reserve the symbol µ, without the “hat”, for the “true” unknown value
of the mean, while the “hat” stands for its estimator.
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1.2.1.2 Matrix-Valued Data

The space of m × n matrices, denoted by Rm×n, is a linear space. Matrix-valued data,

namely

{x1, x2, . . . , xN} ⊂ Rm×n , (1.3)

can be seen as Rmn-valued data via any natural correspondence between Rm×n and Rmn

and appear in many applications. While Rm×n is a linear space, there are often nonlin-

ear constraints on matrix-valued data. For example, when m = n (i.e., square matrices),

determinant-related constraints frequently occur. Several examples for such constraints

will be described in Section 2.1.2. Another important class of square matrices is the set of

Symmetric Positive Definite (SPD) matrices. SPD-matrix-valued data have many appli-

cations in computer vision. For example, non-degenerate covariance matrices of pixel-wise

image features provide a stable image region descriptor with certain additional attractive

properties [116,145]. We will make use of this region descriptor in some of our experiments

in Chapter 5. Another example is given by certain modalities in medical imaging, such

as Diffusion Tensor Images (DTI) [7], that provide SPD-matrix-valued images; namely,

the measurement at each pixel (or voxel) corresponds to an SPD matrix. As we will see

in Section 2.1.2, SPD matrices do not form a linear space. For additional applications of

matrix-valued images, including the registration of two depth-images through a matrix-

valued image that captures the rigid transformations between corresponding pixels, see

works by Rosman et al . [121–123].

1.2.1.3 Shape Deformations

Two particular kinds of matrix-valued data, with a nonlinear structure, pertain to the

representation of shape deformations. The first is related to deformable 2D or 3D polygonal

curves [43, 51–53]. In Chapter 3 we will elaborate about this representation. In Chapter

4 we will define a second kind, based on a novel nonlinear space of shape deformations of

3D meshes [41].
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1.2.1.4 Additional Nonlinear Spaces

There exist many additional nonlinear spaces of interest. Two closely related examples

are the Stiefel and Grassmannian manifolds; namely, the spaces of n × k “tall-skinny”

(n > k) orthogonal matrices and k-dimensional subspaces of Rn, respectively [1]. For

several computer vision and machine learning applications of data in these spaces, see

[9, 17, 68, 127, 134, 144]. Another example is the space of probability density functions

which can also be related to the spaces of re-parameterizations of 2D curves and time-

warping used in shape analysis and activity analysis respectively [138]. In the interest of

space, we avoid going into further details.

1.2.2 Distances

Let S denote some space. A distance function on S is a function, d : S × S → R+, that

measures how (dis)similar two elements in S are. The lower the value of d(x, y) is, the

more x and y are similar to each other. For Rn, the typical distance function is given by

the `2 distance; namely the `2 norm of the Euclidean difference between x and y:

d(x, y)`2
def
= ‖x− y‖`2 =

(
n∑
i=1

|xi − yi|2
)1/2

. (1.4)

Remark 1.2.1. Note that while at the moment we do not require d to be a metric (see

Definition A.3.1, page 204), all of the distance functions considered in this work are in fact

metrics.

In many cases, especially but not limited to nonlinear spaces, the `2 distance is inap-
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Figure 1.3: Consider the three points x, y, z ∈ S. When paths are restricted to lie in S
(light blue), which one is closest to z: x or y?

propriate. This is also true for the other usual suspects:

d(x, y)`p
def
= ‖x− y‖`p =

(
n∑
i=1

|xi − yi|p
)1/p

, 1 ≤ p <∞ ; (1.5)

d(x, y)∞
def
= ‖x− y‖`∞ = max

i∈{1,...,n}
|xi − yi| , p =∞ ; (1.6)

d(x, y)Σ
def
= (x− y)TΣ−1(x− y) , Σ−1 ∈ SPD , (1.7)

where in the particular cases of taking p = 2 in Eqn. (1.5) or Σ = I in Eqn. (1.7) we recover

the `2 distance.

Remark 1.2.2. For a situation where the space is linear but still none of the usual distance

functions will do, consider multi-metric learning. In this branch of machine learning,

single-metric learning in Rn (as done in, e.g ., [130,131,151,152]) is generalized to learning

multiple local metrics in Rn [44, 45, 64, 101, 118, 148]. Of note, these methods are unable

to yield a metric space, compromising their applicability to certain statistical applications

such as regression or PCA. As it turns out, however, multi-metric learning can still give rise

to a global metric; this is achieved through adopting a Riemannian manifold perspective;

see our recent work in Hauberg et al . [65].

Our first example addresses a simple issue, illustrated in Fig. 1.3 with three points in

the 2D plane. Which point is closer to z: x or y? In R2 (with the `2 distance) the answer

is trivial: x is closer to z than y is. But what if our space is S (see Fig. 1.3)? In which

case, it would seem odd to claim that x is still the right answer.
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(a) T (b) Applying Q1 to T (c) Applying Q2 to T

(d) Applying Q1+Q2

2 to T (e) Applying f(Q1,Q2) to T

Figure 1.4: Linear interpolation of shape deformations produces an unsatisfying result,
suggesting a problem with the distance function. (a) T , a template shape (b) Applying Q1

to T (c) Applying Q2 to T (d) Applying (Q1 +Q2)/2 to T produces an unsatisfying result
(e) A better result is obtained from applying f(Q1,Q2) to T . See text for more details.
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Our second example is related to deformable-template models, a topic to be described

in detail later on. For now, Fig. 1.4 will suffice to illustrate the problem. Fig. 1.4a

shows a template 3D shape, denoted by T , while figures 1.4b and 1.4c show two other

shapes. We think of the last two as deformations from T , and we denote the associated

deformations by Q1 and Q2 respectively. As we have yet to define deformations properly,

our discussion will remain abstract at the moment. Suppose now that we would like to find

the average deformation of the shapes shown in Figures 1.4b and 1.4c. It turns out that

linear interpolation, namely (Q1 + Q2)/2, provides a rather poor result: as can be seen

in Fig. 1.4d, while the outcome may be considered more or less reasonable in the lower

part of the body (where Q1 and Q2 have similar effects), in the upper part of the body

(where their effects differ more significantly) it is clearly disappointing; it seems that some

unnatural “squashing” effect has taken place.

In broad sweeps, let us try to explain what is going on; any omitted details will be

given when we return to this example in Chapter 4. We start with a well known fact.

Fact 1.2.1. The sample mean, in Rn, coincides with

arg inf
x∈Rn

N∑
i=1

d(xi, x)2
`2 ; (1.8)

namely, the minimizer of the sum of squared `2 distances from the data6,7.

Consequently, and as a particular case, when there are only two data points (N = 2)

the sample mean linearly interpolates between them, and is equidistant from both:

µ̂
by def.

=
x1 + x2

2
, d(x1, µ̂) = d(x2, µ̂) . (1.9)

Thus, what Fig. 1.4e suggests is that there is something wrong with the distance. While

6The proof is easy. Equate the gradient (with respect to x) of the convex cost function from Equation
(1.8) to 0n ∈ Rn and solve for x to get the global minimizer, 1

N

∑N
i=1 xi ∈ Rn.

7Analogously, the multi-variate generalization of the sample median coincides with
arg infx∈Rn

∑N
i=1 d(xi, x)`1 .
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the Euclidean averaging did produce some shape deformation, it is not one we want. In

other words, we successfully minimized the wrong cost function. In Chapter 4 we will see

that shape deformations can be restricted to lie on a manifold, and that this manifold is

equipped with a better notion of distance. Once this distance is substituted in Eqn. (1.8)

instead of the `2 distance, we get a different minimizer. To stress this minimizer is still a

function of the data points Q1 and Q2, we denote it by f(Q1,Q2). Note that f(Q1,Q2)

produces a more successful result than Q1+Q2
2 ; see Fig. 1.4e.

The purpose of the above discussion was to show that there might be a problem with

not only linear interpolation but also, and more importantly, the familiar distances from

Rn. As discussed in the next section, the latter point should alarm any one who wants to

do statistics on manifold-valued data.

1.2.3 Probability and Statistics Depend on Distances and the Structure

of the Space

In the previous sections we discussed how both the linear structure and its implied dis-

tances are not necessarily appropriate for various applications. Both classical theories of

probability8 and statistics have a strong dependency on these concepts9. To fix ideas, let

us start with an example from probability; the corresponding statistical example will follow

naturally.

Example 1.2.1 (Gaussian random variables and distances). Let the n-dimensional ran-

dom variable X be normally distributed with some mean, µ, and a unit covariance:

X ∼ N (µ, In×n) , µ ∈ Rn . (1.10)

8Let us pay our measure-theoretic taxes at the outset: while measure-theoretic probability supplies the
mathematical rigor justifying many of the probabilistic and statistical results mentioned in this work, it is
at best tangential to our main discussion; therefore, we shall not worry ourselves with any measure-theoretic
issues.

9A purist may argue that the dependency on distances can happen only when the discussion is restricted
to random variables taking values in metric spaces – as opposed to, say, abstract topological spaces; however,
this is indeed the case in most real-world applications.
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The probability density function (PDF) of X is a function of the distance between the

point of interest, x, and µ:

p(x|µ) ∝ e−
1
2
d(x,µ)2

`2 = func(d(x, µ)`2) , (1.11)

Thus, Pr(X ∈ B), where B ⊂ Rn, depends on

{d(x, µ)`2 : x ∈ B} ;

namely, the set of `2 distances between µ and each one of the points that B consists of.

More generally, if X ∼ N (µ,Σ), then

p(x|µ,Σ) = func(d(x, µ)Σ,det Σ) . (1.12)

and Pr(X ∈ B) depends on

{d(x, µ)Σ : x ∈ B}

(as well as on det Σ).

Example 1.2.1 tells us that the Gaussian, which is perhaps the most commonly used

PDF, has a strong dependency on the concept of a distance. If the `2 distance (or d(·, ·)Σ)

is inappropriate, then we cannot use the Gaussian PDF as it is. We can now turn to the

complementary side of the token: statistics.

Example 1.2.2 (Sample mean for normally distributed data). Let {xi}Ni=1 be an Inde-

pendent and Identically Distributed (i.i.d .) sequence of samples10. xi ∼ N (µ, In×n) where

µ ∈ Rn. Let L(µ)
def
=
∏N
i=1 p(xi|µ) denote the likelihood of the observed sequence. The

log-likelihood, logL(µ), is proportional to the cost function in Equation (1.8), and thus

10Usually it is a good practice to reserve capital letters for random variables, e.g ., X, and use lowercase
letters for their realized values, e.g, x; this creates the required distinction between the function (i.e., the
random variable) and the values it takes. Thus, one can write, say, Pr(X ≤ x). In this work, however,
this practice will be shamelessly ignored more often than not; we will later need notations from manifold
theory, and then this practice would have led to a notational clash. Therefore we downgrade it from a rule
to a guideline. This annoyance arises often in texts that cover both statistics and manifolds, and it seems
that an agreed-upon solution has yet to be found.
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the sample mean is the maximum-likelihood estimator of µ:

µ̂
by def.

=
1

N

N∑
i=1

xi = arg sup
µ∈Rn

L(µ) = arg inf
µ∈Rn

N∑
i=1

d(xi, µ)2
`2 . (1.13)

It is easy to verify that changing the distribution from N (µ, In×n) to the more general

N (µ,Σ) would not have changed this result.

In Example 1.2.2 we see that the likelihood being maximized (equivalently, the stan-

dard loss function being minimized) is based on distances, and that the optimizer is a

linear combination of the data. In cases where the `2 distance (or d(·, ·)Σ) and/or the

linear structure are inappropriate, we see that even simple statistical operations such as

computing the sample mean for normally distributed data can fail.

The Gaussian is of course only one example. The take-home message in the context of

probability or statistics is simple: when the structure of the space is nonlinear, or when

the standard distances of Rn will not do – typically, but not always, these two phenomena

happen at the same time – it is unwise or even impossible to keep doing the statistical

analysis as if we were still working in Rn.

This naturally raises the question: how can we do statistics on manifolds? Some

answers will be provided in Section 2.5, when we touch upon several basic techniques for

doing statistics on manifolds. Later on, in Chapter 5, we will introduce a novel technique

that goes beyond previous work to provide the first generalization of transfer learning,

from Rn to a manifold setting. This will enable us to addresses data scarcity of one

manifold-valued class by leveraging data from another manifold-valued class.

1.2.4 Consistency

Earlier we saw a situation where a natural operation, such an averaging, is applied to data

points, and yet the result falls outside the space. In other words, we saw a situation where
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a natural operation is applied to “good” elements, yet it produces a “bad” one. In which

case we can say that the representation (or the operation - depending on the point of view)

is inconsistent. Phrasing it a bit differently, lack of consistency can be thought of as lack of

closure. Manifolds provide us with consistent representations in the sense that as long as

we make sure to use the right operations, we are guaranteed to stay on the manifold, and

so the constraints that define the manifold remain satisfied. Often we will be interested in

algebraic closure under specific operations, such as inversion of an element and composition

of two elements (i.e., a group structure). As discussed earlier, this will lead us the concept

of a particular type of manifolds, known as matrix Lie groups; see Section 2.3.

Remark 1.2.3. (Consistent representation vs. consistent estimator) Note that our use of

the term consistency is different from the notion of consistency in statistical inference11.

1.3 Transfer Learning on Manifolds

A common problem in many scientific disciplines involves learning a statistical model from

a small number of observations. Such small-sample scenarios occur when data collection

is time consuming, prohibitively expensive, or when the phenomenon of interest rarely

occurs. For Rn-valued data, transfer learning can utilize a second, closely related, class (if it

exists) for which more data are available to improve statistical learning of the small-sample

class. This works well when both classes have similar models or when the large-sample

class contains variations that are related to those of the small-sample one. Unfortunately,

despite their ubiquity, this transfer learning approach has yet to be generalized to nonlinear

manifolds.

In Chapter 5 we consider the more general case where the data lie on a known Rie-

mannian manifold instead of Rn. In particular, we address the following problem. Fix a

manifold M . Given two M -valued datasets, one small (DS) and one large (DL), we wish to

11Loosely speaking, there consistency means that as the number of examples tends to infinity, a consistent
estimator is one that converges (in some sense) to the true value.



19

(a) Data on a manifold (b) Data covariances

(c) Linear translation (d) Covariance Transport

Figure 1.5: Covariance Transport. On nonlinear manifolds, statistics of the Many (red)
are transported to improve a statistical model of the Few (blue). See text for details.

learn a model from the smaller dataset, while leveraging statistical information from the

larger one. To fix ideas we use a manifold of 3D body shape deformations from Chapter 4

as our running example; as illustrated in Fig. 1.5a, every point on M represents an entire

human shape12. For illustration purposes, assume that examples of female body shapes (in

red) are much more plentiful than those of males (in blue). We stress that this particular

manifold is just an example of a nonlinear space; our approach is applicable to a very broad

class of manifolds, including those that are not matrix Lie groups (to be defined in section

2.3). Later on we will see that the approach applies to both additional manifolds and

different classes on this particular manifold.

12For visualization purposes, the manifold here is shown as a 2D manifold embedded in R3; its true
dimension is much higher. See Chapter 4.
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Imagine we want to model the body shape variation of men while leveraging the model

of the shape variation of women. Models learned from scarce data are prone to over-fitting

and poor generalization. We suspect, however, that some aspect of shape variation among

women may apply to men as well and that we can use this to learn a better model for male

shape variation.

The key contribution in Chapter 5 is generalizing transfer learning from Rn to known

nonlinear manifolds by formulating a solution based on any metric parallel transport ;

namely, parallel transport that respects the Riemannian metric of the manifold (all these

notions will be defined in Chapter 2). This allows us to move a statistical model learned

in one region of M to another where it can be used to improve the model of interest. In

practice this means we can estimate the covariance of one class and move it to the region

of M where the data of interest reside.

Referring again to Fig. 1.5, we first compute, for DL, the (intrinsic) mean and a co-

variance expressed in a tangent space13 whose point of tangency is this mean (Fig. 1.5b,

red). We would like to move this covariance to the mean of DS such that it can be used

to improve the covariance estimation of DS (Fig. 1.5b, blue). Clearly we cannot simply

translate the covariance as it would no longer be tangent to M (Fig. 1.5c, green) yielding

an undefined result. Instead we take the geometry of M into account and move the covari-

ance between the tangent spaces in a way that preserves the structure of the covariance

while adapting to the structure of M (Fig. 1.5d, green).

When moved along a smooth curve on a nonlinear manifold, a geometric object, such

as a covariance matrix, is deformed to adapt to the local metric and curvature. We prove

that when a covariance is moved via metric parallel transport, its statistical meaning is

preserved. Not only is this theoretically sound, in practice it can work remarkably well;

e.g ., Fig. 5.10c illustrates how well the shape of one gender is transported to another. Once

the covariance has been moved, it can be used to improve the covariance estimation of DS.

13These notions of mean and covariance will be explained in Chapter 2.
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This can be done by “fusing” the covariances or using the transported covariance of DL to

regularize that of DS. We call this framework Covariance Transport (CT).

The framework allows us to solve seemingly difficult problems with surprising results;

e.g ., we find that observations of normal-weight people help in modeling people with high

body mass index (BMI). This is important because body scans of high-BMI people tend to

be scarce. Also, image covariance descriptors of many faces in many poses can be similarly

adapted to model the face of a new person captured in only a few poses. Our method

can form the foundation for many problems in computer vision, pattern recognition and

statistical modeling.

1.4 A Sketch of this Thesis

To summarize, the main contributions of this thesis are as follows:

1. The Contour Person model: a new learned 2D articulated model – more expressive

than traditional pictorial structures models – of deformable human shape that factors

body-shape, pose, and camera variations (Chapter 3; see also Freifeld et al . [43]).

2. Lie Shapes: a new representation of 3D shape deformations which in turn gives rise

to statistical deformable-template models that are better than the current state-of-

the-art (Chapter 4; see also Freifeld and Black [41]).

3. Covariance Transport : generalizing certain transfer learning techniques – tradition-

ally limited to Rn-valued data – from Rn to a Riemannian setting (Chapter 5; see

also Freifeld et al . [42]).

But first, some preliminaries are needed. Chapter 2 covers the mathematical back-

ground that is required for the understanding of its subsequent chapters.



Chapter 2

Mathematical Background

This chapter contains the mathematical background required for understanding its subse-

quent chapters, especially Chapter 4 and Chapter 5.

Note that to understand most of Chapter 3, it is not required to read the current

chapter. Small portions of Chapter 3, however, may be better understood after having

read the first three sections of the current chapter.

In Section 2.1 we expand the discussion regarding several nonlinear spaces mentioned

earlier. In Section 2.2 we provide intuition for the concept of manifolds as well as an

illustrated tutorial for basic manifold-related notions using the sphere as a running example.

In Section 2.3 we present a class of manifolds, called matrix Lie groups, that is of special

importance in this work.

In Section 2.4 we provide a gentle introduction to manifold theory. For reasons to

be elaborated on later, our treatment follows the abstract (and more general) approach

to manifold theory rather than presenting manifolds as special subsets of Rn. For now,

we briefly state that the primary reason for doing so is that, while the abstract approach

requires more mathematical sophistication, it makes working with manifolds easier. Having

22
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said that, Section 2.4.2.3 is more abstract than the rest of the chapter and may be skipped.

In Section 2.5 we touch upon statistics on manifolds. Along the way, we briefly cover

how several standard statistical concepts from Rn, such as the sample mean and PCA, are

generalized to a manifold setting.

In Section 2.6 we discuss statistics on matrix Lie groups. As a particular class of mani-

folds, the discussion from Section 2.5 applies transparently to these groups too, with many

of the associated equations given in simple closed form. There are, however, certain ad-

ditional techniques that can be used on matrix Lie groups due to their special structure.

We will refer to these techniques as Lie-algebraic. Importantly, there are practical differ-

ences between the resulting models. We illustrate this using an example with models of

image deformations (such as those used for optical flow in [93,94,147]) where we compare

a Riemannian model with a Lie-algebraic one; to the best of our knowledge this is the first

time such a direct comparison is made in computer vision applications. Thus, even in the

presence of a matrix Lie group, one may want to consider the pure Riemannian approach.

In particular, for the new tool for statistics on manifolds we will introduce in Chapter 5,

the Riemannian approach will be more natural as well as easier to use.

2.1 Examples for Nonlinear Spaces

In Section 1.2.1 we mentioned several nonlinear spaces that often arise in applications.

The current section provides additional details.

2.1.1 Spheres

As a warm-up, let us consider two points on the unit circle.
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Example 2.1.1 (The unit circle is not linear nor convex). Let x1, x2 ∈ S1, where

S1 def
=
¶

(x, y) : (x, y) ∈ R2, x2 + y2 = 1
©
. (2.1)

It is easy to see that x1+x2 is not in S1 and thus S1 cannot be a linear space. Alternatively,

the nonlinearity can be shown by noting that if c ∈ R \ {−1, 1}, then cx1 /∈ S1. Moreover,

not only is S1 nonlinear, it is not even convex: if x1 6= x2, then (x1 + x2)/2 /∈ S1.

The generalization to higher dimensions is straightforward.

Example 2.1.2 (The unit sphere is neither linear nor convex). The unit sphere in Rn,

Sn−1 def
=

{
(x1, x2, . . . , xn) : (x1, x2, . . . , xn) ∈ Rn,

n∑
i=1

x2
i = 1

}
, (2.2)

is not a linear space; it is not even a convex set. The arguments are identical to the ones

from Example 2.1.1.

Remark 2.1.1 (n vs. N ; subscript notation). In this work, the number of data points is

typically denoted by N while the standard Euclidean space is denoted by Rn (and not

by, say, RN ). As both n and N are usually greater than one, we need a notation for not

only the components of a given data point but also its index with respect to the entire set

of data points. In the context of statistics, using superscripts for either of these cases is

cumbersome, especially when powers are involved1. Consequently, we use subscripts for

both. Usually this should lead to no confusion; whenever the particular case of use is not

immediately evident from the text, it will be stated explicitly.

2.1.2 Constraints on Matrix-Valued Data

Several ubiquitous constraints on matrix-valued data are determinant-related.

1In the context of differential geometry, Einstein summation, a notational tool that does employ super-
scripts, provides an elegant way to avoid lengthy expressions; however, the likely readership of this work
might not be familiar with such notation.
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Example 2.1.3 (Determinant constraints). Let n be a fixed positive integer. The following

three sets of matrices are nonlinear spaces:

(invertible matrices)
¶
Q : Q ∈ Rn×n, detQ 6= 0

©
; (2.3)

(positive determinant)
¶
Q : Q ∈ Rn×n, detQ > 0

©
; (2.4)

(volume-preserving)
¶
Q : Q ∈ Rn×n, detQ = 1

©
. (2.5)

Another important case is related to orthogonality.

Example 2.1.4. The space of orthogonal matrices,¶
Q : Q ∈ Rn×n, QTQ = QQT = In×n

©
, (2.6)

is nonlinear.

When the orthogonality constraint is added to the volume-preserving constraint, we

get another ubiquitous space; the space of rotation matrices.

Example 2.1.5 (Rotation matrices). The space of n× n rotation matrices,¶
Q : Q ∈ Rn×n, QTQ = QQT = In×n, detQ = 1

©
, (2.7)

is nonlinear.

Remark 2.1.2. The determinant constraint in Eqn. (2.7) is not superfluous: while QTQ =

QQT = In×n implies that |detQ| is equal to 1, it does not rule out the case of detQ = −1.

Example 2.1.6 (Symmetric positive-definite matrices). The set of SPD matrices,¶
Q : Q ∈ Rn×n, Q = QT , aTQa > 0 ∀ non-zero a ∈ Rn

©
, (2.8)

is nonlinear.
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To see that all of the aforementioned spaces are nonlinear, take Q to be the n× n

identity matrix and observe that Q−Q is not in any of these sets.

2.2 Manifolds: Intuition

In Section 2.1 we saw several examples for nonlinear spaces and in Chapters 3 and 4 we

will see that the spaces of 2D and 3D shape deformations are nonlinear. All these spaces,

however, are not merely nonlinear; they also have a manifold structure. The purpose of

the current section is to provide the reader with some intuition in regard to manifolds.

Thus, our treatment here will be quite informal. While the discussion will be general, we

will use Sn−1, the unit sphere in Rn, as a running example. Most of the formulas in this

section that are related to the sphere are based on [1].

A finite-dimensional (topological) manifold M of dimension n is a nice2 space that

in some local sense resembles the Euclidean space Rn. Usually M is nonlinear, but this

need not be the case; e.g ., Rn itself is a finite-dimensional manifold. Formally, and as we

will see later on, an ambient space is not required; however, for gaining intuition, readers

unfamiliar with manifold theory may regard M as a curved subset of a Euclidean space.

For example, the sets in the examples from the previous section are nonlinear subsets of

Rn×n.

A finite-dimensional smooth manifold is a finite-dimensional manifold that is smooth in

some sense. Admittedly, even as an informal definition this tautology is not very satisfying.

But for now, we ask the reader to be content with knowing that the unspecified sense above

refers to our ability to “do calculus” on the manifold. Henceforth, all manifolds in this

work are assumed to be smooth and of finite dimension.

2When mathematicians say that some mathematical object is nice, they mean that it satisfies several
properties that are useful in the given context. This shorthand frees them from having to specify or explain
the actual properties – which might be too long, distracting, or even impossible to do. Another similar
term used in that context is “well-behaved”. We prefer the term “nice” as it is shorter. And nicer.
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Figure 2.1: An illustration of Riemannian geometry.

Example 2.2.1 (The sphere: characterization of elements in M). For the sphere, the

characterization of elements in M is given by

M = Sn−1 def
= {p : p ∈ Rn, ‖p‖`2 = 1} . (2.9)

The dimension of M is n − 1; e.g., S2, the unit sphere in R3, is two-dimensional. See

Fig. 2.1a.

While M is usually nonlinear, we can associate a tangent space, denoted by TpM , to

every point p ∈M . TpM is a vector space whose dimension is the same as that of M . The

origin of TpM is at p. If M is embedded in some Euclidean space, we may think of TpM

as an affine subspace such that: 1) it touches M at p; 2) at least locally, M lies completely

on one of side of it. See Fig. 2.2. Elements of TpM are called tangent vectors.

Example 2.2.2 (The sphere: characterization of elements in TpM). Let p be a point on
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TpM
p

M

Figure 2.2: A manifold M and a tangent space, TpM , whose point of tangency is p.

the sphere. The tangent space TpM is fully characterized by

TpM =
¶
x : xT p = 0 , x ∈ Rn

©
. (2.10)

See Fig. 2.1b.

The tangent space can be equipped with an inner-product (see Definition A.3.4, page

205):

〈·, ·〉p : TpM × TpM → R . (2.11)

Two tangent vectors are called orthogonal if their inner-product is 0. We use the inner-

product to induce a norm on TpM , rendering TpM a normed vector space (see Definition

A.3.2, page 204):

‖·‖p : TpM → R+, ‖·‖p : x 7→
»
〈x, x〉 . (2.12)

The norm of a vector can be interpreted as its length. Together, the inner-product and

the norm enable us to define an angle (see Definition A.3.5, page 205) between a pair of

tangent vectors.
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Note the p subscript in 〈·, ·〉p and ‖·‖p. In general, these maps depend on p because 1)

they may behave differently as p varies; 2) their domains (TpM × TpM or TpM) depend

on p.

If the collection of inner-products,
¶
〈·, ·〉p

©
p∈M , is sufficiently nice, then it is called a

Riemannian metric and M is said to be a Riemannian manifold [27, 88]. A Riemannian

metric enables us, among other things, to define lengths of curves in M . Consider two

manifold points p and q and all of the nice curves (in M) that start at p and end at q.

The curves that are local minimizers of the function that maps a curve to its length are

called geodesic curves or simply geodesics. Let d(p, q) denote the length of the shortest

geodesic between p and q. We think of d(p, q) as the distance between these two points.

This distance is called the geodesic distance. By a slight abuse of terminology, we will

often write “the geodesic” between p and q, and by this will mean the shortest geodesic

between them. Henceforth, whenever we refer to a distance between a pair of points in M ,

as opposed to a distance between two tangent vectors, we mean geodesic distance.

The term metric, as used in the terms metric space (see Definition A.3.1, page 204) and

Riemannian metric, is unfortunately overloaded. There is, however, a relation between the

two meanings. A Riemannian metric can define a metric on M in the sense of a metric

space: if M is nice enough, then the pair (M,d) is a metric space. As usual, in such cases

we usually omit d and just say that M is a metric space. As M is (usually) nonlinear,

there is no point in talking about M as a normed space since by definition, normed spaces

are always linear. In contrast, it does make sense to talk about TpM as a normed space.

If M is embedded in some Euclidean space, then one possible Riemannian metric on

M is the one induced by the inner-product of the ambient space. This is arguably the

simplest choice of a Riemannian metric. Being a Riemannian metric, it induces geodesic

distances between points in M . Recall that the Euclidean ambient space has its own

distance function, denoted by d(·, ·)Ext. Usually, d(p, q) 6= d(p, q)Ext. In other words, even

with this simple Riemannian metric, the distance between points on a manifold is different
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from the distance between them where they are regarded as points in the ambient space.

Example 2.2.3 (The sphere: the Riemannian metric induced by the inner-product of the

ambient Space). In this case, the inner-product of the ambient space, 〈·, ·〉Ext, is the dot

product in Rn:

〈·, ·〉Ext : (x, y) 7→ x · y = xT y . (2.13)

In other words, if x and y are in TpM , then their inner-product is given by

〈x, y〉p = 〈(x+ p)− p, (y + p)− p〉Ext

= 〈x, y〉Ext

= xT y ,

(2.14)

where in the first equality we have taken into account the fact that the origin of TpM is

p ∈ Rn.

Since manifolds are usually nonlinear, they are more complicated objects than Rn. A

standard trick that often saves the day is to make use of the existence of tangent spaces, the

latter being linear (hence simpler). We already alluded to that: the geodesic distance was

implied by a collection of inner-products, each one of which is defined in a tangent space.

In particular, the existence of tangent spaces is what makes Riemannian manifolds simple

enough to allow for tractable statistics – as we will see later on. To utilize the tangent

spaces, we need mappings back and forth between between TpM and M . Note that these

mappings depend on p. There are two kinds of such pairs of mappings of interest to us.

The first kind is the pair of Riemannian exponential map and Riemannian logarithm:

(Riemannian exponential map) Expp : TpM →M ; (2.15)

(Riemannian logarithm) Logp : M → TpM . (2.16)

These maps are tied to the concepts of geodesic distances and geodesic paths. The second

type of interest to us is related to Lie groups. We will return to it later this chapter.

Example 2.2.4 (The sphere: the Riemannian exponential and logarithm maps). The
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exponential map, Expp : TpM →M is given by

Expp(x) = p cos (‖x‖) +
x

‖x‖ sin(‖x‖) . (2.17)

See Fig. 2.1c. Let x ∈ TpM , q = Expp(x), u = x
‖x‖ , and m = ‖x‖. A simple calculation,

using the fact that u ∈M ∩ TpM , shows that

qT q = sin(2m)pTu+ cos2 (m) ‖p‖2 + sin2 (m) ‖u‖2 = cos2 (m) + sin2 (m) = 1 (2.18)

and so q is indeed in M . Similarly, let p and q be in M . The logarithm map Logp : M →

TpM is given by

Logp(q) = (q − p cos θ)
θ

sin θ
(2.19)

where θ = arccos(pT q). See Fig. 2.1d.

Example 2.2.5 (The sphere: geodesic curves and geodesic distances). Let p, q ∈ M . Set

x = Logp(q), u = x/‖x‖ and m = ‖x‖. The geodesic curve between p and q is given by

c(t) = p cos (mt) + u sin(mt) . (2.20)

A similar calculation to the one before shows that c(t)T c(t) = 1 for all t and thus c(t) ∈M .

See Fig. 2.1e. Finally, the geodesic distance between p and q is given by

d(p, q) = arccos(pT q) 6= d(p, q)Ext . (2.21)

2.3 Matrix Lie groups

2.3.1 Definition and Basic Properties

Definition 2.3.1 (Matrix Lie groups). Let n be a fixed positive integer. A matrix Lie

group is a set G of n × n matrices together with the binary operation of matrix product
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on G (that is, the domain is G×G) such that:

(G1) In×n ∈ G;

(G2) A,B ∈ G⇒ AB ∈ G;

(G3) A ∈ G⇒ A is an invertible matrix, A−1 ∈ G;

Matrix Lie groups are also called matrix groups, the terms being identical. It is possible

to use a similar definition for matrix Lie groups whose elements take complex values; in

this work, however, the discussion is restricted to real-valued matrix Lie groups.

Let G satisfy the conditions in Definition 2.3.1. Basic linear algebra shows that:

(G4) A ∈ G⇒ AIn×n = In×nA = A

(G5) A,B,C ∈ G⇒ (AB)C = A(BC) = ABC

(G6) A ∈ G⇒ AA−1 = A−1A = In×n.

What (G1) through (G6) imply is that the set G, together with the binary operation

of matrix product, is a group and that In×n is the identity element of the group. So

unsurprisingly, every matrix group is a group. When n is understood from the context, we

will sometimes denote the identity matrix by I instead of In×n.

If G is a set of n× n matrices, which may or may not form a matrix group once taken

together with matrix product, it may be the case that there is some other binary operation,

denoted by, say, � : G × G → G, such that the pair (G, �) forms a group. This group,

however, is not a matrix group, although it is a “group of matrices”. For example, if G is

Rn×n and � is matrix addition, than the group (G, �) is not a matrix group3. Henceforth,

by a slight abuse of notation, we will write expressions such as “G is a matrix Lie group”,

3Likewise, the groups of matrices defined by Alexa in [2] are not matrix Lie groups according to the
definition we use here; they are, however, Lie groups.
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with the convention that we will mean that the set G, together with matrix product, is a

matrix Lie group. Similarly, we will write “the matrix Lie group G is given by the following

set”, meaning that the set, together with matrix product, defines the matrix Lie group of

interest.

Definition 2.3.2 (The difference between two elements in a matrix Lie group). Let G be

a matrix Lie group, and let A and B be in G. The group difference of A and B is given

by A−1B; it is not symmetric.

Note that (G2) and (G3) imply the following:

(G7) A,B ∈ G⇒ A−1B ∈ G.

Properties (G2), (G3), and (G7), are referred to as the group (algebraic) closure under its

operations of composition, inversion, and difference, respectively. Suppose our data can

be represented as elements of a matrix Lie group. These closure properties imply that the

representation is consistent.

Definition 2.3.3 (Abelian matrix Lie group). If AB = BA for any A and B in a matrix

Lie group G, then G is called Abelian.

Finally, the class of matrix Lie groups is contained in the class of (finite-dimensional)

Lie groups [89]: every matrix Lie group is a Lie group while the converse is false. Matrix Lie

groups are simpler to work with (and define) than the more general case of Lie groups. All

Lie groups in this work are matrix Lie groups, which considerably simplifies the discussion.

We remark, however, that the tool we will present in Chapter 5 is applicable to a large

class of Riemannian manifolds, regardless of whether they are Lie groups or not.

2.3.2 Several Important Matrix Lie Groups

We start with the most general matrix Lie group.
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Definition 2.3.4 (The general linear group of order n). The general linear group of order

n, denoted by GL(n), is given by Eqn. (2.3).

We call it the most general as, by (G3), we see that every matrix Lie group of n× n

matrices is a matrix Lie subgroup4 of GL(n),

Note that GL(n) is not a connected space (see Definition A.1.9, page 203). To see that,

pick a matrix A in GL(n) with a positive determinant and a matrix B in GL(n) with a

negative determinant. Then, set p = A and q = B. As det : Rn×n → R is continuous

(see Example A.1.4, page 201), any continuous curve between p and q must pass through

a matrix of zero determinant; i.e., the curve must make an excursion outside of GL(n). In

fact, it can be shown that GL(n) has exactly two connected components.

Definition 2.3.5 (The identity component). The identity component of a matrix Lie group

is one that contains In×n. The identity component of a matrix Lie group is always a matrix

Lie group by itself.

Definition 2.3.6 (GL+(n)). The identity component of GL(n), denoted by GL+(n), is

given by Eqn. (2.4).

The following matrix Lie groups are all of high importance for this thesis.

Definition 2.3.7 (US(n)). The uniform scale group, denoted by US(n), is given by¶
Q : Q = SIn×n, S ∈ R+

©
. (2.22)

Specifically, we will use our own notation for the scalar case (where GL+(n) coincides

with US(n)):

Definition 2.3.8 (GS). The group of scales, denoted by GS , is given by R+ together with

the operation of scalar multiplication.

4The relation between a matrix Lie subgroup and a matrix Lie group is analogous to the relation
between a subgroup and a group.
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Definition 2.3.9 (O(n)). The orthogonal group of degree n, denoted by O(n), is given by

Eqn. (2.6).

Definition 2.3.10 (SO(n)). The special orthogonal group of degree n, also known as the

rotation group and denoted by SO(n), is given by Eqn. (2.7).

In particular, we single out the case of n = 3.

Definition 2.3.11 (SO(3)). The special orthogonal group of degree 3, also known as the

rotation group (of order 3), is denoted by SO(3).

Definition 2.3.12 (SPD). The SPD group, is given by Eqn. (2.8).

2.3.3 Direct Products of Matrix Lie Groups

Let Gi be a matrix Lie subgroup of GL(ni), i = 1, 2, . . . , k. The standard group direct

product of {Gi}ki=1, denoted by G1 ×G2 × . . .×Gk, is not technically a matrix Lie group,

as its elements are k-tuples of matrices (such as (g1, g2, . . . , gk)) rather than matrices. It is,

however, easy to identify such a direct product with a matrix Lie subgroup of GL(n1 +n2 +

. . .+nk) using the correspondence between a k−tuple (g1, g2, . . . , gk) and a block-diagonal

matrix:

(g1, g2, . . . , gk)↔



g1 0
g2

. . .

0 gk


∈ GL(n1 + n2 + . . .+ nk) . (2.23)

Lastly, if the Gi’s are k copies of the same matrix Lie group G, then we denote their direct

product by Gk.
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2.3.4 Matrix Lie Groups as Smooth Manifolds

Note that no matrix Lie group is a linear space5: Merely observe that if A is any invertible

matrix (in fact, in GL(n)), then A − A = 0n×n is not invertible. Thus, while a matrix

Lie group is closed under the operations mentioned earlier, it is not closed under linear

combinations. In particular, it does not make sense to talk about linear subspaces of such

a group. While nonlinear, every matrix Lie group is a finite-dimensional smooth manifold.

Thus, a matrix Lie group is a group on which one can “do calculus”. Alternatively, a matrix

Lie group is a smooth manifold with a group structure. Groups are usually denoted by G,

while manifolds are usually denoted by M . Since a matrix Lie group is both a group and

a manifold, both notations may be used.

2.3.4.1 Dimensionality

Every matrix Lie group of n× n matrices is a nonlinear subset of Rn×n, the latter being

an n2-dimensional space. Since such a group is also a finite-dimensional manifold, it has

its own dimension. To avoid a notational clash, we will use D to denote the dimension of

the group; note D ≤ n2.

The dimension of both GL(n) and GL+(n), for example, is D = n2. Note this is the

same dimension as that of Rn×n, in spite of the fact that GL+(n) is a proper subset of

GL(n), which in turn is a proper subset of Rn×n. Our point here is that once we deal with

manifolds, even if two spaces have the same dimension, one can still be strictly larger than

the other. Another example is SO(3), whose dimension is 3.

5It may seem odd that an object called the general linear group is not linear, but the linearity in the
name refers to the fact that every element A of the group is affiliated with a linear map Rn → Rn, x 7→ Ax.
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2.3.4.2 Smoothness and Tangent Spaces

One important implication of the fact that a matrix Lie group G is a smooth manifold

is that it is possible to define smooth curves on G. Note that if c : J → G is a smooth

curve (to be defined later) from some open interval J in R into G, then c(t) is itself a

matrix that belongs to G. If we differentiate c with respect to t (i.e., differentiate each

entry of the matrix c(t) with respect to t), then we will get a new curve, ċ. However, this

curve is a map ċ : J → Rn×n, not ċ : J → G. Regarding Rn×n as Rn2
(which is hard to

visualize: even for 2-by-2 matrices this is already a 4D space), we can imagine ċ(t) as an

n2-dimensional vector attached to the curve at the n2-dimensional point c(t). In terms of

standard differential geometry of curves and surfaces in Euclidean spaces, ċ(t) is a tangent

vector to the curve. In fact, it is also a tangent vector to the manifold ( again, in those

terms, where we refer to a manifold as a surface in a Euclidean space) at the point p.

For a given point p, and a given open interval J that contains 0, consider all smooth

curves c : J → G that pass though p and satisfy c(0) = p. Let us denote this class of curves

by CJ,p. The tangent vectors, at p, are given by the set of distinct6 elements

{ċ(0) : c ∈ CJ,p} . (2.24)

It can be shown that the particular choice of J is immaterial. It turns out that the tangent

vectors form a subspace of Rn×n. This subspace is denoted by TpG (had we used M instead

of G we would have written TpM) and its dimension is identical to that of the matrix Lie

group G:

dimG = dimTpG . (2.25)

For example, for G = GL(n), the dimension of the tangent space is always n2 (so TpG

is a perfect copy of Rn×n, both being Euclidean spaces of the same dimension) while for

G = SO(3) the dimension of the tangent space is always 3. Let G be a D-dimensional

6Many different curves in CJ,p can have the same derivative at t equals zero. Thus, their derivatives
form equivalent classes. The set-theoretic notation means we pick one representative from each class.
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matrix Lie group of n× n matrices. Since at every point p in G we can attach a tangent

space which is a copy of RD, all these tangent spaces are the same in some sense. Having

said that, the tangent space at the identify (i.e., p = I) is rather special as we shall see in

Section 2.3.6.

Finally, in spite of the fact that an element of TpG is always an n× n matrix, it is

sometimes useful to regard it a vector in Rn×n. For this we use the following notation:

vec (·) : TpG→ Rn
2

; mat (·) : Rn
2 → TpG . (2.26)

In Eqn. (2.26), vec stands for concatenating the matrix columns in a single long column,

while mat is the inverse of vec.

2.3.4.3 Characterization of Elements of a Tangent Space

Let c ∈ CJ,p. Define another smooth curve by cI : J → G, cI : t 7→ p−1c(t). We think of

this operation as left-translation (of a curve) by p−1. It follows that cI(0) = I (as c(0) = p)

and that cI ∈ CJ,I . Likewise, for every c in CJ,I there is an element in CJ,p, denoted by

cp, such that cp : J → G, cp : t 7→ pc(t). Naturally, we think of this as left-translation (of

a curve) by p. These relations establish an obvious bijection between CJ,I and CJ,p.

Let c ∈ CJ,I . Since

d

dt
(pc(t))

∣∣∣∣
t=0

= p
d

dt
c(t)

∣∣∣∣
t=0

, (2.27)

it follows that the tangent vectors that comprise TpG are given by

TpG = {px : x ∈ TIG} . (2.28)

Consequently, if we know how to characterize TIG, then we know how to characterize TpG.

Similarly, TIG =
{
p−1x : x ∈ TpG

}
.
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In Eqn. (2.28), p is in G, x ∈ TIG, and their matrix product px is in TpG. We think

of the map TIG → TpG, x 7→ px as left-translation (of a tangent vector) by p. Right-

translation by p is defined similarly by TIG→ TpG, x 7→ xp.

More generally, if p and g are in G then one way to map the tangent vectors in TpG

onto TqG is by left-multiplication of a tangent vector (which is in fact a matrix!) from one

tangent space by qp−1 to produce another tangent vector (again, a matrix) in the second.

Again, this is called left-translation, with right-translation defined in a similar way.

Back to characterization. Sometimes it is easy to characterize TIG.

Example 2.3.1. Let G = O(n). We first characterize the elements of TIG. Let c ∈ CJ,I .

Then,

c(t)T c(t) = I (by Eqn. (2.7)) (2.29)

ċ(t)T c(t) + c(t)T ċ(t) = 0 (differentiate with respect to t) (2.30)

ċ(0)T c(0) + c(0)T ċ(0) = 0 (set t = 0) (2.31)

ċ(0)T = −ċ(0) (c(0) = I) . (2.32)

The conclusion is that every tangent vector to O(n), at I, is a skew-symmetric matrix. It

is also possible to show that the space of skew-symmetric matrices has the same dimen-

sionality as O(n). By appealing to a standard dimensionality argument, it follows that the

converse is also true: every skew-symmetric matrix is a tangent vector. Note we would have

gotten the exact same result had we worked with SO(n) rather than O(n). Consequently,

TISO(n) = TIO(n) =
¶
A : A = −AT

©
⊂ Rn×n . (2.33)

If p is a point in SO(n) such that p 6= I, we characterize the elements TpSO(n) by

TpSO(n) = {pA : A ∈ TIO(n)} , (2.34)

i.e., TpSO(n) (or TpO(n)) is exactly the set of all Rn×n that can be written as the matrix
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product of the matrix Lie group element p, and some n× n skew-symmetric matrix.

2.3.5 The Matrix Exponential and Matrix Logarithm

Recall the definition of the matrix exponential of a square matrix A:

Definition 2.3.13 (The matrix exponential).

exp : Rn×n → Rn×n, exp : A 7→
∞∑
k=1

Ak

k!
(2.35)

where Ak =

k times︷ ︸︸ ︷
AA . . . A is a sequence of matrix products.

For a real-valued square matrix A, we can define the matrix logarithm, denoted log(A)

as a square matrix satisfying exp(B) = A. The matrix exponential is generalization of

simple exponential function from the scalar case. There however, some notable differences.

For example, let A and B be some two n× n matrices. In general, exp(A) exp(B) 6=

exp(A+B), with equality if and only if AB−BA = 0. Likewise, log(A−1B) 6= − log(A) +

log(B); however, as a first-order approximation, we have the following important result:

log(A−1B) ≈ − log(A) + log(B) . (2.36)

Note that:

1. If A is block-diagonal, then exp(A) is also block diagonal and each block can be

exponentiated independently.

2. In the extreme case that matrix is diagonal, then we can simply use scalar exponen-

tiation for each diagonal entry.

3. As a particular case, exp(0n×n) = In×n and log(In×n) = 0n×n.
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4. If A is nilpotent (so Ak = 0n×n for some finite k), then the number of summands in

Eqn. (2.3.13) is finite.

5. If A is diagonalizable, there is a simple way to exponentiate it using diagonalization

and scalar exponentiation.

6. Sometimes, if A has a specific structure (such as, but not limited to, the structures

mentioned above) it is possible to compute exp(A) without having to deal with the

infinite sum.

7. If no structure on A can be utilized, then exp(A) can be efficiently approximated.

We will return to this point on Chapter 4.

2.3.6 The Lie Algebras of Matrix Lie Groups

While Lie algebras are mathematical objects that are worth studying for their own merit,

and while they can also be defined without any reference to Lie groups, our interest in

them is that they provide an indispensable tool when working with Lie groups. In fact,

one of main reasons for the attractiveness of Lie groups (and not just matrix Lie groups) is

their Lie algebras. We avoid giving the most general definition of Lie algebras7 and confine

ourselves to Lie algebras of real-valued matrix Lie groups.

Definition 2.3.14 (Lie algebra). Let G be a real-valued matrix Lie group. Its Lie algebra

g is given by the vector space

g = exp−1(G), (2.37)

and [·, ·] : g× g→ g, the Lie bracket of g, is given by A,B 7→ AB −BA.

Remark 2.3.1. Note that the notation exp−1(G) does not imply that the map exp : g→ G

is invertible; rather, it is merely the standard set-theoretic notation for preimage of the set

G under the map exp : g→ G, which means all those elements (of Rn×n) such that when

we exponentiate them, we end up in G. In other words, exp−1(G)
def
= {A : exp(A) ∈ G}.

7The interested reader can find that definition in [89].
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In particular, depending on G, the map exp : g → G might not be surjective; e.g ., since

it can be shown that det(exp(A)) = etr(A) (and we know the RHS is always positive), it

follows that exp(A) always has a positive determinant. Consequently, if B has a negative

determinant (hence B ∈ GL(n)), then there does not exist an A ∈ Rn×n such that exp(A) =

B. Moreover, depending on G, the map exp : g → G might not be injective. This is the

case with SO(3) for example.

As in the case of matrix Lie groups, we will usually avoid mentioning the Lie bracket,

and simply refer to the vector space as the Lie algebra g. It turns out that the elements

of g coincide with those of TIG, the tangent space at the identity. Thus, we will use g and

TIG interchangeably.

Definition 2.3.15 (The gl(n) Lie algebra). The Lie algebra of both GL(n) and GL+(n)

is given by

gl(n)
def
= exp−1(GL(n)) = exp−1(GL+(n)) = Rn×n . (2.38)

Definition 2.3.16 (The us(n) Lie algebra).

us(n)
def
= exp−1(US(n)) = {Q : Q = sIn×n, s ∈ R} . (2.39)

Definition 2.3.17 (The gS Lie algebra).

gS
def
= exp−1(GS) = R . (2.40)

Definition 2.3.18 (The so(n) Lie algebra).

so(n)
def
= exp−1(O(n)) = exp−1(SO(n)) =

¶
Q : Q = −QT

©
⊂ gl(n) . (2.41)

And again, will single out the 3D case:
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Definition 2.3.19 (The so(3) Lie algebra).

so(n)
def
= exp−1(SO(3)) =

¶
Q : Q = −QT

©
⊂ gl(n) . (2.42)

More generally, matrix exponential maps linear subspaces of the Lie algebra to matrix

Lie subgroups. This turns out to be very convenient for doing statistics.

Finally, the Lie algebra of a direct product of matrix Lie groups can be treated in terms

that are direct analogs of the way we handle a direct product of matrix Lie groups; we

omit the details.

2.3.6.1 The “Vee” and “Hat” Notation

Let G be a D-dimensional matrix Lie group of n× n matrices. Recall that the Lie algebra

of G, denoted by g, is a D-dimensional linear subspace of Rn×n. There are times when it is

convenient to regard elements of g as elements of RD; i.e., as vectors of dimension D ≤ n2

rather than n× n matrices. To this aim, we use the ‘Vee” and “Hat” notation:

(·)∨ : g→ RD ; (·)∧ : RD → g . (2.43)

As a mnemonic, the “Vee” vectorizes a matrix while its upside-down version, the “hat”, is

does the opposite. For a given g, the particular choice of ordering for the vector elements

does not matter – as long as, within a particular Lie algebra, we use it consistently.

Example 2.3.2. For gl(2), we can use:

([
A1,1 A1,2

A2,1 A2,2

])∨
= [A1,1 A1,2 A2,1 A2,2 ]T ; (2.44)Ä

[A1,1 A1,2 A2,1 A2,2 ]T
ä∧

=
[
A1,1 A1,2

A2,1 A2,2

]
. (2.45)
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Example 2.3.3. For so(3), we can use:Åï
0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

òã∨
=
[ ωx
ωy
ωz

]
; (2.46)([ ωx

ωy
ωz

])∧
=

ï
0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

ò
. (2.47)

Remark 2.3.2. If g is n2-dimensional and A is in g, then

‖A‖F =
∥∥∥(A)∨

∥∥∥
`2
.

If D is smaller than n2 then these norms are only proportional to each other. This does

not really matter as all norms on finite-dimensional real-valued vector spaces (of the same

dimension) are topologically equivalent; however, when doing statistics over a Lie algebra

which is a product of, say, so(n) and gl(n), one may want to weight their Frobenius norms

differently. Implicitly, as we will see momentarily, this would also translate to different

wights of the geodesic distances of the corresponding groups.

2.3.7 The Lie Algebra as a Tool for Utilizing Other Tangent Spaces

The matrix logarithm (or exponential) provides us with a way to move from G to g (re-

spectively, g to G). Let p and q be in G. Suppose we are interested in expressing q as a

tangent vector at TpG. There are two ways (of interest to us) to do it.

2.3.7.1 Identifying Every Tangent Space with the Lie Algebra

One way to do it is as follows. We first left-translate q by p−1, and then compute the

matrix logarithm to get a tangent vector in TIG:

x = log(p−1q) ∈ TIG . (2.48)
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TpM
p

log(p-1q)

q

p

M

Figure 2.3: On a matrix Lie group M , when TpM is identified with TIM , log(p−1q) can
be interpreted as belonging to TpM , although strictly speaking, it is in TIM . Also, note
that q = p exp(log(p−1q)).

The result is indeed in TIG, and not in TpG. However, as we took the logarithm of the

group difference between p and q, and as TIG and TpG are both D-dimensional Euclidean

spaces, the result makes sense nonetheless. When, as above, we treat TIG and TpG as

being “the same”, we use the notation x ∈ TIG ∼= TpG. Conversely, when we regard a Lie

algebra element x as a vector of TpG and want express it as a group element, we first map

it to the manifold using the matrix exponential, and then left-translate the group element

by p:

p exp(x) ∈ G . (2.49)

If x was computed by Eqn. (2.48), then the smooth curve c : [0, 1]→ G, given by

c(t) = p exp(tx) = p exp(t

x︷ ︸︸ ︷
log(p−1q)) , (2.50)

satisfies c(0) = p and c(1) = q. See Fig. 2.3 for an illustration.
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2.3.7.2 Using the Lie algebra as an Intermediate Step

Here is the second approach. First compute the log of the difference as before, but then,

instead of staying in TIM , left-translate the result by p:

x = p log(

∈G︷ ︸︸ ︷
p−1q)︸ ︷︷ ︸
∈TIG

∈ TpG . (2.51)

Conversely, to map a tangent vector x from TpG to G, we first left-translate the vector by

p−1 to map it to TIG, use the matrix exponential to map the result to G, and left-translate

the group element by p:

p exp(

∈TIG︷ ︸︸ ︷
p−1x)︸ ︷︷ ︸
∈G

∈ G . (2.52)

If x was computed by Eqn. (2.51), then the expression

p exp(tp−1x) = p exp(tp−1

x︷ ︸︸ ︷
p log(p−1q))

= p exp(t log(p−1q))

(2.53)

gives the exact the same curve [0, 1]→ G as in Eqn. (2.50).

2.3.8 Matrix Lie Groups as Riemannian Manifolds

For the remainder of Section 2.3, we will assume that G is a real-valued connected matrix

Lie group. Matrix Lie groups can be endowed with a Riemannian metric – a term we will

discuss and define later. In fact, there are infinitely many choices for a Riemannian metric,

although some are usually more useful and popular than others. The question which one

should be used is an active research area and the answer depends on both the particular

group of interest and the application.
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2.3.8.1 The Riemannian Metric Induced from the Ambient Space

Recall that every tangent space TpG is in fact a set of n× n matrices. Thus, TpG can

inherit the standard inner-product of Rn×n:

〈·, ·〉p : TpG× TpG→ R; 〈·, ·〉p : (x, y) 7→
n∑
i=1

n∑
j=1

xi,jyi,j = tr(xT y) . (2.54)

The collection of these maps, {〈·, ·〉p}p∈M , is a particular example of Riemannian metric.

For every p, the corresponding inner product enables us to define a norm:

‖·‖p : TpG→ R+; ‖·‖p : x 7→
Ã

n∑
i=1

n∑
j=1

x2
i,j . (2.55)

This norm coincides with the Frobenius norm (see Definition A.3.3, page 205) on Rn×n

and so we will omit the dependency on p (and there is a dependency here: the domain

depends on p!) and just write ‖·‖F . The inner-product, together with the norm, enables

us to define angles (see Definition A.3.5, page 205) between tangent vectors in TpG.

Let p and q be two points in G, and let c be some smooth curve between these two

points satisfying c(0) = p and c(1) = q. We define the length of c:

length(c) =

∫
[0,1]
‖ċ(t)‖F dt . (2.56)

Regarding length as a functional over such curves, we call a curve geodesic if it is a local

minimizer. By a slight abuse of notation we will usually refer to the shortest geodesic

as geodesic between p and q. Also note that even a global minimizer need not be unique

although it is guaranteed to exit (this is not true for Riemannian manifolds in general). The

length of the shortest curve is called the geodesic distance, also known as the Riemannian

distance between p and q and is denoted by d(p, q).
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2.3.8.2 A Lie-Algebraic Riemannian Metric

Alternatively, another popular type of Riemannian metric on matrix Lie groups is obtained

by first defining an inner-product on the Lie algebra, and then deriving all other inner-

products from it. For example, if p = I, we set

〈·, ·〉I : TIG× TIG→ R; 〈·, ·〉I : (x, y) 7→
n∑
i=1

n∑
j=1

xi,jyi,j = tr(xT y) . (2.57)

Otherwise:

〈·, ·〉p : TpG× TpG→ R; 〈·, ·〉p : (x, y) 7→
¨
p−1x, p−1y

∂
I
. (2.58)

Note this is well defined: if x is in TpG, then p−1x is in TIG. A norm on TpG is now

defined as x 7→
∥∥p−1x

∥∥, and the length of a curve c : [0, 1]→ G is defined by:

length(c) =

∫
[0,1]

∥∥∥c−1(t)ċ(t)
∥∥∥
F
dt . (2.59)

Note that ċ(t) is in Tc(t)G, that c−1(t) is in G, and that c−1(t)ċ(t) is in TIG.

Let p and q be points in G. We call this Riemannian metric left-invariant, since it

renders the left-translation of vectors from TpG to TqG by qp−1 an inner-product preserving

map: ¨
qp−1x, qp−1y

∂
q

=
¨
q−1qp−1x, q−1qp−1y

∂
I

=
¨
p−1x, p−1y

∂
I

=
¨
pp−1x, pp−1y

∂
p

= 〈x, y〉p .

(2.60)

Lastly, note that we could have also defined a different inner-product 〈·, ·〉I using any

SPD matrix and get similar results.
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2.3.8.3 Geodesic Distances and Geodesic Curves Using the First Riemannian

Metric

If the Riemannian metric is given by Eqn. (2.54), the geodesic curve and geodesic distance

between two points p and q in G is given by:

c(t) = p exp(t log(p−1q)) ; (2.61)

d(p, q) =
∥∥∥p log(p−1q)

∥∥∥
F
. (2.62)

In other words, the initial velocity is log(p−1q) and the (constant) speed is
∥∥log(p−1q)

∥∥
F .

2.3.8.4 Geodesic Distances and Geodesic Curves Using the Second Rieman-

nian Metric

Now suppose instead that the Riemannian metric is given by Eqn. (2.58). A recent result

by Andruchow et al . [5] shows that if G = GL(n), p ∈ G, and x ∈ gl(n), then the constant-

speed geodesic emanating from p at velocity px ∈ TpG is

c(t) = p exp(txT ) exp(t(x− xT )) . (2.63)

Remark 2.3.3. Importantly, in general c(t) 6= p exp(tx). We will return to this issue later

when we discuss Lie-algebraic techniques for dimensionality reduction.

If x = −xT (i.e., x ∈ so(n), then exp(t(x − xT )) = I (since x − xT = 0n×n) and

thus c(t) = p exp(tx) – colliding with a well known result for geodesics on SO(n). More

generally we have the following result. Recall that if A and B are two square matrices,

then in general exp(A+B) 6= exp(A) exp(B); however, if their Lie bracket (see Definition

2.3.14, page 41) vanishes, then exp(A+B) = exp(A) exp(B). Now, if x is a normal matrix
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(namely, xTx = xxT ), then [x,−xT ] = 0. Consequently

exp(txT ) exp(t(x− xT )) =

=I︷ ︸︸ ︷
exp(txT ) exp(−txT ) exp(tx) = exp(tx) , (2.64)

and thus c(t) = p exp(tx). This generalizes the result we had for x ∈ so(n). In fact,

Andruchow et al . [5] showed the converse is also true : if c : [0, 1] → G, c : t 7→ p exp(tx),

is a geodesic, then x must be a normal matrix. For stronger related results see [5].

Consequently, if the Lie algebra of G contains only normal matrices, then all geodesics

between two points p and q have form c(t) = p exp(t log(p1q)). This includes SO(n), SPD,

and many other groups.

If c(t) = p exp(tx), then ċ(t) = p exp(tx)x = px exp(tx). This, together with Eqn. (2.59),

implies that

length(c) =

∫
[0,1]
‖x‖F dt = ‖x‖F

∫
[0,1]

dt =
∥∥∥log(p1q)

∥∥∥
F
. (2.65)

Consequently, for such a matrix Lie group, geodesic distances are given by

d(p, q) =
∥∥∥log(p−1q)

∥∥∥
F
. (2.66)

In which case, by Eqn. (2.36), we can use an approximation:

d(p, q) ≈ ‖− log(p) + log(q)‖F . (2.67)

Example 2.3.4 (Geodesic distance on GS). Recall that GS is nothing more than R+

with scalar multiplication. Let p and q be two positive numbers. With the Riemannian

metric given by Eqn. (2.58), we see that d(p, q) = | log(p/q)| = | log(p)− log(q)|; i.e., here

Eqn. (2.67) is not an approximation but an exact equality. This is the result of GS being

Abelian8.

8If two matrices p and q do not commute, then log(p−1q) 6= − log(p) + log(q).
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Remark 2.3.4. Even when the geodesic distance is not given by Eqn. (2.66), the distance

from Eqn. (2.66) is a perfectly legitimate distance function G×G→ G. In fact it is even

a metric. It is just not tied to the Riemannian metric of the manifold.

Note that the distance in Eqn. (2.66) is left-invariant: d(p1, p2) = d(p3p1, p3p2) for any

triplet of points in G. In contrast, the distance in Eqn. (2.62) is not left-invariant.

Finally, note that if G is a group of isometries (when regarded as maps TpG → TqG),

then Eqn. (2.66) and Eqn. (2.62) coincide:
∥∥p log(p−1q)

∥∥
F =

∥∥log(p−1q)
∥∥
F . This happens

for SO(n) for example; in which case, the distance in Eqn. (2.62) also becomes left-invariant.

2.4 Elements of Manifold Theory

In most introductory undergraduate-level courses on manifolds, these mathematical ob-

jects are usually defined with respect to some ambient Euclidean space. Indeed, in many

applications – including the examples used in this work – the manifold of interest can be

formally defined as a certain kind of subset of a Euclidean space. While useful for ac-

quiring initial understanding and geometric intuition it turns out that this approach not

only renders many notions and operations needlessly obfuscated and cumbersome but also

forces readers (and authors. . .) to carry plenty of redundant technical baggage with them

as the theory is being developed.

Fortunately, there is a better approach.

This modern approach to manifold theory is more abstract and requires a higher level

of mathematical maturity. Besides being more general, this approach enables us to gain a

cleaner and deeper insight into many manifold-related notions, including those covered in

this work. This is one of those cases in mathematics, where even when abstract generality

is not strictly required, it actually makes things easier and enhances clarity9. That being

9Some authors may disagree with this view.
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said, the reader may want to skip the current section (Section 2.4) at first reading and

return to it later if needed.

In the current section we provide a short introduction to this abstract theory, covering

several of its key elements. A more thorough treatment can be found in standard textbooks

such as [27,88–90]. Additionally, a gentler introduction to the topic can be found in [98].

A Riemannian manifold is a generalization of a Euclidean space. Informally, Rieman-

nian manifolds are smooth spaces on which we can generalize the notions of angles and

distances from Rn. Under an additional condition10, a Riemannian manifold is also a met-

ric space. Importantly, a manifold need not be linear, let alone an inner-product space;

however, at least locally it is equivalent to Rn in some topological sense. A more formal

definition of a Riemannian manifold will be given at Section 2.4.3. The main purpose

of the current section is to provide us with the building blocks that are necessary for

understanding that definition.

Riemannian manifolds, like Ogres and onions, have layers11. The first layer is topo-

logical [90, 98], the second is a smooth structure [89], and the third is the Riemannian

metric [27, 88]. To avoid tears, we will peel the layers one by one.

2.4.1 Topological Manifolds

Let us clarify in what topological sense a manifold is at least locally equivalent to Rn.

Definition 2.4.1 (Locally Euclidean space of dimension n). A topological space (see

Definition A.1.1, page 199) M is called an n-dimensional locally Euclidean space if every

point in M has an open neighborhood that is homeomorphic to an open subset of Rn. In

other words, for every p ∈M , there exist:

10This condition holds for all manifolds relevant to this work.
11See [Shrek, 2001] and maybe [Shrek II, 2004]; do not bother seeing the other sequels.
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1. an open set U ⊂M containing p;

2. an open set ‹U ⊂ Rn;

3. a homeomorphism (see Definition A.1.8, page 203) ϕ : U → ‹U .

A topological manifold is a locally Euclidean space that also satisfies two more proper-

ties.

Definition 2.4.2 (Topological Manifold). A topological spaceM is called an n-dimensional

topological manifold if all of the following three properties hold:

1. M is an n-dimensional locally Euclidean space;

2. M is a Hausdorff space;

3. M is second countable.

Definition 2.4.2 utilizes the topological notions of a Hausdorff space and second count-

ability. These concepts are defined in Section A.1 in the Appendix. Informally, the Haus-

dorff space property ensures us that we have “enough” open sets and the second count-

ability property ensures us that we do not have “too many” open sets. These particular

topological considerations are only peripheral to the current work; we avoid going into

further details12.

It is worth noting what is absent in Definition 2.4.2: the notion of an ambient space.

Namely, there is nothing in the definition that forces M to be a subset of Rn′ (for some

n′ ≥ n). In many undergraduate-level textbooks, a less abstract definition is often used

– one that assumes the presence of an ambient space, and that M is homeomorphic to

one of its subsets. The definition we use here is more general. Before proceeding with

our discussion based on this definition, let us point out a particular space for which the

12The interested reader can find an in-depth treatment of these concepts in topology textbooks such
as [108] while their implications on manifolds can be found in differential topology textbooks such as [90].



54

ambient space approach is not very useful. This space is called the projective plane and is

of great importance in computer vision; e.g ., see Hartley and Zisserman [61].

Example 2.4.1 (The projective space). Let R3 − {0} denote the set of all points in R3

but the origin. Similarly, let R− {0} denote the real line without zero. Consider the real

projective plane:

RP2 =
¶

[x] : x ∈ R3 − {0}
©
, (2.68)

where [x] =
{
y : y ∈ R3 − {0}, ∃λ ∈ R− {0} such that y = λx

}
. In other words, [x] is

made of all 3D lines that pass through the origin and are parallel to x. Clearly, according

to any reasonable definition of a dimension, RP2 is two-dimensional. It turns out, however,

that is impossible to embed RP2 in R3. It is possible to embed it R4 – so the ambient

approach would apply here – but this is not so obvious from the definition and leads to

needless complications. Using the abstract definition, however, leads to a simpler and more

practical way to work with this space as a manifold; we omit the details. The statistical

tools we will describe in Section 2.5, as well as the new one we present in Chapter 5, apply

to this manifold as well.

We proceed to the notions of charts and local coordinates.

Definition 2.4.3 (Coordinate charts; coordinate maps; local coordinates). Let M be an

n-dimensional topological manifold. A coordinate chart on M is a pair (U,ϕ), where U is

an open subset of M and ϕ : U → ‹U is a homeomorphism from U to an open subset ‹U =

ϕ(U) ⊂ Rn. ϕ is called a (local) coordinate map and the component functions (x̃1, . . . , x̃n)

of ϕ (each one of which is a function from M to R), defined by ϕ(p) = (x̃1(p), . . . , x̃n(p)),

are called local coordinates on U .

Remark 2.4.1. Our use of superscripts to denote different coordinates is in no contradiction

with our use of subscripts mentioned earlier (Remark 2.1.1), as there we referred to the

components of a data point; in contrast, here we refer to the coordinates of a chart. To

make this distinction stand out even further, note that whenever we refer to coordinates

of a chart we also use the tilde notation (as in x̃1). We will retire this notation at the end
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Figure 2.4: A chart on S2.

of this section, as from that point onward we will no longer need a direct reference to local

coordinates.

Example 2.4.2 (A chart on S2). Let M = S2 (namely, the unit sphere in R3). Let

U = {(x1, x2, x3) ∈M, x1 > 0}, and let ϕ : U → ‹U =
{
(x1, x2) : x2

1 + x2
2 < 1

} ⊂ R2 be

defined by ϕ : (x1, x2, x3) 7→ (x2, x3). See Fig. 2.4 for an illustration. It can be shown

that ϕ is a homeomorphism and thus the pair (U,ϕ) is a coordinate chart (note that U

and ‹U are open subsets of M and R2 respectively). Let p = (x1, x2, x3) ∈ U . In terms of

coordinates, we have that ϕ(p) = (x̃1(p), x̃2(p)) with

x̃1 : U → R, x̃1 : (x1, x2, x3) 7→ x2;

x̃2 : U → R, x̃2 : (x1, x2, x3) 7→ x3. (2.69)

Considering Example 2.4.2, it is easy to see that there exist many other possible choices

(besides ϕ) for a homeomorphism from U to some open subset of R2 (and this subset may

or may not coincide with ‹U). Moreover, if V is some open subset of U , we can construct

two charts, (U,ϕ) and (V, ψ), such that the restriction of ϕ to V does not coincide with

ψ. The take-home message is simple: charts are not unique. We conclude our discussion

of topological manifolds with the definition of a curve.

Definition 2.4.4 (Curve). A (parametrized) curve in M is a continuous map c : J →M ,

where J ⊂ R is an interval13.

13As both M and J are topological spaces, the continuity of c is well defined; see Definition A.1.6, page
201.
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2.4.2 Smooth Manifolds

In most applications, we are interested in performing calculus operations such as taking

derivatives, defining smooth curves etc. To that aim, topological properties do not suffice

and a notion of smoothness is required. The main reference for this section is [89].

2.4.2.1 Smooth Structures

Let M be an n-dimensional topological manifold, and let f : M → Rm be an Rm-valued

function (in particular, if m = 1, then f is a real-valued function). With only Definition

2.4.2 at our disposal, it is unclear how to define the derivative of f at some point p in M .

A plausible idea is to try to exploit the local-Euclidean property; i.e., we would first define

a new function f̃ by

f̃ : ‹U → Rm, f̃ : x 7→ f(ϕ−1(x)), (2.70)

(reusing the notation from Definition 2.4.1) where x ∈ ‹U ⊂ Rn. In other words, f̃ = f◦ϕ−1.

Then, since f̃ is a map from (an open subset of) Rn to Rm, we may try to use the

multivariate-calculus definition of a derivative of f̃ as the definition of derivative of f –

provided of course that f̃ is differentiable in the sense of ordinary calculus. There is,

however, a problem with this solution: charts are not unique. This is true even if we

restrict the discussion to charts that would render f̃ differentiable. Thus, this solution

would have led us to an ambiguous definition of the derivative of f . To deal with this

difficulty, what we need is a definition of a derivative that is invariant to the particular

choice of a chart. For this, we need the notion of a smooth structure.

Let (U,ϕ) and (V, ψ) be two charts on M such that U ∩ V 6= ∅. The map ψ ◦ ϕ−1 :

ϕ(U ∩V )→ ψ(U ∩V ) is called the transition map (from ϕ to ψ) and is a homeomorphism

between ϕ(U ∩ V ) ⊂ Rn and ψ(U ∩ V ) ⊂ Rn, being the composition of homeomorphisms

(see Corollary A.1.1, page 201). See Fig. 2.5.



57

ϕ ψ

U V

ψ∘ϕ-1

U

M

Figure 2.5: An illustration of a transition map between charts.

Two charts (U,ϕ) and (V, ψ) are said to be smoothly compatible if either U ∩ V = ∅ or

the transition map ψ ◦ ϕ−1 is a diffeomorphism14. Note that since differentiability implies

continuity, a diffeomorphism is also a homeomorphism. An Atlas (for M) is any collection

of charts whose domains form an open cover (see Definition A.1.3, page 200) of M . An

atlas is said to be a smooth atlas if any two charts in it are smoothly compatible with each

other. A smooth atlas A on M is said to a maximal smooth atlas if it is not contained in any

strictly larger smooth atlas; i.e., any chart that is smoothly compatible with every chart

in A is also a member of A. A maximal smooth atlas on an n-dimensional topological

manifold M is called a smooth structure on M . At last, we now define what a smooth

manifold is.

Definition 2.4.5 (Smooth manifold). A smooth manifold M is a pair (M,A), where M

is an n-dimensional topological manifold and A is a smooth structure on M .

When A is understood or when its details are irrelevant to our discussion, we usually

omit it and say that “M is a smooth manifold”. Henceforth, whenever we refer to a chart,

we implicitly mean a chart that belongs to the smooth structure.

Remark 2.4.2. While every smooth atlas on M is contained in a unique maximal smooth

14As a map between two open subsets of Rn; see Definition A.2.2, page 203.
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atlas, a maximal smooth atlas is not unique. For example, there can be two maximal

smooth atlases with an empty intersection (i.e., no chart appears in both). Consequently,

there can be more than one smooth structure on M .

On a smooth manifold, we have meaningful definitions for differentiable or smooth

maps from M to Rm. Let M be a smooth manifold, let p ∈M . We say that f : M → Rm

is differentiable (or smooth) at p if there exists a chart (U,ϕ) such that p ∈ U and f ◦ϕ−1 :

ϕ(U)→ Rm is differentiable (or smooth) at ϕ(p). If f is differentiable (or smooth) at every

p ∈M then we simply say that f is differentiable (or smooth). The important point here

is that it can be shown that these definitions of differentiability and smoothness of f do

not depend on the particular choice of the chart (U,ϕ). In fact, we do not need to restrict

ourselves to maps whose codomain is a Euclidean space.

Definition 2.4.6 (Differentiable and smooth maps between manifolds). Let M and N be

two smooth manifolds, and let f : M → N be any map. We say that f is differentiable

(or smooth) if for every p ∈ M there exist smooth charts (U,ϕ) and (V, ψ), on M and N

respectively, such that:

1. p ∈ U ⊂M ;

2. f(U) ⊂ V ⊂ N ;

3. The map ψ ◦ f ◦ ϕ−1 : ϕ(U) → ψ(V ) is differentiable (or smooth) in the Euclidean

sense.

Note this definition includes the cases where M or N are Euclidean spaces. Also, since

an interval J ⊂ R can be seen as a smooth manifold15, it also makes sense to talk about

differentiable (or smooth) curves of the form c : J → M where here the triplet (c, J,M)

takes the role of (f,M,N) from Definition 2.4.6.

15In this work we are not going to trouble ourselves with the distinction between manifolds with and
without a boundary – but note that many of the ideas covered in this chapter can be adapted to manifolds
with boundaries.
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Other definitions and results follow naturally. For example, a diffeomorphism between

two manifolds is a smooth bijective map whose inverse is also smooth. Another example

is that the composition of smooth maps is smooth. In particular, if c is a smooth curve

in M and f : M → R is smooth, then so is f ◦ c : J → R. The matrix exponential (see

Definition 2.3.13, page 40), is a smooth map from a Euclidean space (i.e., the tangent

space at the identity) to the manifold (i.e., the matrix Lie group). In fact, this map can

also be used to construct the charts that make up the smooth structure. Examples of

smooth manifolds include: matrix Lie groups; Rn; the projective plan; the unit sphere;

SPD matrices. Henceforth, unless stated otherwise, whenever we refer to a manifold we

mean a smooth manifold.

Manifolds are usually nonlinear. To cope with the nonlinearity, local linearizion is

usually employed. At every point p in a smooth manifold M , there is a linear space,

denoted by TpM , which is tangent to the manifold at p. The elements of TpM are called

tangent vectors.

Remark 2.4.3. It may seem obvious that an element of a tangent space is a tangent vector

– but recall we have yet to define what a tangent vector is. Thus, at this point we need to

be content with merely stating that if an element belong to TpM , then we call it a tangent

vector. The actual, and somewhat surprising definition, will follow shortly.

There is a important class of manifolds that have an additional, algebraic, structure.

These are known as Lie groups.

Definition 2.4.7. A Lie group G is a group that is also a smooth manifold and whose

operations, composition (G×G→ G) and inversion (G→ G), are smooth.

In particular, matrix Lie groups are Lie groups. All the notions we discussed in Section

2.3, can be generalized to Lie groups. For example, the matrix exponential is a particular

example the Lie group exponential map. It also turns out that the Lie group exponential

map can be used for constructing a smooth structure.
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In many senses, Matrix Lie groups are easier to understand and work with than the

more general Lie groups. In this work, all Lie groups are matrix Lie groups.

2.4.2.2 Tangent Spaces and Tangent Vectors: An Informal Discussion

When we discussed matrix Lie groups we mentioned that tangent vectors coincide with

(equivalence classes of) derivatives of smooth curves. We also used our geometrical intuition

from Rn, suggesting that TpM is a linear subspace, whose origin is p, that provides a linear

approximation to M at p (recall Fig. 2.2). Following these lines, we think of tangent vectors

as “arrows” attached to M at p.

The tricky part is that tangency is not so simple as it may seem at first. Section 2.4.2.3,

which provides a glimpse into this issue, is more abstract than the rest of this work and

may be omitted during reading.

2.4.2.3 Tangent Spaces and Tangent Vectors: An Abstract Definition

“Everybody thinks they know what a tangent vector is - but only till hearing

the actual definition.”

Prof. Basilis Gidas.

The intuitive way of thinking of tangent vectors we have just described relies on the

presence of an ambient space. As discussed earlier, the latter is not guaranteed to exist,

and even if it does exists, we are better off without resorting to it. Once we realize there

is no spoon there is no reference to an ambient space, it becomes clear we can expect a

more powerful notion of tangency. There are several, equivalent, abstract ways to define

tangent vectors. The following one is relying on the notion of derivations.

Definition 2.4.8 (Tangent space and tangent vectors). Let C∞(M) denote the class of

all smooth maps from M to R. A linear map X : C∞ → R is called a derivation at p if it
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satisfies

X(fg) = f(p)X(g) + g(p)X(f) , (2.71)

for all f, g ∈ C∞(M). The set of all derivations at p is a vector space denoted by TpM .

This space is called a tangent space (to M , at p). An element of TpM is called a tangent

vector.

Let us go over the notation in Eqn. (2.71). fg is a smooth map defined as the pointwise

(scalar) multiplication of f and g; i.e., fg : M → R, fg : p 7→ f(p)g(p). Consequently,

X(fg) just means we apply X to the smooth map fg : M → R. Thus, the LHS of the

equation is a real number. The pair f(p) and g(p) are real numbers too: the evaluations

of f and g at p. Since X is a functional over smooth functions, the notation X(g) reads

as the real number that X assigns to g. Similarly, X(f) is another real number.

In the interest of space, we will not go further into this topic, but here is the important

thing to understand: rather than viewing a tangent vector as a vector hovering in some

(perhaps nonexistent) ambient space, it is seen as an operator that acts on real-valued

smooth functions on M .

Suppose there is indeed some ambient space. Earlier we regarded TpM as an n-

dimensional subspace of that space. Loosely speaking, here is the connection between

the two notions. Let {e1, e2, . . . , en} denote an orthonormal basis of this subspace. The

tangent vector X, mentioned above, is in fact a differential operator that can be interpreted

as a linear combination of n directional derivatives. The direction of the i-th directional

derivative coincides with ei. If we define a new linear combination of the ei’s (instead of

the directional derivatives) using the same weights, we will get a vector in that subspace.

Another equivalent abstract definition of tangent vectors can be made in terms of one-

dimensional derivatives of smooth functions M → R when restricted to smooth curves that

pass through p. Again, we get that a tangent vector is a differential operator, and it can

be related to a derivative of a curve with respect to its parameter. Thus, similarly to what
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we saw in Section 2.3.4.2, if c : J → M is a smooth curve, then (an equivalence class of)

ċ(t) is always a tangent vector; i.e. ċ(t) ∈ TpM .

See [89] for an in-depth treatment.

2.4.3 Riemannian Manifolds

Smooth manifolds enable us to do calculus, but that is not enough: we would like to be

able to define angles and measure distances. For this we need Riemannian geometry16 of

which we here provide only a few concepts. A more thorough treatment can be found in

Riemannian geometry textbooks such as [27,88].

Let M be an n-dimensional smooth manifold. A matrix-valued function M → Rn×n is

said to vary smoothly (on M) if its entries are smooth functions M → R.

Definition 2.4.9 (Riemannian metrics and Riemannian manifolds). Let M be a smooth

manifold, and let {〈·, ·〉p}p∈M be a collection of inner-products,

〈·, ·〉p : TpM × TpM → R ; (2.72)

〈·, ·〉p : (x, y) 7→ xTApy , (2.73)

such that Ap is a symmetric positive-definite matrix depending on p. If Ap varies smoothly,

then {〈·, ·〉p}p∈M is called a Riemannian metric on M and M is called a Riemannian

manifold. Equivalently, we say that a Riemannian metric is a smoothly-varying inner-

product.

Compare Definition 2.4.9 with Eqns. (2.14), (2.54), and (2.58).

Let c : [0, 1] → M be a smooth curve. Recall that ċ(t) ∈ Tc(t)M . Thus, the norm

‖ċ(t)‖p = 〈ċ(t), ċ(t)〉1/2p is well defined. This norm is integrable along c, providing a notion

16Riemannian geometry also provides a way to measure the curvature of the manifold – but this is
beyond the scope of the current work.
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of curve length:

length(c) =

∫
[0,1]
‖ċ(t)‖p dt . (2.74)

Compare Definition 2.74 with Eqns. (2.56) and (2.59).

Let p and q be in M . Let Cp,q denote the class of all smooth curves [0, 1] → M such

that c(0) = p and c(1) = q.

The geodesic distance between p and q is defined as:

d(p, q) = inf
c∈Cp,q

length(c) . (2.75)

By possible re-parametrization, c can become a curve of constant speed; i.e.,

‖ċ(t)‖p = const ∀t ∈ [0, 1] .

The constant depends on the curve. Such re-parametrization does not change the length

of the curve and so we may assume that all curves in Cp,q are of constant speed. Note that

in general, Cp,q might be empty. By convention, the infimum of an empty set is +∞.

Example 2.4.3 (A geodesic distance might be infinite). If the manifold is GL(n), and

det p > 0 while det q < 0, then Cp,q = ∅. Thus, d(p, q) = +∞. Of course, in this example

the manifold is not connected.

A geodesic curve between p and q is an element of Cp,q which is a local minimizer of

the function that maps a curve c to its length. Note that even if Cp,q is nonempty, the

infimum in Eqn. (2.75) might not be achievable (hence the use of inf instead of min); i.e.,

the fact that the points can be connected by a smooth curve does not imply the existence

of a geodesic curve.

Example 2.4.4 (Even if a geodesic distance is finite, a geodesic curve need not exist).

Consider the manifold R2 − {0} def
=
{
x : x ∈ R2, x 6= (0, 0)

}
. Let p = (1, 0) and let q =

(−1, 0). Assuming the standard Riemannian metric inherited from the ambient space
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(R2), it is clear that d(p, q) = 2. It is easy to construct a sequence {ci}∞i=1 in Cp,q such

that the sequence length(ci)
i→∞−−−→ 2. Yet, no element of Cp,q attains that length.

Consequently, it is convenient to restrict discussion to manifolds that are well-behaved.

Definition 2.4.10 (Geodesically-complete Riemannian manifolds). If for every two points

in M there exists a geodesic curve between them that connects the two, then M is called

geodesically complete.

Importantly, if M is a geodesically-complete Riemannian manifold, then d(·, ·) : M ×

M → R+ makes M a metric space.

2.4.3.1 Riemannian Exponential Map and Riemannian Logarithm

Henceforth M will be assumed to be a geodesically-complete Riemannian manifold. If

(p, x) ∈ M × TpM , then there exists a unique geodesic c such that c(0) = p, ċ(0) = x;

i.e., c is a particular geodesic between c(0) and c(1), and we say that c is a geodesic

emanating from p with the initial direction x. The Riemannian exponential map, denoted

by Expp : TpM → M , maps a tangent vector x to c(1), where c is the unique geodesic

associated with p and x. The Riemannian logarithm, denoted by Logp : M → TpM ,

does the opposite; i.e., if p and q are in M , then Logp(q) is a tangent vector x satisfying

Expp(x) = q. It follows that the associated geodesic between p and q is given by

c : [0, 1]→M, c : 7→ Expp(tLogp(q)) . (2.76)

Compare Eqn. (2.76) with Eqns. (2.20) and (2.61). Likewise, the geodesic distance between

p and q is given by

d(p, q) =
∥∥∥Logp(q)

∥∥∥
p
. (2.77)

Compare Eqn. (2.76) with Eqns. (2.21), (2.62), and (2.66).
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Note that the matrix Lie group exponential map (namely, the matrix exponential)

should not be confused with the Riemannian exponential map, although they are not

unrelated. For example, in sections 2.3.7.1 and 2.3.7.2 we saw that if M is a matrix Lie

group, then the matrix exponential/logarithm pair enables two ways to utilize TpM . The

method from Section 2.3.7.1 was purely Lie-algebraic and relied on the identification of

TIM with TpM . We now interpret the method from Section 2.3.7.2 to coincide with the

Riemannian approach when the Riemannian metric is given by Eqn. (2.54). In which case,

the Riemannian exponential and logarithm maps are given by

Logp : M → TpM , Logp : q 7→ p log(p−1q) ; (2.78)

Expp : TpM →M , Expp : x 7→ p exp(p−1x) . (2.79)

2.4.3.2 Geodesic Subspaces

Definition 2.4.11 (Geodesic subspaces). Let V = [V1, V2, . . . , Vk] denote a matrix whose

columns form an orthonormal basis of a k-dimensional linear subspace of TpM . The (usu-

ally nonlinear) subset of M , defined by¶
q ∈M : q = Expp(V α

T ), α ∈ RK
©
, (2.80)

is called a geodesic subspace of M .

For example, if M is a matrix Lie group, if p = I, and if Expp is given by Expp : x 7→

exp(p−1x), then a matrix Lie subgroup constructed from a subspace of the Lie algebra (as

was discussed in Section 2.3.6) is a geodesic subspace.
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2.5 Statistics on Manifolds

2.5.1 Statistics on Manifolds: What It Is and What It Is Not

When it comes to manifolds, there are several different fields in statistics and machine

learning that share similar terminology. While all these fields are not entirely unrelated

to each other, it is important to understand the key differences between them. The field

that is of interest to us, and whose origins go back to Ronald Fisher’s work on spherical

data [33], is called statistics on manifolds. In this section we try to clarify the differences

between this field and two others who use similar terminology.

2.5.1.1 Statistics on Manifolds vs. Manifold Learning

Importantly, statistics on manifolds is very different from manifold learning. The latter is

a branch of machine learning where the goal is to learn a latent manifold from Rn-valued

data. Typically, the dimension of the sought-after latent manifold is less than n. The

latent manifold may be linear or nonlinear, depending on the particular method used.

In sharp contrast, in the field of statistics on manifolds, the manifold is known and the

goal is to study statistics of data restricted to this manifold; i.e. its wide scope encompasses

every flavor of statistics – be it descriptive statistics or statistical inference – as long

as we are concerned with manifold-valued data. This includes, for example, parameter

estimation, regression, nonparametric statistics, and hypothesis testing. In particular,

note that a manifold does not necessarily have to be of lower dimension than its ambient

space (should such a space exist) and that the statistical task may not be related to

dimensionality reduction (which is usually a primary goal in manifold learning).

Example 2.5.1. Consider Rn×n and its subset, the GL+(n) manifold. Note that the

dimension of GL+(n), just like that of Rn×n, is n2. Given GL+(n)-valued data, it is unwise

to regard the data as Rn×n-valued, as by doing so we discard our knowledge of the structure
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of the manifold and its distance function(s). Instead, this knowledge should be exploited

by incorporating it into our statistical procedures. For a concrete example, see [104], where

the authors show a practical method for nonparametric density estimation on GL+(n), and

its advantages over similar estimators that fail to take advantage of the manifold structure.

Of course, on the known manifold, a lower-dimensional submanifold can still be learned

using techniques that utilize the structure and distances on the original known manifold,

e.g., principal geodesic analysis (PGA) which generalizes principal component analysis

(PCA). More on that later (Section 2.5.3.1). The take-home message is simple: Use what

you know. Learn (statistically) what you do not. Putting it differently, manifold learning

is a good hammer, but not all problems are nails.

2.5.1.2 Statistics on Manifolds vs. Information Geometry

Statistics on manifolds and information geometry are two different ways in which differ-

ential geometry meets statistics. While in statistics on manifolds, it is the data that lie

on a manifold, in information geometry the data are in Rn, but the parameterized fam-

ily of probability density functions of interest is treated as a manifold. Such manifolds

are known as statistical manifolds. For example, if we parameterize the family of one-

dimensional Gaussians by M =
{N (µ, σ2) : (µ, σ2) ∈ R× R+

}
then it is clear that M is

nonlinear. Moreover, it turns out that statistical or information-theoretic concepts such

as Fisher’s information matrix or the Kullback-Leibler divergence are related to the way

distances are measured on M . Loosely speaking, in statistics on manifolds one tries to

do statistics while taking the differential geometry of the space in which the data lie into

account, while in information geometry one uses tools from differential geometry to solve

problems in Euclidean statistical inference. In this thesis we will not touch upon informa-

tion geometry; the interested reader is referred to one of the few standard textbooks in

this field: [3, 109]. See also Guy Lebanon’s thesis [87].
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2.5.2 Basic Concepts

An introduction to statistics on Riemannian manifolds can be found in [113]. See also [10]

for a recent book on nonparametric statistics on manifolds. For the remainder of Section

2.5, we will assume that M is a D-dimensional geodesically-complete Riemannian manifold,

and that we have an M -valued dataset denoted by p1, p2, . . . , pN .

We start with generalizing the Euclidean notion of sum of squared distances to sum of

squared geodesic distances.

Definition 2.5.1 (The sample Fréchet function). Let p be a point in M . The sum of

squared distances between the data and p is called the sample Fréchet function defined by

SSGD(p)
def
=

1

N

N∑
i=1

d(p, pi)
2 . (2.81)

Next we generalize the Euclidean notion of the sample mean.

Definition 2.5.2 (Intrinsic mean). The unique global minimizer of the function SSGD :

M → R+, if it exists, is called the (sample) intrinsic mean. It is also known as the (sample)

Fréchet mean. Any local minimizer is called the Karcher mean [77].

As is common in applications, we use the Karcher mean. In practice, the Karcher mean

can be efficiently computed using an iterative algorithm [113].

Let µ denote the intrinsic mean. The value the (sample) Fréchet function attains at µ,

1

N

N∑
i=1

d(µ, pi)
2 , (2.82)

is called the geodesic variance.

The (sample) covariance is defined through the Euclidean (sample) covariance of the
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data as expressed in TµM :

Cov({pi}Ni=1)
def
=

1

N − 1

N∑
i=1

Logµ(pi)Logµ(pi)
T . (2.83)

Note that the point of tangency is the intrinsic mean, µ. This echoes (and in fact, general-

izes) the construction of the Euclidean (sample) covariance in a Euclidean space, which is

built from summing outer-products of vectors following the subtraction of the Euclidean

(sample) mean:

Cov({pi}Ni=1)
def
=

1

N − 1

N∑
i=1

Ñ
pi −

1

N

N∑
j=1

pj

éÑ
pi −

1

N

N∑
j=1

pj

éT

. (2.84)

2.5.3 Generalizing PCA

2.5.3.1 Two Different Generalizations of PCA

It is well known that in Rn, PCA is the solution to (at least) two optimization problems over

subspaces: 1) The maximization of variance captured by the subspace; 2) Minimization of

the squared norm of the error caused by projecting the data into the subspace. While both

problems can be generalized to manifolds, where the optimization is done over geodesic

subspaces (see Definition 2.4.11, page 65), their optimizers need not coincide. In this

work we restrict discussion to the first generalization, known as principal geodesic analysis

(PGA). See [73] for the second type, known as geodesic principal component analysis

(GPCA).

2.5.3.2 Principal Geodesic Analysis

PGA was first introduced in by Fletcher et al . [36,37] and was formulated in a Lie-algebraic

setting. We will discuss this formulation in Section 2.6, while here we focus on the Rie-

mannian formulation, also by Fletcher et al . [38].
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Let V denote a k-dimensional subspace of TµM , k < D. Let Expµ(V ) denote the

geodesic subspace generated from V through the Riemannian exponential map :

Expµ(V ) =
¶

Expµ(x) : x ∈ V ⊂ TµM
©
⊂M .

If W is a subset of M , let πW : M → W denote the projection of M on W ; i.e., if p is

in M , then πW (p) is a point in W that minimizes the geodesic distance to p. The PGA

problem is as follows:

maximize f(V ) =
1

N

N∑
i=1

d(µ, πExpµ(V )(pi))
2 (2.85)

subject to: V is a k-dimensional subspace of TµM . (2.86)

This is a generalization of PCA: we are looking for the geodesic subspace that captures as

much geodesic variance as possible. The main difficulty in solving this problem is related

to the projection map. To make the problem more tractable, Fletcher et al . [38] replaced

the problem with its linearized version.

Recently, Sommer et al . [136] have developed a framework for solving the original

problem. They term the original problem exact PGA, while referring to the approach

from Fletcher et al . [38] as linearized PGA. While this terminology makes sense, in the

literature the method from Fletcher et al . [38] is widely known as PGA (i.e., without the

“linearized”). In this work, whenever we refer to PGA, we mean the linearized version.

Remark 2.5.1. The solution from [136] requires more effort than the one in [38]; in [135],

Sommer et al . suggest indicators for determining if the expected gain in solving the harder

problem is substantial enough to justify the effort.

Back to Fletcher et al . [38]. The original optimization problem is modified as follows.

Instead of working on the geodesic variance, they worked on the Euclidean variance in TµM .
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The problem becomes a standard PCA (on zero-mean data) in the Euclidean tangent space:

maximize f(V ) =
1

N

N∑
i=1

∥∥∥Logµ(pi)
∥∥∥2

p
(2.87)

subject to: V is a k-dimensional subspace of TµM . (2.88)

We refer the reader to [38] for the steps justifying this approach. Consequently, the algo-

rithm for computing PGA is simple: First, compute the intrinsic mean µ. Then, express

the data {pi}Ni=1 at TµM by setting gi = Logµ(pi). Finally, do ordinary PCA on the vectors

{gi}Ni=1. Let us denote the subspace found using this method by V ⊂ TµM . As V is a

linear subspace, we may regard it as a D× k matrix, satisfying V TV = Ik×k. Synthesis of

a manifold point from the geodesic subspace Expµ(V ) is done as follows. If α ∈ R1×k is a

set of coefficients, we generate a point q ∈M by:

q = Expµ (V α) . (2.89)

2.6 Statistics on Matrix Lie groups

Throughout this section, let G be a D−dimensional real-valued connected matrix Lie group

that is also a subgroup of GL(n), let {pi}Ni=1 denote the our G-valued data, and let g denote

the Lie algebra of G. As matrix Lie groups are also Riemannian manifolds, the Riemannian

techniques from Section 2.5 apply transparently to them as well.

Before we proceed we need to address a notational issue. Recall that elements of g

are n× n matrices. However, the notations in Section 2.4.2 treat the tangent vectors as

vectors. Thus, an expression such as

Cov({pi}Ni=1)
by def.

=
1

N − 1

N∑
i=1

Logµ(pi)Logµ(pi)
T , (2.90)

may be a bit confusing, as the “T ” symbol might be incorrectly parsed as transposing an
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n× n matrix, while Logµ(pi)Logµ(pi)
T might be parsed as the matrix product of two n× n

matrices. In truth, however, we should understand this equation as

Cov({pi}Ni=1)
by def.

=
1

N − 1

N∑
i=1

Ä
Logµ(pi)

ä∨ (Ä
Logµ(pi)

ä∨)T
, (2.91)

where we utilize the notation from Section 2.3.6.1. Thus,
Ä
Logµ(pi)

ä∨
is a column vec-

tor of length D2 while
(Ä

Logµ(pi)
ä∨)T

is its transpose. Consequently, the summands

are D × D matrices, hence so is the covariance – meeting our expectations from a co-

variance of D-dimensional data. Likewise, when we want to create a D × N matrix

containing our N data points as expressed at some tangent space TpG, we should write

[
Ä
Logp(p1)

ä∨
, . . . ,

Ä
Logp(pN )

ä∨
] rather than [Logp(p1), . . . ,Logp(pN )]. Having said that,

this notation gets tiresome fairly quickly. Thus, at the small risk of causing confusion,

we usually avoid the “Vee”/“Hat” notation, and the decision whether a tangent vector is

regarded as a vector or a matrix should be inferred from the context.

If we pick the Riemannian metric from Eqn. (2.54), The (sample) Fréchet function

becomes

SSGD(p) =
N∑
i=1

∥∥∥p log(p−1pi)
∥∥∥2

F
. (2.92)

In contrast, if we choose the distance from Eqn. (2.66), which may or may not be

the geodesic distance associated with the Riemannian metric from Eqn. (2.58), then the

(sample) Fréchet function becomes

SSGD(p) =
N∑
i=1

∥∥∥log(p−1pi)
∥∥∥2

F
. (2.93)

By Eqn. (2.67), this can be approximated by

SSGD(p) ≈
N∑
i=1

‖− log(p) + log(pi)‖2F . (2.94)
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2.6.1 PGA on Matrix Lie groups

2.6.1.1 Riemannian PGA

In the context of Lie groups, when the chosen Riemannian metric is given by Eqn. (2.54), we

will use term Riemannian PGA for the method described in Section 2.5.3.2. In particular,

note that the learned subspace is in TµG.

2.6.1.2 Lie-Algebraic PGA

Now let us now switch to a more Lie-algebraic theoretic mindset. Recall that the matrix

exponential is mapping linear subspaces of g to matrix Lie subgroups of G. In fact, every

connected matrix Lie subgroup of G can be built this way. In terms of Section 2.4.3.2,

connected matrix Lie subgroups that are built from subspaces are geodesic subspaces (with

respect to I, the identity of G). Now suppose that among all such subgroups that are of

dimension D, we want to find one that is optimal in some sense. Instead of optimizing over

this set of subgroups, we define our cost functions in terms of the subspaces that generated

them.

Originally, Fletcher et al . [36,37] formulated their PGA over Lie groups and not for the

general Riemannian setting. Rather than explicitly working in TµG, they identified TµG

with TIG (as explained in Section 2.3.7.1) and did the PCA there. Their method boiled

down to the following steps:

1. Compute the interior mean µ;

2. Set gi = log(µ−1p);

3. Compute PCA on {gi}Ni=1 to produce a k−dimensional subspace of TIG, denoted by

V .
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Here too, as V is a subspace, we may regard it as a D× k matrix, satisfying V TV = Ik×k.

The set

{exp(x) : x ∈ V ⊂ TIG}

is a k-dimensional matrix Lie group (and a subgroup of G). Synthesis of a manifold point

(equivalently, a group element) is done as follows. If α ∈ R1×k is a set of coefficients, we

generate a point q ∈M by:

µ exp(V α) . (2.95)

That is, we compose µ with the exponent of a linear combination of vectors in the Lie

algebra. Note that if G is not Abelian, this is not the same as thing as exp(log µ+ V α).

When || log(p−1q)|| is indeed a geodesic distance implied by the Riemannian metric in

Eqn. (2.58), then this method can be justified on a Riemannian basis. The learned basis

vectors are in TIG and not TµG, but by the construction of the this Riemannian metric,

the left-translation map TIG→ TµG, x 7→ px preserves inner-products and distances.

However, when || log(p−1q)|| is not a true geodesic distance, this method can be justified

in terms of distances, but these are not geodesic (also known as Riemannian) distances.

In particular, if x is a basis vector, then the one-dimensional geodesic subspace, p exp(tx),

is not a geodesic curve.

In either way, we will refer to this kind of PGA, i.e., PGA in the Lie algebra, as

Lie-algebraic PGA.

2.6.2 Lie-Algebraic PGA vs Riemannian PGA: An Optical Flow Exam-

ple

We here demonstrate that the two models, the Lie-algebraic PGA and Riemannian PGA,

can lead to rather different geodesic subspaces. In fact, with several notable exceptions

(e.g ., on SO(3)) these subspaces usually differ.
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We here show a simple case, using a Lie group of 2D image deformations, where the

resulting 1D geodesic subspaces are noticeably different. This is illustrated in Figs. 2.6

and 2.7. Recall that exp : TIM → M denotes the matrix exponential (in effect, the Lie

group exponential) while Expµ : TµM →M denotes the Riemannian exponential map with

respect to the point of tangency µ. The left panels of Fig. 2.7 show the first eigenvector

of the Lie-algebraic model (denoted by v1 ∈ TIM), visualized by µ exp(+v1) (top) and

µ exp(−v1) (bottom) acting on the template. Similarly, the right panels of Fig. 2.7 show

the first eigenvector of the Riemannian model (denoted by u1 ∈ TµM), visualized by

Expµ(+u1)
by def.

= µ exp(µ−1u1) (top) and Expµ(−u1)
by def.

= µ exp(−µ−1u1) (bottom) acting

on the template.

We stress that the fact that in this particular example the 1D Riemannian model

captured horizontal scaling while the 1D Lie model captured shearing is coincidental. It

is very easy to come up with different data where things would have been exactly the

opposite. Our only point here is that the two models are usually different.

While we avoid making any claim about which approach is better in general – as this

may depend on the application – we argue that practitioners should be well aware of this

delicate point. For example, it is quite possible that the Riemannian approach may result

in better optical flow models than the Lie algebraic approach as it is tied more strongly to

distances. Specifically for the CT framework we presented in Chapter 5, the Riemannian

PGA is preferred for the reasons mentioned in that chapter.
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Figure 2.6: Template, intrinsic mean (denoted by µ), and the four examples from which the
intrinsic mean was computed. The colors indicate point-to-point correspondences. Note
the scales of the figures.
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Figure 2.7: PGA models. Left: the Lie-Algebraic 1D model. Right: the Riemannian
model. See text for more details.



Chapter 3

Contour People

In the last few decades, the computer vision community has put a lot of effort into devel-

oping methods for solving the task of pose estimation of people from images. In this task,

a 2D model of articulated human shape is a central building block. As was mentioned in

Section 1.1.2, traditional models are based on a simple shape representation comprised of

crude geometrical shapes (e.g ., rectangles or trapezoids) describing each of the individual

body parts; see Fig. 3.1b for an illustration of a typical model. We will refer to this kind

of shape representation as Pictorial Structures (PS), using the term from Fischler and

Elschlager’s seminal work [32].

In a PS representation, each single body part is only allowed to rigidly deform1, al-

though different parts may undergo different rigid transformations so articulation can still

be achieved.

Remark 3.0.1 (Shape Representation vs. Statistical Shape Model). Throughout this we

chapter will maintain a distinction between the terms “shape representation” (or, for short,

“representation”) and “statistical shape model” (or “model”). A statistical model, of either

shape or other entities, is always defined with respect to some particular representation.

In the context of the current chapter, a statistical model of (human) shape must be defined

1Some variants of PS allow for more general transformations such as affine or projective.

77
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(a) (b) (c) (d)

Figure 3.1: Pictorial structures are for the heartless (this particular choice of words carries
the risk of someone saying that detailed shape models are for the brainless, but we shan’t
be cowards): with some notable exceptions (a), simple polygonal shapes (b) provide a poor
explanation for human shape (c-d).

with respect to some shape representation. For example, when we refer to a PS representa-

tion, we mean that the human shape is represented as described in the previous paragraph.

A PS model is a statistical distribution over the configurations of the body parts in a PS

representation, and, perhaps, over the crude shape of these parts (e.g ., the length or width

of a part). As it is reasonable to expect some relations between the different body parts, a

typical PS model is based on a probabilistic graphical model2 that expresses these relations

through pairwise potentials capturing the interactions between adjacent parts (e.g ., an

upper arm and a lower arm). These potentials are typified by “springs”, meaning it is

unlikely the parts will be too far from each other. Higher-order cliques may be defined as

well, but, as we will see shortly, this fact is orthogonal to our discussion. Finally, we will

often use the terms “2D model” and “3D model“ as shorthands for “statistical model of

2D shape” and “statistical model of 3D shape”, respectively.

The main motivations for PS representations are their simplicity and low dimensionality.

Consequently, computer vision researchers and practitioners working on pose estimation

have taken for granted that PS should be the weapon of choice for shape representation

and usually focus on improving the PS statistical models or inference with such models.

There is, however, a major limitation to the PS approach for shape representation:

2See [84] for a modern textbook on probabilistic graphical models.
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crude geometrical shapes provide a poor way to describe a human shape, although some

exceptions may come to mind; see Fig. 3.1a. In other words, PS representations lack

realism in the sense they do not account for the modeling of a detailed shape.

This means that models learned for a PS representation cannot provide us with a good

generative model to “explain away” image evidence. Thus, plenty of geometric image

evidence – such as the exact outline of the person’s body – is being discarded, leading

to image likelihood models of needlessly limited power. Consequently, inference in PS

models depends heavily on their appearance3 model component and/or the pose prior

while information about the actual real-world shape of the person can contribute very

little, if any, to the process.

Given this shortcoming, and in sharp contrast to the amount of progress the commu-

nity has made on advancing statistical models and inference methods associated with PS

representations, it is striking to realize how little the shape representations of articulated

2D models have changed throughout the last four decades since Fischler and Elschlager’s

work. We thus seek both a better representation and a better generative model of articu-

lated human shape. The representation should be able to capture detailed shape and the

model should capture the shape variation. Together they will not only yield more accurate

pose estimates but also provide a way to move much of the inferential work into the shape

component of the image likelihood model. For example, we should be able to compare

observed image edges against the curves of an hypothesized articulated shape drawn from

the model – an approach fitting well into the analysis-by-synthesis paradigm.

Importantly, in addition to improving pose estimation, there are other applications for

a model of articulated detailed shape. For instance, it can help in the following computer

vision tasks:

1. segmenting a person from an image;

3Appearance here means the color-intensity image patten or its derived features.
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2. person recognition;

3. classification (e.g ., of gender);

4. tracking (e.g ., if the model factors body shape from pose, we can keep the estimate

of the body shape fixed across frames while allowing the pose to vary);

5. estimating optical flow generated by the motion of people (e.g ., see [154]);

6. activity recognition (e.g ., see [75]).

The obvious question is: how can we achieve the goal of building better models of

two-dimensional articulated detailed human shape? Our short answer is that the we can

take advantage of the tremendous amount of progress that has been made for models of

three-dimensional articulated detailed human shape.

These 3D models were first introduced in the computer graphics community, where

high realism is one of the primary objectives. They are learned from 3D laser scans of

multiple human bodies. Thus, they capture variability across a population of real human

shapes. From these 3D models, to be discussed at greater length in Chapter 4, we can

generate a training dataset of 2D contours by first drawing 3D shapes from the 3D model,

and then projecting them to the image plane. Then, we can take the training contours

and learn a model of 2D detailed shape.

The longer answer has three components

1. how to generate the training 2D shape data from a given 3D model;

2. how to represent the 2D shape;

3. how to model the statistical variation of the 2D shapes.

These components will be discussed later in this chapter. Together they enable us to define

a new model of 2D articulated human shape that provides a happy medium between the
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traditional simple-but-crude 2D models and computationally-demanding-but-detailed 3D

models (as was illustrated earlier in Fig. 1.2). We call our model the Contour Person (CP)

model.

The CP model factors changes in 2D human shape into a number of causes, with each

cause represented via a low-dimensional parametric model. These include shape changes

due to

1. viewing direction;

2. body shape (i.e., the “physique” of the person);

3. rigid articulation;

4. non-rigid deformation due to articulation.

This model is similar to recent work on 3D body shape representation using the SCAPE

model [6]. In fact our 2D model is created from a 3D SCAPE model of the human body.

However, rather than model deformations of triangles on a 3D mesh, we model deforma-

tions of line segments in 2D; this results in a simpler and lower-dimensional body model.

Additionally, a successful application of SCAPE in computer vision application is usually

limited to a setting where the calibration of the camera (or cameras) is known [15,16], we

explicitly model statistics of 2D shape deformations due to camera variation and so our

model is designed for the more challenging setting of uncalibrated monocular-view images.

We envision many applications of the CP model and its associated shape representation.

This chapter focuses on the development of the CP model and the issues involved with

representing an inherently 3D shape in 2D while maintaining realism and accuracy. To

illustrate the application of the model we present initial results in pose estimation and

segmentation. To do so, we build on an existing state of the art person detector that uses a

PS representation [4]. This existing technique is used to initialize our model and then both

the pose and shape of the CP model are refined using a parametric form of GrabCut [124].
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Results of pose estimation and segmentation are shown on a variety of images and compared

with PS for pose estimation and with traditional GrabCut for segmentation.

To summarize, in this chapter we define a new representation of 2D shape on which

we build a statistical model that has an expressive power akin to that of a detailed 3D

model and the computational benefits associated with a simple 2D part-based model. This

self-coined contour person (CP) model is learned from a 3D model of the human body

that captures natural shape and pose variations; the projected contours of this model

form the training set. Importantly, the CP model factors deformations of the body into

three components: shape variation, camera change, and part rotation. This model also

incorporates a learned non-rigid deformation model. The result is a 2D articulated model

that is compact to represent, simple to compute with and more expressive than previous

models. We demonstrate the value of such a model in 2D pose estimation and segmentation.

Given an initial pose from a standard PS method, we refine the pose and shape using an

objective function that segments the scene into foreground and background regions. The

result is a parametric, human-specific, image segmentation.

3.1 Previous Work

Two-dimensional models of the human body are popular due to their representational and

computational simplicity. Existing models include articulated PS models, active shape

models (or point distribution models), parametrized non-rigid templates, and silhouette

models.

We focus here on models that explicitly represent shape with contours and, furthermore,

those that have been used to represent non-rigid human shape and pose. There is an

extensive literature on general contour models for object representation and recognition

that we do not consider here.
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3.1.1 2D Articulated Person Models

Most 2D articulated person models have focused on estimating human pose and have

ignored body shape. We argue that a good body shape representation can improve pose

estimation by improving the fitting of the model to image evidence.

The first use of a human “puppet” model was due to Hinton [71] and there have been

many related models since. The classic 2D model is the “cardboard person” [76], defined

by a kinematic tree of polygonal regions, where each limb may be rotated or scaled in 2D.

Similarly the scaled-prismatic model (SPM) treats the limbs as rigid templates that can

be scaled in length [18]. Both the cardboard person and SPM approximate foreshortening

caused by motion of the limbs in depth.

More restricted models, with only rotation at the joints (and a global scale), form

the basis of most of the current PS models [32] used for detecting and tracking people

in monocular imagery [4, 30, 31, 86, 119]. These models admit efficient search with belief

propagation (BP) due to the simplification of the representation. Sigal and Black [133]

use a 2D model that includes foreshortening and do inference with BP. The advantage

of the richer model is that it allows better prediction of 3D pose from the estimated 2D

model [133].

Our work is related to the PS camp but increases the realism beyond previous meth-

ods by modeling shape variation across bodies as well as non-rigid deformation due to

articulated pose changes.

3.1.2 Active Shape and Contour Models

Active shape models (ASMs) capture the statistics of contour deformations from a mean

shape using principal component analysis (PCA) [22]. PCA can be performed on points,

control points or spline parameters. These models have been used extensively, particularly
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for representing human faces and their deformations [22]. Note that facial features deform

in such models but there is no explicit representation of part rotation, they have little depth

variation relative to each other, and there is no self occlusion. The articulated human body

has all these issues, compromising the applicability of ASMs

Baumberg and Hogg were the first to use ASMs for representing the full human body [8].

Given a training set of pedestrians segmented from the background, they define contours

around each with the same number of points and roughly the same starting locations.

They analyze the modes of variation in this contour using PCA and use this model to

track pedestrians. In such a model, changes in body shape and pose are combined in one

PCA representation. Furthermore, with no notion of body parts, the alignment between

training body contours is difficult to establish. This results in principal components that

capture the non-informative sliding of points along the contour. Finally this simple PCA

model does not directly encode articulated body pose, limiting its use for human motion

and gesture analysis. In contrast, our framework eliminates the misalignment problem and

factors deformations due to shape and pose (and camera variation).

Related to the model from [8] are eigen-points models by Covell and Bregler [23, 24].

These capture variability in a set of 2D landmarks using a single PCA model. As in [8],

these models do not lend themselves to factorization of different sources of deformations.

Ong and Gong [112] extend these point distribution models to deal with articulated

3D human motion of the upper body. They construct a training vector that includes the

contour points of the upper body, 2D points corresponding to the locations of the hands

and head, and the 3D joint angles of an underlying articulated body model. To deal with

the nonlinearity of the contour with respect to pose, they use a hierarchical PCA method

that finds linear clusters in the nonlinear space. In contrast, we explicitly model the parts

of the body and do not use PCA to capture articulations. Rather we use use it to capture

body shape variations (and camera view changes). This provides a blend between the PS

models and the active contour methods.
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Grauman et al . [50] map multi-view silhouettes to contours and learn a low dimensional

shape representation in conjunction with 3D body pose. Like other methods they model

shape in terms of the contour points. Our model differs in that it models deformations of

2D contours and this representation is important for explicitly modeling articulation and

for factoring different types of deformation.

3.1.3 Human Models and Segmentation

We test our model on the problem of segmentation; the contour of the body defines the

region inside (and outside) the body.

In early work, Kervrann and Heitz [81] define a non-rigid model of the hand and es-

timate both its pose and segmentation using motion and edge cues. The model is not

part-based, the deformations are not learned, and it has a limited range of motion. Alter-

native formulations have explored template-based models of the body [46,95] that are not

fully articulated and do not factor shape and pose.

Of particular relevance is the recent work of Ferrari and Zisserman [31] that uses a

weak detector to obtain a crude estimate of human pose in an image. This pose is then

used to initialize GrabCut [124] segmentation. Given an initial segmentation of the scene

into a foreground person and a background, they fit a more detailed PS body model.

We use this idea of an initial guess followed by GrabCut but with a much more detailed

model. Rather than end with a PS model, we begin with one. We use the method in [4]

to fit a PS body model to the image. This 2D body model is used to initialize the pose

and scale of our contour-person model. We then refine the parameters of the model (pose,

view and shape) to improve the segmentation using a form of parametric GrabCut.

This parametric GrabCut idea is similar to the PoseCut framework suggested by Bray

et al . [12]; however, they use a 3D articulated skeleton model and a distance transform
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from it to define 2D body shape. The result is a crude depiction of the body shape in

2D but the interesting element of their work is the integration of 3D pose estimation

with segmentation. We also integrate parametric body shape and pose estimation with

segmentation but do it in 2D with a much richer model of body shape.

3.2 Shape Representation

Throughout this work we adopt a pattern-theoretic approach for shape deformation. In

particular, our representation of 2D shapes is based on an existing shape representation

suggested by Grenander [51] that was further studied by Grenander and Miller [53]; how-

ever, we modify it in a way that has many important practical advantages.

Any discretized contour C can be represented by a polygon of Npts points, denoted

{vi}Nptsi=1 , vi = (xi, yi). The shape representation, however, is not based on contours.

Rather, it is based on transformations acting on a reference contour. This reference contour

is called the template and is denoted by T . The core of this shape representation is a local

deformation acting on a directed line segmented connecting two adjacent points along the

polygon.

3.2.1 Directed Line Segments

We regard C as a column vector of length 2Npts that has the following form:

C = [x1, y1, x2, y2, . . . , xNpts , yNpts ]
T ∈ R2Npts . (3.1)

Similarly, we can write the template T as

T = [xref
1 , yref

1 , xref
2 , yref

2 , . . . , xref
Npts , y

ref
Npts ]

T ∈ R2Npts , (3.2)
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where
¶
vref
i

©Npts
i=1

, vref
i = (xref

i , y
ref
i ), represent the points in T .

The contours of interest to us are closed. Let {ei}Nptsi=1 and {li}Nptsi=1 denote the directed

line segments of C and T respectively, where

ei =

vi+1 − vi , if i ∈ {1, 2, . . . , Npts − 1}

v1 − vi , if i = Npts

(3.3)

li =

v
ref
i+1 − vref

i , if i ∈ {1, 2, . . . , Npts − 1}

vref
1 − vref

i , if i = Npts

. (3.4)

We will always assume that ei and li have nonzero length4: ‖ei‖`2 > 0, ‖li‖`2 > 0.

Let E : R2Npts → R2Npts be the linear map that maps C to [eT1 , e
T
2 , . . . , e

T
Npts

]T . E can

be represented by a sparse matrix which takes values in {−1, 0, 1}.

Example 3.2.1 (Constructing E for a closed contour). Let Npts = 4. Then E has form

as in the following equation:



e1

e2

e3

e4


=



v2 − v1

v3 − v2

v4 − v3

v1 − v4


=



x2 − x1

y2 − y1

x3 − x2

y3 − y2

x4 − x3

y4 − y3

x1 − x4

y1 − y4



=

E︷ ︸︸ ︷

−1 0 +1 0 0 0 0 0

0 −1 0 +1 0 0 0 0

0 0 −1 0 +1 0 0 0

0 0 0 −1 0 +1 0 0

0 0 0 0 −1 0 +1 0

0 0 0 0 0 −1 0 +1

+1 0 0 0 0 0 −1 0

0 +1 0 0 0 0 0 −1



C, by def.︷ ︸︸ ︷

x1

y1

x2

y2

x3

y3

x4

y4



.

(3.5)

The generalization from Example 3.2.1 to other values of Npts is straightforward. Note

that E does not depend on the value of C, and we so use the same E for every contour of

4Note this is a weaker assumption than assuming that all of the points in C (or T ) are distinct.
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Npts – including the template T .

3.2.2 Local Shape Deformations

In pattern-theoretic terminology [52], the li’s are called primitives upon which local trans-

formations can act. In our case, ei is seen as the result of a transformation of scaled

rotation, denoted by Qi, acting on li. Scaled rotations are also called similitudes, and

together they form a matrix Lie subgroup of GL(2).

Definition 3.2.1 (The Similitude group of order 2). The Abelian two-dimensional matrix

Lie group, given by

Sim(2) =
¶
Q : Q = SR, (R,S) ∈ SO(2)× R+

©
, (3.6)

is called the Similitude group (of order 2). Equivalently, Sim(2) is given by

Sim(2) =


Ö
A −B

B A

è
, A,B ∈ R, A2 +B2 > 0

 . (3.7)

We may think of Qi as a local deformation. The word “local” does not mean that

the deformation is small. Rather, it means that Qi pertains to a particular directed line

segment ei and not to the entire contour. As indicated by Definition 3.2.1, Qi is fully

defined by an angle θi and scale Si, or equivalently, by (Si cos θi, Si sin θi):

Qi = Si

Ö
cos θi − sin θi

sin θi cos θi

è
=

Ö
Si cos θi −Si sin θi

Si sin θi Si cos θi

è
. (3.8)

Given li and Qi we can create a new ei using the directed-line-segment synthesis equa-

tion:

ei = Qili . (3.9)
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Conversely, given li and ei we first rewrite Qili as

Qili =

Ö
Si cos θi −Si sin θi

Si sin θi Si cos θi

è
li =

Ö
li,1 −li,2
li,2 li,1

èÖ
Si cos θi

Si sin θi

è
, (3.10)

where li,k is the kth element of li, k ∈ {1, 2}. We then extract Qi by solving the invertible

linear system

ei =

Ö
li,1 −li,2
li,2 li,1

èÖ
Si cos θi

Si sin θi

è
. (3.11)

The system is invertible as l2i,1 +l2i,2 = ‖li‖2`2 > 0. Equation (3.11) is our (local) deformation

analysis equation.

3.2.3 Global Shape Deformation: Open Contours

Suppose, for now, that we remove the connection between the first and last contour points

in C. The result is an open polygon, denoted by Copen, with the same Npts points as C but

with only Npts − 1 directed line segments: {ei}Npts−1
i=1 . An open template polygon, T open

is defined in a similar way.

Up to a global translation, we can always recover Copen from T open and {Qi}Npts−1
i=1 :

vi =

 (0, 0) , if i = 1

vi−1 +Qi−1li−1 , if i ∈ {2, 3, . . . , Npts}
. (3.12)

Equation (3.12) is our open contour synthesis equation.

Like Sim(2), the Sim(2)Npts−1 group (namely, the direct product of Npts − 1 copies

of Sim(2)) is also an Abelian Lie group. Its dimension is 2(Npts − 1). Let Qopen =

(Q1, Q2, .., QNpts−1) ∈ Sim(2)Npts−1. Since we can identify Qopen with a sparse block-
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diagonal matrix, 

Q1 0
Q2

. . .

0 QNpts−1


∈ GL(2Npts − 2) , (3.13)

we may regard Sim(2)Npts−1 as a matrix Lie group.

This means we can apply the tools we saw in Chapter 2; e.g ., we have a natu-

ral way to compose deformations, we can define a distance between different C’s as the

geodesic distance between their corresponding Qopen’s on the deformation manifold (i.e.,

on Sim(2)Npts−1), and we can apply tools from statistics on manifolds.

This type of pattern analysis (and pattern synthesis – enabled by Eqn. (3.12)) of 2D

contours goes back to the early days of Grenander’s pattern theory in the 70’s, and was

later thoroughly explored by Grenander and Miller [53]; see also [52,55].

3.2.4 Global Shape Deformation: Closed Contours

In the case of open contours, Eqn. (3.12) ensures us that for any Qopen ∈ Sim(2)Npts−1, we

can always build a corresponding open contour Copen. We emphasize the word “any” as

this is true even if we never observed this Copen, and even if Qopen was sampled at random

from some arbitrary probability distribution on the Sim(2)Npts−1 manifold.

The contours that are of interest to us, however, are closed ones. Naturally, the cor-

responding Lie group here is Sim(2)Npts , and if Q = (Q1, Q2, .., QNpts) ∈ Sim(2)Npts , then
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we identify Q with a sparse block-diagonal matrix,



Q1 0
Q2

. . .

0 QNpts


∈ GL(2Npts) . (3.14)

Again, through this identification, we regard Sim(2)Npts as a matrix Lie group.

For pattern analysis of closed contours, the discussion carries over transparently from

the case of open contours. But what about pattern synthesis? It turns out things do not

quite work the way we would like them to. Let us see why.

It is tempting to simply replace Eqn. (3.12) with

vi =

vNpts +QNpts lNpts , if i = 1

vi−1 +Qi−1li−1 , if i ∈ {2, 3, . . . , Npts}
. (3.15)

This approach, however, does not work as Eqn. (3.15) is inconsistent: there is no guarantee

that the equality

v1 − vNpts = QNpts lNpts (3.16)

will hold. Alternatively, defining the synthesized contour by

vi =

 (0, 0) i = 1

vi−1 +Qi−1li−1 , if i ∈ {2, 3, . . . , Npts}
. (3.17)

is also not very useful: the resulting contour is unlikely to be the one we would expect as

usually Eqn. (3.16) will not be satisfied. In other words, we would get some contour C, but

once we compute its deformation from T , denoted by Qextracted
C , this deformation might be

far from Q. In fact, it is easy to construct Q’s such that their corresponding Qextracted
C ’s

would be arbitrary far from them.
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The next tempting idea would be to think that if we set Npts to a number high enough,

we might as well ignore the lNpts , treat the contour as open, and hope that since the

resolution is high enough, the contour will be essentially closed. Unfortunately, this proves

to be a particularly bad idea when statistical modeling is involved. When synthesizing

contours from the deformations extracted from the training data, everything works just

fine. However, upon leaning a statistical model from these deformations and sampling a

random deformation from the model, the resulting synthesized contour usually has a very

significant gap at its ends which makes the resulting shape look unnatural.

A more plausible idea, at least conceptually, would be to restrict ourselves toM closed-contours,

defined as the subset of Sim(2)Npts that consists of exactly those Q’s that, upon the ap-

plication of Eqn. (3.15), satisfy the constraint from Eqn. (3.16). This is indeed possible,

but, as observed in [53], will result in losing the group structure so we will not be able to

benefit from the advantages associated with matrix Lie groups.

We here suggest an alternative approach, which is also computationally simpler than

enforcing the constraint. We choose to keep working with the whole of Sim(2)Npts (so

we preserve its matrix Lie group structure) but instead of synthesizing a contour using

Eqn. (3.15), we do it in a different way that enables us to ensure that Qextracted
C will be as

close as possible to Q.

To synthesize a contour we solve the following least-squares (LS) problem:

minimize f(C) = ‖EC − QET ‖2`2 =

Npts∑
i=1

‖ei −Qili‖2`2

subject to C ∈ R2Npts . (3.18)

With f so defined, we regard

C = arg min
x∈R2Npts

f(x) (3.19)

as our closed contour synthesis equation. As before, we let Qextracted
C denote the deforma-

tion extracted from this minimizer. Several remarks are in order:
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1. The minimizer exists but is unique only up to a global 2D translation of the curve.

Consequently, and without loss of generality, we may assume that the first two entries

in C (that is, by definition, (x1, y1)) are zero. Consequently the optimization problem

becomes a convex Least-Squares (LS) problem where the domain is R2Npts−2 – the

space of curves whose first point is the origin.

2. The interpretation of the quantity being minimized is the difference between the line

segments we want (for a nominal value of Q) and the line segments we can actually

have in the deformed contour.

3. In terms of graphs, the connectivity of these curves – captured by the connectivity

matrix E – is fixed, so the minimizer is always a closed contour (although it may have

self-intersections): regardless what the value of the minimizer is, we always connect

its points in the same order.

4. The difference between Q and Qextracted
C is distributed over all of the Qi’s, not just

over QNpts ; in practice this is translated into more regular curves.

5. If Q was computed from some contour C = [x1, y1, x2, y2, . . . , xNpts , yNpts ]
T , then

[x1 − x1, y1 − y1, x2 − x1, y2 − y1, . . . , xNpts − x1, yNpts − y1]T

is the unique minimizer (modulo global translation), Qextracted
C = Q, and f is nullified.

6. In our experiments, Q is sampled from a statistical model (to be discussed later), so

the minimal value of f might be (and usually is) positive. The good news, however,

is that these values are usually very small. For example, f(C)
Npts

is usually much smaller

than
∑Npts

i=1 ‖ei‖
2
`2

Npts
, the average square length of a line segment in C. We attribute that

to the effectiveness of the statistical model, meaning that the learned distribution

is concentrated on regions of the manifold that are not too far from M closed-contours.

Also, these regions have some overlap with M closed-contours as all the Q’s computed

from the training contours are, by definition, in M closed-contours.

7. E is singular, sparse and fixed. If Npts is small enough, then it is enough to pre-
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compute E†, the Moore-Penrose pseudoinverse of E. The minimizer is then given by

C = E†QET . Otherwise, a sparse solver can be pre-computed. In our experiments

we have used E†. In Chapter 4 we will see an analogous problem where the high

dimensionality prohibits the use of E† and a sparse solver is used instead.

8. The minimization is done over curves, not over deformations. This is not the same

as minimizing the Euclidean difference between Qextracted
C and Q subject to both

Qextracted
C ∈ Sim(2)Npts and the constraint from Eqn. (3.16) (for one thing, the min-

imization problem in Eqn. (3.18) is much easier). It is possible to use tools from

optimization over matrix manifolds5 to solve an analogous (non-convex) problem in

terms of minimizing the geodesic distance between Qextracted
C and Q (with the same

constraints). This would be a conceptually better approach then our LS approach

since it will tie the resulting C more closely to the objects that are being statistically

modeled (i.e., the Q’s); however, the optimization problem would be much harder

(and significantly slower) to solve, and the solution procedure may get stuck in a

local minimum. In light of this trade-off we resort to our LS approach which is easy

and works well in practice.

9. This LS approach for contour synthesis is similar to approaches used successfully

for the harder problem of synthesis of 3D triangular meshes from deformations of

triangles [6,16,142]. In fact, in that aspect, we were inspired by these works. Unlike

in these works, however, our motivation is not limited to finding a solution to the

problem of creating a shape (a 2D contour in our case, a 3D mesh in those works)

from deformations, but also pertains to our desire to preserve the matrix Lie group

structure. We will return to the topic of triangle deformations in Chapter 4.
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Figure 3.2: The Contour Person representation. Colors code the different body parts. A
range of articulations is shown. Note that the representation can support certain types of
self-occlusions.

3.3 The Contour Person Model

Let us suppose, for now, that we have at our disposal some contour-related shape represen-

tation that can capture a detailed articulated 2D shape (e.g ., as seen in Fig. 3.2). Based on

this representation – to be defined later – we seek to build our statistical model. Building

a 2D model of a 3D person presents many challenges. We seek a model that is expressive

enough to represent a wide range of human bodies and poses, yet low dimensional enough

to be computationally tractable for common computer vision problems. We build on the

idea of the SCAPE model [6] and develop a factored model. In particular we use:

1. a low-dimensional PCA model to capture shape changes across different people;

2. a low-dimensional PCA model to approximate distortions caused by camera changes;

3. planar rotation and length scaling of body parts to represent articulation;

4. a linear prediction model to capture non-rigid deformations caused by the articula-

tion.

5see [1] for a textbook on this topic.



96

(a) Training contours: three examples of different body shapes

(b) Training contours: three examples of different cameras

(c) Training contours: three examples of different poses

Figure 3.3: Generating training contours. By varying the 3D body-shape (a), the 3D pose
(b) or the camera parameters (c), we obtain outlines of different projected 2D shapes. Left
in each pair: 3D. Right: 2D.

Figure 3.2 illustrates how varying the pose parameters results in realistic looking non-rigid

deformations predicted by the CP model.

3.3.1 Generating Training Contours

The CP model is a deformable template model built from training contour data generated

using samples from a 3D SCAPE body model [6], capturing realistic body shape variation

and non-rigid pose variation. See Figures 3.3a and 3.3c for typical samples of shape and

poses from the 3D model and their corresponding contours.

Since SCAPE itself is also a deformable template model, we consider the projection of

SCAPE’s 3D template – using some reference camera – to be our 2D template, denoted

by T (see Fig. 3.4).

To understand how we generate training contours for the CP model, we start by de-
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Figure 3.4: The template of the Contour Person model, denoted by T .

scribing a simplified version of the process. Given a 3D model (e.g ., SCAPE), the first

step is generating an instance of a 3D body. The second step is projecting the resulting

3D mesh to the image plane to obtain a 2D silhouette. The third step is extracting the

discretized outline of the silhouette in order to produce a training contour obtained from

the outline of the 2D shape. The last two steps are done using standard computer vision

algorithms.

The process we just described captures the general idea of generating the training

contours; however, to deal with problems such as self-occlusion or misalignment between

different exemplars, a more complicated scheme is needed.

3.3.1.1 Dealing with Self-Occlusion and Point-to-Point Correspondence

A crucial point is that the CP representation utilizes 3D information; this is quite different

from standard PS representations. This point is illustrated in the way it deals with self

occlusions as well as out-of-the-plane rotations, as depicted in Fig. 3.2. In a standard

contour model, the ordering of the points would be poorly defined (cf . [8]). Since our

contours are generated from a 3D mesh, we have known correspondence between contour

points and their respective points and body parts on the 3D mesh. This provides the

correct connectivity of the contour even when it crosses itself in 2D.
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Figure 3.5: Connecting parts in a fixed order.

Instead of projecting the entire 3D body at once, we project the body parts separately.

We can do this since the 3D mesh has a known segmentation to body parts. The 16

parts are: head; torso6; shoulders; upper arms; lower arms; hands; upper legs; lower legs;

feet. From each one of these projected parts we extract its 2D outline using a MATLAB

routine. The output of the routine is a polygon whose number of points need not be fixed

at this stage. Henceforth we will use the terms “contour” and “polygon” interchangeably;

note, however, that these polygons have many more points than the those associated with

PS representations. Having all of the outlines at our disposal, we use MATLAB routines

of polygon intersection, polygon union and polygon difference to obtain the portions of

the outlines we are interested in (these parts are depicted in Fig. 3.5). These partial

contours are in turn combined to a form single contour in a fixed ordering according to the

enumeration shown in Fig. 3.5. This step results in a single polygon which might have self

intersections (as in the rightmost example in Fig. 3.2).

Each partial contour is then re-sampled to have a fixed number of points, equally spaced

by the arc-length; this number may vary across body parts (e.g ., the head requires more

points than a hand), but is held fixed across different examples. We denote by Npts the

number of points in the entire contour. In our experiments Npts = 500.

6SCAPE also has a pelvis part, but we treat it as part of the torso.
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Importantly, as the known segmentation of the 3D model into parts induces a similar

2D contour segmentation, and since we know for each contour point the 3D point that was

projected to it, the issue of misalignment is essentially eliminated: a point can never “slide”

outside its body part so no gross alignment errors are present. For example, the mid point

of the contour that represents the left side of the torso might slight up or down a little

across different examples, but it will never go as as far as the arm or the leg. Consequently,

the training contours are in good point-to-point correspondence with each other.

We also apply basic signal processing techniques to ensure smooth transitions between

the different parts of the contour7. We omit the details, but point out that operations

such as Gaussian smoothing are done with respect to the arc-length and not with respect

to index difference.

Remark 3.3.1. The approach described here can accommodate certain cases of self-occlusion,

typified by the illustration in Fig. 3.2. However, the restriction to a single contour (even

with self-intersections) limits us to cases where the ordering of the parts is preserved.

Later, when we discuss a later variant of the CP model, we will use a slightly different

approach using multiple contours instead of one. That approach will support arbitrary

self-occlusions.

3.3.2 Composition of Deformations and a Factored Model

For the remainder of this Chapter, we will use M as a shorter notation for Sim(2)Npts .

Recall that, being a matrix Lie group, M is both a group and a manifold. One of the

attractive features of matrix Lie groups is the ease of composition. For example, Q ∈ M

may be the result of composing two deformations:

Q = Q1Q2 , Q1,Q2 ∈M . (3.20)

7We work with two 1D discrete signals: x[n] and y[n], n ∈ {1, 2, . . . , Npts}, where, as is customary in
signal processing literature, square brackets indicate discrete indices.
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Remark 3.3.2. If only the LHS side of Eqn. (3.20) is known, then the factorization in the

RHS is not unique since Q1Q2 = Q1Q3Q−1
3 Q2 for any Q3 ∈M .

In fact, a deformation can be factored into more than just two deformations; in the CP

model we factor the contour deformation into several constituent parts: pose, shape, and

camera. Thus, we write

Q = QposeQshapeQcamera . (3.21)

To reduce dimensionality, we learn a low-dimensional parametric model for each one of

these parts (these models will be described later):

Qshape = Qshape(Θshape), Qpose = Qpose(Θpose), Qcamera = Qcamera(Θcamera) ,

where Θshape, Θpose, and Θcamera are the corresponding parameter sets. Earlier, in Section

3.3.1, we explained how we generate training contours. Once the contours have been gener-

ated we extract the deformations between T and them to obtain the training (deformation)

data for our models. We now continue to explain this process in more detail as well as to

define each part of the model.

3.3.2.1 Variation in Body Shape

To train the shape deformation model Qshape(Θshape) we take the 3D SCAPE model and

generate N realistic 3D bodies shapes in a canonical pose and, following their projections

using a canonical camera, apply the process described in Section 3.3.1 to produce training

contours; see Fig. 3.3a. In our experiments N = 1000.

For each contour we extract its deformation from T using Eqn. (3.11). We achieve

dimensionality-reduction by either of the following two techniques.
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Figure 3.6: Shape variation in a gender-neutral shape model. Red: first PC. Black: second
PC. Blue: third PC. In each color, from left to right: -3, 0 and +3 σ from the mean in
direction of respective principal component.

Ordinary PCA on Euclidean Deformations. In the first technique, we ignore our

knowledge about the manifold structure of M and treat the deformations as elements of a

Euclidean space. From each training deformation Q we create a column vector of the form

[S1 cos θ1, S1 sin θ1, S2 cos θ2, S2 sin θ2, . . . , SNpts cos θNpts , SNpts sin θNpts ]
T ∈ R2Npts .

We then take all these N vectors and (after subtracting the mean) perform ordinary Eu-

clidean PCA. This gives a low-dimensional model of contour deformations caused by body

shape variation parametrized by the PCA coefficients Θshape. The first three principal

components (PCs) of a shape model, learned from samples of both genders, can be seen in

Fig. 3.6 (similar gender-specific models are created and used when the gender is known).

The principal components clearly capture correlated properties of human shape such as

variations in height, weight, girth and so on.

Lie-algebraic PGA. The second technique is Lie-algebraic PGA. (see Chapter 2). It

can be shown that the Lie algebra of Sim(2) is given by


Ö
s −θ

θ s

è
: s ∈ R, θ ∈ R

 ⊂ gl(2) , (3.22)

that

exp

ÖÖ
s −θ

θ s

èè
=

Ö
S cos θ −S sin θ

S sin θ S cos θ

è
(where S = exp(s)) , (3.23)
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and that

log

ÖÖ
S cos θ −S sin θ

S sin θ S cos θ

èè
=

Ö
s −θ

θ s

è
(where s = log(S)) . (3.24)

Thus, PCA in the Lie algebra of M is done on vectors of the form



log(S1)− log(µS1)

θ1 − µθ1
log(S2)− log(µS2)

θ2 − µθ2
...

log(SNpts)− log(µSNpts )

θNpts − µθNpts



∈ R2Npts .

where µSi and µθi are the mean scale and mean angle, respectively, for the deformation of

the i−th line segment (averaging is done over the N examples, not the Npts line segments).

In practice, the eigenvectors for these two models look very similar. However, the model

learned in the Lie algebra required slightly fewer principal components to capture the same

percentage of the cumulative variance. Additionally, a random sample from the ordinary

PCA model might produce local deformations of negative determinant; i.e., producing a

matrix outside of the manifold of similitudes. As the main topic of this chapter is the

design of the CP model, and not so much the differences between Euclidean and Manifold

representations, we do not pursue this comparison any further at this point. In Chapter 4,

however, we will make a more thorough comparison between a Euclidean PCA model and

a Lie-Algebraic PCA model, and then we will see that the differences in favor of the latter

are even more substantial than here.
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Figure 3.7: Contour-person camera variation. The first three camera principal components
for the Female model. Red: first PC. Black: second PC. Blue: third PC. In each color,
from left to right: -3, 0 and +3 σ from the mean in the direction of the respective PC.

3.3.2.2 Variation in Camera

A procedure analogous to the above is used to capture contour deformation due to camera

variation. Training data consists of contours generated from a single fixed body shape and

posture viewed by cameras of different 3D location and tilt angle. Focal length is held

fixed as it has a similar affect on the model as person-to-camera distance. See Fig. 3.3b.

The deformations due to camera variation are well captured by PCA, with 6 components

accounting for more than 90% of the variance; i.e., Θcamera ∈ R6. The first three principal

components, for the female model, can be seen in Fig. 3.7 and roughly correspond to

changes in distance between the camera and the person, rotation of the camera about

the person, and foreshortening of the body caused by tilt of the camera. Note that the

view-variation is learned on the template person in a canonical pose and then is applied

to other people and poses; this is an approximation.

3.3.2.3 Variation in Pose

In the 3D SCAPE model, deformations due to body articulation are modeled by a two-

step process. First, a rigid rotation is applied to the entire limb or body part, and then

local non-rigid deformations are applied according to a learned linear model. We employ

a similar approach.
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For example, in Fig. 3.8b, a rigid motion of the upper arm does not account for non-rigid

deformations of the shoulder. This is corrected by applying a learned non-rigid deformation

to the part of the contour that is in the vicinity of the joint (Fig. 3.8d). Specifically, we

break the deformation into θi = θR + ∆θi and Si = SR ×∆Si, where QR = (θR, sR) is the

rigid deformation and ∆Qi = (∆θi,∆Si) corresponds to non-rigid deformation. QR has

the same value for all edges, ei, in the same body part (for example, the left upper arm)

while ∆Qi varies along the contour.

To learn the non-rigid deformation model we generate training contours using the 3D

SCAPE model, in random poses while holding the body shape fixed, and projected in the

image plane using a fixed camera. See Fig. 3.3c. Note that the 3D SCAPE model already

captures the non-rigid deformations of the limbs, so that the generated 2D contour looks

natural. The rigid 2D rotation, θR, and limb scaling, SR, of each limb is computed between

the template contour and the training contour. The scale is important as it captures

foreshortening of the body parts and thus helps model out-of-the-plane movements.

We also compute the deformations, Qi, between the line segments of the template

and training contours using Eqn. (3.11). We then remove the rigid rotation, θR, and

limb scaling, SR, from Qi for all line segments affected by this body part to derive a

residual deformation. Note, e.g ., that a rigid motion of the upper arm affects the non-rigid

deformation of the upper arm as well as those of the lower arm and the shoulder. The

residual is the deformation of the contour that is not accounted for by part-rotation and

part-scaling.

Given many such ∆Qi and QR (of the same i, but from different training contours) we

learn a linear predictor from the rigid transformation parameters to the non-rigid defor-

mations. Such a model is defined byÖ
∆θi

∆Si

è
=

Ö
α1(i) · · · α2n(i)(i) α0(i)

β1(i) · · · β2n(i)(i) β0(i)

è
p, (3.25)
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(a) (b) (c) (d)

Figure 3.8: Non-rigid deformation due to pose. (a) the template with left arm marked in
blue. (b) rigid transformation of the upper arm. (c) same as (b) but with parts which
should be non-rigidly deformed due to the rigid motion marked in red. (d) final deformed
contour with the non-rigidly deformed parts marked in red.

where p =
Ä
θR1 , S

R
1 , . . . , θ

R
n(i), S

R
n(i), 1

äT ∈ R2n(i)+1 is a vector of rigid transformations, n(i)

is the number of parts affecting Qi, and the α’s and the β’s are parameters to be learned.

Once the model is learned, for every choice of QR, we compute the associated ∆Qi’s. Then

we can compute the full Qi’s, and define Qpose in a similar way to Qshape and Qcamera.

The difference is that Θpose does not represent PCA coefficients. Instead, it represents the

different scales and rotations of each body part.

Figure 3.9, depicts the outlines of contour people sampled at random from the pose.

3.3.2.4 The Full Model

We train each deformation model independently as described above and then compose

them. The ease of composition of deformations – which boils down to simple matrix

multiplication – is what enables our model to be factored. This is a key advantage over

contour representations that use vertices directly. Since M is Abelian, the composition

order is immaterial. Given Θ
def
= (Θshape,Θpose,Θcamera), the full parameter set of the CP

model, the overall deformation is given by the parametric factorized-deformation synthesis

equation:

Q(Θ) = Qshape(Θshape)Qpose(Θpose)Qcamera(Θcamera) . (3.26)
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Figure 3.9: Outlines of contour people sampled at random poses.

Figure 3.10: Contour people sampled from the model. Large deviations from the mean
body are shown for shape, pose, and camera. Row 1: variations in body shape. Row 2:
variations in pose. Row 3: variations in camera view. Row 4: all variations together.
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Q(Θ) can be substituted into Eqn. (3.19) to produce a new C. Here we use 24 pose

parameters (12 joints ×2), 10 shape coefficients and 6 camera coefficients, for a total of 40

parameters.

This factored model is an approximation, but one that works well. Example contours

synthesized from the generative model are shown in Fig. 3.10. Note that PCA implies

a Gaussian probabilistic model defined by the variance along the principal component

directions. This works well for body shape and camera pose where the training samples

are roughly normally distributed. The figure shows camera- and shape-variations sampled

from this model. The joint angles and limb scaling are sampled uniformly over a predefined

range. Note that, because the 2D model is generated from 3D, there are correlations in

2D joint angles and scaling that could be modeled; this is future work.

3.4 Pose Estimation Combined with Segmentation

As an example application of this model, we considered the problem of segmenting images

of humans. The CP model provides a strong prior over human body shape that can be used

to constrain more general segmentation algorithms such as GrabCut [124]. Specifically we

search over the CP parameters that optimally segment the image into two regions (person

and non-person) using a cost function that 1) compares image statistics inside the contour

with those outside; 2) favors contours that align with image edges; 3) enforces our prior

model over shape, pose and camera parameters.

Initialization. We initialize the CP model using the output of a standard PS algo-

rithm [4]. The PS model is lower dimensional than the full CP model and hence provides a

more efficient initialization. We simply set the rigid deformation parameters (rotation and

scale) in the CP model to be equal to those of the PS model. While the PS model defines

a segmentation of the image, it is a crude depiction of the human form. Consequently we

refine the segmentation using the CP model.
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Region term. The region term of the segmentation objective compares intensity

and color histograms inside and outside the body contour. We take the pixel mask m(Θ)

consisting of all pixels of the image plane Ic within the contour and compare the normalized

histograms H in
c (I,m) = hist(Ic(m)) and Hout

c (I,m) = hist(Ic(m̄)) using the χ2 histogram

distance:

dc(I,m) = 2−
∑
i

Ä
H in
c (i)−Hout

c (i)
ä2

H in
c (i) +Hout

c (i)
. (3.27)

We follow Martin, et al . [103] in treating intensity histograms and color histograms as

separate features (we use the YCbCr colorspace)

ESt(I,m) = λ1dY (I,m) + λ2dCb(I,m) + λ3dCr(I,m).

Edge term. The segmented contour should also follow image edges. We detect image

edges using a standard edge detector and apply a thresholded distance transform to define

an edge cost map normalized to [0, 1]. We use the trapezoid rule to evaluate the line

integral of the set of all model edges over the edge cost image. This defines an edge cost,

EEg(I,Θ), that is included in the objective function.

Prior. We use a loose prior, EPr(Θ), on shape, pose and camera only to prevent

values significantly outside what the model is trained on. This prior remains zero until

the parameters are three standard deviations from the mean and then rises linearly from

there.

Objective. The full cost function is then E(I,Θ) = ESt(I,m) + λ4EEg(I,Θ) +

λ5EPr(Θ), which we optimize using a gradient-free direct search simplex method.
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(a) (b)

Figure 3.11: An image of a person and the corresponding manually-segmented silhouette.

3.5 Experimental Results

3.5.1 Fitting To Silhouettes

As first sanity-check aimed to test if the CP model can capture human shapes taken from

real images (e.g ., Fig. 3.11a), we have fitted the model to silhouettes segmented by hand

(e.g ., Fig. 3.11b). Fitting was done by minimizing, with respect to Θ, a bi-directional

Chamfer distance between the manually-segmented silhouette and the silhouette implied

by the model. As can be seen by several selected results shown in Fig. 3.12, it turns out

that the CP is indeed expressive enough.

3.5.2 Pose Estimation Combined with Segmentation

The CP model realistically captures a large range of real human poses in the space in

which it was trained Fig. 3.13). This enables it to find segmentations which, while not

perfect, are guaranteed to be plausibly human, unlike more general segmentation methods

Fig. 3.14). This is a fairly simplistic segmentation approach which is designed only to
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Figure 3.12: Fitting the CP model to manually segmented silhouettes: selected results.

illustrate the CP model; note that the parametric segmentation method here is similar in

spirit to PoseCut [12].

Also, note that the model is not clothed and consequently will produce segmentations

that tend to ignore clothing. While model fitting could be made robust to clothing [16],

for segmenting clothed people it is preferable to explicitly model clothing [57,58].

Given our simplistic segmentation method, the model can also make mistakes such as

those in Figures 3.13a and 3.13b, where the optimization latches on to a strong edge at

the hairline and finds that the hair matches the background color statistics better than the

foreground statistics; this pushes the shoulders down, causes the head to be smaller than

the torso and legs would otherwise indicate, so the camera gets detected as tilted upwards,

which in turn causes the shoulders to narrow and the arms to shorten. In Fig. 3.13g the

PS initialization is far enough off that a simple direct search optimization method cannot

escape the local minimum; note though that only the left arm was poorly initialized and

that only the left arm remains poorly localized and segmented. Another failure case is

typified by the left hand in Fig. 3.13f. We train this model without varying the angle of

the wrist and our training data consists of exclusively closed fists. Consequently the model

does a poor job representing open hands and bent wrists.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3.13: Selected results for pose estimation and segmentation. Left column: PS result.
Middle: CP initialization from PS (red) and CP result (green). Right: CP result.
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Figure 3.14: Comparison to GrabCut. GrabCut with a manual initialization step and no
manual cleanup, compared to fully automatic CP segmentation. In the first example, note
the redundant shadow region that Grabcut attached to the woman’s leg. In the two other
examples, GrabCut fails to capture one of the legs. In contrast, by design, the CP model
ensures the output is a legitimate human shape.

3.6 Conclusion

We have defined a new type of shape representation for articulated 2D human body that

retains the standard part-based structure of classical PS representations. Over this repre-

sentation we define a new statistical model that goes beyond previous statistical models

of 2D human shape in several significant ways. First, it factors 2D body shape into sev-

eral causes. Deformations from a training template are used to describe changes in shape

due to camera view, body shape, and articulated pose. The approach is similar to the

3D SCAPE model in that deformations are combined into a complete generative model.

Second, the CP model captures the non-rigid deformations of the body that result from

articulation. Like SCAPE, these are learned from training examples. The result is a fairly

low-dimensional model that represents realistic human body contours and can be used

for vision applications such as pose estimation, person detection and tracking. Since its

introduction [43], the CP model has provided the basis for models that either handle 2D

deformations of loose clothing [57] or support inference through belief propagation [155].

Ongoing works that use the CP model or its variants include activity recognition and a

human-specific model for optical flow. Future work should include application of the CP

model – or one of its variants – to tracking.



Chapter 4

Lie Shapes

Quoting Mumford and Desolneux [107]:

“Grenander [51] has often emphasized that when we want to model some col-

lections of patterns, it is very important to consider the symmetries of the

situation – whether there is an underlying group.”

Just like Flatland ’s unlikely narrator, we now make the transition from two dimensions

to three. The current chapter is focused on the representation of deformable 3D shapes.

In particular, we consider surfaces represented as triangulated meshes and develop a new

representation for their deformations. Our manifold-based representation, self-coined Lie

shapes, leads to statistical shape models that are better than those based on existing

Euclidean representations of shape deformations. This representation can be easily utilized

in existing statistical models (e.g ., [6,48,62]), and thus its scope is not limited to a particular

statistical model. We illustrate our representation with human body shapes; as depicted

in Fig. 4.1 (left), shapes correspond to points on a nonlinear manifold - the manifold of

mesh deformations. The formulation, however, is completely general: it applies to other

shape classes as well and is not limited to human bodies.

113
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Figure 4.1: The manifold of mesh deformations of the human body – a particular case of
Lie shapes. Left: Human shapes as points on M , a nonlinear manifold with a matrix Lie
group structure. Every point represents a deformation from a template. Center: Distance
between shapes p and q is measured via a geodesic distance; i.e., the length of the shortest
path between them along M . Right: The tangent space at p, denoted by TpM , is a vector
space.

One of the advantages of Lie shapes is their associated distance measure. We stress that

our primary interest is in facilitating better statistical models. While our representation

also supports shape interpolation, yielding better results than its Euclidean counterparts,

our interest in this application is only secondary1; however, shape interpolation is strongly

tied to distances, the latter being crucial for statistics. Thus, shape interpolation provides

us with yet another way to illustrate the benefits of our representation and its distance

measure over Euclidean deformation approaches that are currently used in state-of-the-

art statistical models. Additionally, it also clearly shows one of the reasons why working

directly with vertices is inferior to working with transformations.

Let us lay out the setup. We assume a dataset of registered 3D meshes with the same

connectivity ofNtri triangles (see Fig. 4.2). Having chosen a particular shape representation

that enables to capture deformations between two meshes, the deformable mesh statistical

modeling problem has two parts:

1. Given a set of training meshes {Mi}Ni=1 and a template mesh T , for eachMi, extract

the deformation between T and Mi.

1In particular, we make no claims about our method being the optimal approach to shape interpolation
for every possible computer graphics application.
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2. Learn a statistical model of these deformations.

For effective statistical learning, it is crucial to have an appropriate shape represen-

tation. The simplest approach is to work directly with the points in {Mi}Ni=1 or their

displacements from T . While this may work well for rigid objects, it is a poor choice for

non-rigid and/or articulated objects such as the human body where the deformations are

more complex and can result from a composition of multiple causes. The common ap-

proach represents shape in terms of 3-by-3 transformation matrices acting on the triangles

of T , and treats these matrices as elements of a nine-dimensional space. Consequently,

each matrix has 9 Degrees of Freedom (DoF).

In this chapter we define an appropriate mathematical representation for mesh defor-

mations in terms of a manifold. We call our representation Lie Shapes as it is based

on an easy-to-understand2 new six-dimensional Lie group of triangle deformations that

eliminates redundant DoF. The action of the group is illustrated in Fig. 4.3 and will be

explained later. With this group, a deformation between two triangles can be computed

exactly, in closed-form, without heuristics.

The 6Ntri-dimensional manifold of Lie Shapes, denoted by M , is built from Ntri copies

of this six-dimensional group. M has a Riemannian structure inducing a left-invariant

distance between shapes that is computed in closed-form. This metric defines distances

between body shapes in a principled way using the length of the shortest path (on the

manifold) between them; see Fig. 4.1 (middle). It also allows us to compute statistics on

manifolds using methods such as those mentioned in Chapter 2. These better capture the

statistics of human body shape deformations than do standard Euclidean methods.

We focus here on human shape and show that our formulation results in a better,

more parsimonious, and more accurate model of shape deformation than the traditional

Euclidean representation. We evaluate performance in several ways: 1) Our group structure

2It was tempting to use the word “simple” here, but mathematically this would have been wrong: the
class of simple groups is a well-defined term, and our group does not belong to it.
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(a)

(b)

Figure 4.2: A dataset of human shapes. While for visualization purposes the shapes are
displayed in their rendered form (a), they are in fact stored as 3D triangular meshes (b).
Note that meshes are registered: they have the same number of points with a known
point-to-point correspondence between meshes. Here, to avoid clutter, only a subset of
these correspondences are shown.
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Figure 4.3: Deforming X = [v
(X)
1 , v

(X)
2 ] to Y = [v

(Y )
1 , v

(Y )
2 ] through several steps. See text

fore more details.

results in meshes that are better behaved and exhibit lower variance across a database of

registered body shapes. 2) For a fixed number of low-dimensional shape vectors we find

that our model is better able to predict biometric measurements. 3) For a fixed number

of shape vectors, our reconstruction of Euclidean shape is even better than the Euclidean

model. 4) Finally we show that our representation better captures properties of body

shape related to human perception.

To recap, our main contributions covered in this chapter are:

1. A novel nonlinear manifold representation for deformations of triangular meshes.

This manifold has the minimal number of DoF required for arbitrary triangle de-

formations, provides a heuristic-free way to compute deformations, and eliminates

non-physical deformations.

2. This representation is consistent in the sense it has a group structure: deformations

can be composed or inverted in a meaningful way.

3. A principled way to measure distances and interpolate between shapes using geodesic

distances and geodesic paths.

4. We show how statistics on the manifold capture shape variation over a database of

aligned triangular meshes.

5. Closed-form formulas, or efficient approximations, are given for all computations.
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4.1 Previous Work

Sumner and Popović [142] define shape in terms of affine deformations of triangles from T .

A triangle deformation is represented by a 3×3 deformation matrix and a 3D displacement

vector. The 9 dimensional space of deformations is under-constrained as deformations

outside the plane of the triangle are undefined. They deal with this heuristically by adding

a fourth virtual vertex defined by the cross product of two of the triangle edges.

Anguelov et al . [6] use these matrices to define the SCAPE model, which factors de-

formations due to body shape from those due to pose. Bălan [14] builds a SCAPE model

from the CAEASR dataset [120] and regularizes the ambiguity in the 3 × 3 deformations

using a spatial smoothness constraint that penalizes difference in deformations between

neighboring triangles. Hasler et al . [62] learn a multilinear model of affine deformations.

Like all the above models, distances between deformations are measured in a Euclidean

space with redundant DoF. Hasler et al . [63] use an even higher-dimensional representation

of deformations. They model deformations with 15 DoF and a nonlinear encoding of tri-

angle deformations that captures dependencies between pose and shape. Again, Euclidean

distance still plays a central role.

Note that in fact, triangle deformations lie in a 6 dimensional nonlinear manifold.

Unlike previous methods, our deformations live on this manifold, have positive determinant

by construction, and thus exclude non-physical deformations such as reflections3.

Chao et al . [19] represent deformations, using an analogy to elasticity, as a rotation

plus an affine residual deformation closest (in a Euclidean sense) to an isometry. Their

affine deformations have positive determinant but have more than 6 DoF. Additionally,

to compute an approximation of their shape distance and the path between shapes, they

require an expensive optimization scheme. In contrast, we provide accurate closed-form

3One may argue that sometimes we want to reflect a mesh around some axis. This may be the case,
but this should be accomplished by a single global reflection affecting the entire mesh. A situation where
only certain isolated individual triangles are “flipped” is undesirable.
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formulas for paths and distances. Also, in [19] there is no notion of a Lie group or shape

deformation statistics.

The idea of employing Lie groups to represent 3D deformations is not new and is widely

used in computational anatomy; e.g ., see [35–38, 54, 105, 146]. These methods, however,

work on volumetric representations rather than triangulated meshes.

Alexa [2] uses a Lie group for triangle deformations but both his motivation (addressing

noncommutativity) and solution (defining a new group operation) are quite different than

ours. Essentially, his approach operates in the tangent space at the identity of standard

matrix Lie groups while ignoring a non-vanishing Lie bracket; this approximation can be

justified only if matrices are close to each other. Additionally, the set of matrices comprising

his group is chosen ad-hoc, and so, depending on the case, suffers from either excessive

DoF or is not expressive enough to accurately capture arbitrary mesh deformations. Of

note, graphics applications described in [2] (or [83]) can benefit from our representation.

Note that our work is not directly related to the classical work of Kendall [80], despite

the fact we use a manifold representation for shapes. In [80], shapes are represented by a set

of landmarks, and their quotient spaces are studied. In contrast, our manifold represents

a group of transformations acting on 3D triangular surfaces. For a more recent work

on geometric modeling based on Kendall’s theory, see [83]. Note that since we provide

closed-form formulas for geodesic paths, interpolation (or extrapolation) on our manifold

is considerably simpler than the algorithms presented in [83].

A possible source of confusion might arise due to the term geodesic distance. Many

mesh registration methods try to align meshes so as to preserve geodesic distances on the

surface of the mesh. Here when we refer to a geodesic distance, it is the distance between

two shape deformations living on a 6Ntri dimensional manifold, and not between points on

the 3D surface of a particular shape.

To summarize, we introduce a manifold representation for accurate arbitrary non-rigid
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deformations using a six-dimensional Lie group acting directly on the 3D triangular sur-

faces. Our shape representation is naturally suitable for composition of shape deforma-

tions. Finally, the ease of computations on our manifold is in sharp contrast to alternative

nonlinear representations.

4.2 The Triangle Deformation Paradigm

We are working within an existing paradigm of expressing differences between two triangu-

lar meshes through transformations acting on triangles. These transformations are called

triangle deformations. Within this paradigm, our contribution is suggesting a new way to

represent these deformations. The paradigm was first introduced in the computer graph-

ics community [142], where it was also used to build a statistical factored model, called

SCAPE, of articulated human shape [6]; see Fig. 1.1. The factorization – to body-shape

deformations and pose deformations – is possible as transformations lend themselves to

composition. SCAPE, in turn, was imported into computer vision where it is now used

for pose and shape estimation [15, 16, 59, 149]. This model also led to several additional

variants [58,62,63,72]. Finally, triangle deformations are also useful for automatic segmen-

tation of an articulated mesh into its constituent parts [48].

The reminder of the current section is dedicated to explaining this paradigm; our

representation will be presented in the next section.

4.2.1 Basic Definitions

Schematically, mesh synthesis is done in two steps (see Fig. 4.4 for an illustration):

1. Local deformations are applied to individual triangles.

2. A second procedure then finds the mesh whose triangle edges are as close as possible
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(a) (b) (c)

Figure 4.4: Deforming one mesh to another through deformations of triangles is a two-step
process. Step 1: the triangles of a template mesh (a) are deformed (b). The deformations
are translation-invariant: for the purpose of visualization, the first vertex of each triangle
in (b) is located in the same place as the first vertex of the corresponding triangle in (a).
Hence the disconnectedness in (b). Step 2: a second procedure is applied in order to find
the mesh (c) whose triangle edges are as close as possible to the edges of the deformed
triangles in (b). See text for more details.

Figure 4.5: When translation is ignored, a triangle is identified with two directed edges.

to the edges of the deformed triangles.

This scheme is not unlike the one from Section 3.2.4. We now proceed to the basic defi-

nitions of triangle deformations. We will always assume that triangles are nondegenerate.

Let (v0, v1, v2) ⊂ R3 be an ordered triplet defining a triangle. Without loss of generality, we

assume v0 = [0, 0, 0]T so we can identify a triangle with a matrix consisting of an ordered

pair of directed edges:

[v1 − v0, v2 − v0] = [v1, v2] ∈ R3×2 (4.1)

(see Fig. 4.5 for an illustration).
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Remark 4.2.1 (The ordering of the points in a triangle). Note the word “ordered”: we

consider [v1, v2] and [v2, v1] to represent two different elements in the space of triangles.

Also note it is in fact impossible for v1 and v2 to be equal: the triangle is nondegenerate.

We can compute all of the Ntri pairs of directed edges associated with a mesh M in a

single linear operation. To that aim, assuming there are Nverts 3D points (also known as

vertices) inM, it is most convenient to regardM as an element of RNverts×3. We construct

a sparse matrix E ∈ R2Ntri×Nverts , taking values in {−1, 0, 1}, so that EM ∈ R2Ntri×3

contains the desired result. Finally, let (EM)reshape ∈ R3Ntri×2 denote the reshaping of

EM such that the Ntri matrices of pairs of directed edges are stacked vertically. A simple

numeric example is in order.

Example 4.2.1 (Constructing E for a 3D mesh). Let Nverts = 5, implying

M def
=

( x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5

)
∈ R5×3 . (4.2)

Let Ntri = 3. Assume that the mesh connectivity is given by the following ordered triplets:

((x1, y1, z1), (x2, y2, z2), (x3, y3, z3)) (points comprising triangle #1) ; (4.3)

((x2, y2, z2), (x1, y1, z1), (x4, y4, z4)) (points comprising triangle #2) ; (4.4)

((x4, y4, z4), (x1, y1, z1), (x5, y5, z5)) (points comprising triangle #3) . (4.5)

Finally let the 3-by-2 matrices [v1, v2], [v3, v4], and [v5, v6] denote the corresponding pairs

of directed edges. Then, E has form as in the following equation:

directed edges︷ ︸︸ ︷â
vT1
vT2
vT3
vT4
vT5
vT6

ì
by def.

=

Ñ x2 y2 z2
x3 y3 z3
x1 y1 z1
x4 y4 z4
x1 y1 z1
x5 y5 z5

é
−
Ñ x1 y1 z1

x1 y1 z1
x2 y2 z2
x2 y2 z2
x4 y4 z4
x4 y4 z4

é
=

E∈R6×5︷ ︸︸ ︷Ö−1 +1 0 0 0
−1 0 +1 0 0
+1 −1 0 0 0
0 −1 0 +1 0

+1 0 0 −1 0
0 0 0 −1 +1

è M, by def.︷ ︸︸ ︷( x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5

)
, (4.6)

so EM∈ R6×3. Finally,

(EM)reshape =
( v1 v2
v3 v4
v5 v6

)
∈ R9×2 . (4.7)
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Figure 4.6: Deforming a triangle X to another triangle Y using a deformation matrix Q.
The different colors of the points indicate the point-to-point correspondence between the
triangles.

The generalization from Example 4.2.1 to other cases is straightforward. For a given set

of aligned meshes, the connectivity is fixed across all of the meshes and so E is fixed too.

Thus, for example, we write the directed edges in the template T as (ET )reshape ∈ R3Ntri×2.

Definition 4.2.1 (Deformation matrix). Let X ∈ R3×2 and Y ∈ R3×2 be a pair of

triangles. If Q ∈ R3×3 satisfies

Y = QX , (4.8)

then it is called a deformation matrix and we say it is acting on X and deforming it to Y

(see Fig. 4.6 for an illustration).

As a meshM is made out of Ntri triangles, we have Ntri such deformations with respect

to the template mesh T denoted by {Qi}Ntrii=1 . In other words, we have Ntri equations of

the form Yi = QiXi, where {Xi}Ntrii=1 and {Yi}Ntrii=1 stand for the sets of triangles associated

with T andM, respectively. For a given i, we think of Qi as a local deformation. The word

“local” does not mean that the deformation is small. Rather, it means that Qi pertains to

a particular triangle and not to the entire mesh. We denote the entire set of deformations

(for a given mesh) by Q = [Q1, Q2, . . . , QNtri ], and identify it with a sparse block-diagonal
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matrix,

Q ↔



Q1 0
Q2

. . .

0 QNtri


; (4.9)

i.e., Q is a sparse 3Ntri-by-Ntri matrix, whose only possible nonzero entries can appear in

3-by-3 blocks along its main diagonal.

We think of Q as the mesh deformation of M with respect to T . Consequently, as-

suming T and M are fixed and Q is the corresponding mesh deformation, we have the

following equality:

(EM)reshape = Q(ET )reshape ∈ R3Ntri×2 . (4.10)

The juxtaposition of Q and (ET )reshape stands for matrix multiplication; it does not indi-

cate that the former is a function of the latter. Let Y def
= (EM)reshape and X def

= (ET )reshape,

denote the triangles of M and T , respectively. With this notation, Eqn. (4.10) can be

rewritten analogously to Eqn. (4.8) as

Y = QX . (4.11)

4.2.2 Local Deformation Analysis and Mesh Deformation Analysis

Given T and M, the mesh deformation analysis problem is to find a mesh deformation Q

that satisfies Eqn. (4.10). In its local form, called the local deformation analysis problem,

the goal is to find Q that satisfies Eqn. (4.8), with X and Y standing for two triangles

that belong to T andM, respectively. Recall that X and Y are both (known) elements of
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R3×2. Thus, we need to solve the following under-constrained equation:

6×9︷ ︸︸ ︷á
X1,1 X2,1 X3,1 0 0 0 0 0 0

0 0 0 X1,1 X2,1 X3,1 0 0 0
0 0 0 0 0 0 X1,1 X2,1 X3,1

X1,2 X2,2 X3,2 0 0 0 0 0 0
0 0 0 X1,2 X2,2 X3,2 0 0 0
0 0 0 0 0 0 X1,2 X2,2 X3,2

ë 9×1︷ ︸︸ ︷

Q1,1

Q1,2

Q1,3

Q2,1

Q2,2

Q2,3

Q3,3

Q3,2

Q3,3


=

6×1︷ ︸︸ ︷á
Y1,1
Y2,1
Y3,1
Y1,2
Y2,2
Y3,2

ë
. (4.12)

Suppose, for now, that given T andM we have chosen a method that enables us, for each

one of the {(Xi, Yi)}Ntrii=1 pairs, to find a Qi that solves the corresponding local deformation

analysis problem. Applying such method to the entire {Qi}Ntrii=1 set enables us to find

a solution for the mesh deformation analysis problem. Let us denote this solution by

Qextracted
M ; i.e., (EM)reshape = Qextracted

M (ET )reshape. Or, equivalently, Y = Qextracted
M X .

4.2.3 Triangle Synthesis and Mesh Synthesis

Let X be a triangle that belongs to the template T ; i.e., X is known. For a nominal value

of a local deformation Q, it is easy to synthesize a new triangle Y : just set Y = QX.

Likewise, for a nominal value of a mesh deformation Q, we can synthesize a new set of

Ntri triangles by setting Y = QX . In an analogy to the considerably simpler problem we

saw in Section 3.2.4, this is where the plot thickens: for a nominal value of Q, it is likely

that there does not exist a mesh M whose extracted deformation satisfies Qextracted
M = Q.

Equivalently, for a nominal value of Y, implied by a nominal value of Q, it is likely that

there does not exist a mesh M satisfying Y = EM.

A popular solution, and one which we adopt as well, is to solve the following problem:

minimize f(M) = ‖(EM)reshape −Q(ET )reshape‖2F
subject to M∈ RNverts×3 . (4.13)
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With f so defined,

M = arg min
x∈RNverts×3

f(x) (4.14)

is called the mesh synthesis equation. The optimization problem above can be written more

compactly as minimizing ‖Y −QX‖2F (subject to the same constraint) but the original

notation makes the dependency of the cost function on the mesh M more explicit.

Most of the following remarks are analogous to the ones we made after Eqn. (3.19).

1. The minimizer exists but is unique only up to a global 3D translation of the mesh.

Consequently, and without loss of generality, we may assume that the first row in

M contains only zeros. Consequently the optimization problem becomes a Least-

Squares (LS) problem where the domain is R(Nverts−1)×3 – the space of meshes whose

first point is the origin.

2. The interpretation of the quantity being minimized is the difference between the

edges we want (for a nominal value of Q) and the edges we can actually have in the

deformed mesh.

3. In terms of graphs, the connectivity of these meshes is fixed, so the minimizer is

always a valid mesh: regardless of what the value of the minimizer is, we always

connect its points in the same order.

4. The difference between Q and Qextracted
M is distributed over all of the triangles.

5. If Q was computed from some mesh M, then f is nullified. Moreover, the mini-

mizer coincides withM modulo global translation and is unique (again, up to global

translation).

6. Usually E is not square nor full-rank. If the meshes are of high-resolution4 then E is

quite large a matrix. In which case, as in our experiments, it is not practical to use its

4For example, in our experiments in Section 4.5 Ntri ≈ 15, 000, while in one of our experiments in
Chapter 5 Ntri = 50, 000.
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Moore-Penrose pseudoinverse. Instead, we use a sparse solver that is pre-computed

offline.

7. In our experiments, as well as in works by others who employ this paradigm, Q is

sampled from a statistical model (to be discussed later), so the minimal value of f

might be (and usually is) positive. The good news, however, is that these values are

usually very small. We attribute that to reasons similar to ones mentioned in the 2D

case.

8. There are several possible modifications to the optimization problem; e.g ., one can

penalize differences between local deformations (in Qextracted
M , not in Q which is re-

garded as fixed) that correspond to neighboring triangles. Be that as it may, from

now on we will assume we have at our disposal some way to synthesize a mesh M

from Q, and that the resulting Qextracted
M is not too far from Q (at least for plausible

values of Q).

9. It is possible to restrict the space of triangle deformations in a way that that would

ensure the existence of a valid mesh M satisfying EM = QT . In the context of

building statistical models of deformations, however, this would significantly compli-

cate these models. In contrast, the two-step approach described above (first deform

the triangles, then find a mesh the can be reasonably related to the resulting triangle

deformations) enables researchers, us included, to build simpler statistical models

for deformations as no hard deterministic constraints are imposed on the relations

between different deformations in the same mesh5. Our use of this approach too is

motivated by this consideration. However, we have another important motivation

for “keeping it simple”; more on that later.

5Of course, a model may capture the statistical relations between such deformations, e.g ., through
either a global covariance or a probabilistic graphical model.
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4.2.4 For Local Deformations, Using the Space of 3-by-3 Matrices is

Unwise

Mathematically, there are numerous methods to solve the under-constrained system in

Eqn. (4.12). For example one can encourage sparsity of Q. Another one is to favor a

solution of the least `2 norm. In the particular context of mesh deformations, here are two

existing approaches:

Sumner and Popović tackle the problem using the introduction of three fictitious con-

straints [142]. The authors heuristically add a “virtual” third edge (or fourth vertex)

to each triangle, defined as v4 = v1 × v2/
»
|v1 × v2|. Then, reinterpreting X and Y as

elements of R3×3 instead of R3×2, they set Q = Y X−1. X and Y have positive deter-

minant, and so Q is bound to be an invertible matrix of positive determinant; this is a

plus. Their motivation to scale the cross-product by the reciprocal of the square root of its

length is so that length of v4 will be proportional to the length of the triangle edges. Note

this decision is arbitrary and that different choices for the length would lead to different

solutions. Moreover, this arbitrary decision determines the Euclidean distance between

different deformations, which in turns affects statistical modeling.

Bălan et al . deal with the ambiguity by solving for all {Qi}Ntrii=1 at once using a smooth-

ness prior that penalizes (Euclidean) differences between deformations of neighboring tri-

angles [16]. In their method, an hyper-parameter for the smoothing prior needs to be

determined and there are no guarantees that the resulting deformations will not have zero

or negative determinants. This is not just a theoretical issue: using Bălan’s code on the

same data used in [16], up to 10% (the exact percentage depends on the value the hyper-

parameter) of the local deformations end up having negative determinant. Additionally,

due to the tradeoff between the data fidelity term and the smoothness term, the resulting

minimizer Qextracted
M causes the deformed edges Qextracted

M X to (usually) deviate from the

observed edges Y; the amount of deviation depends again on the hyper-parameter. This

means that with this method, an observed meshM cannot be accurately recovered from its
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extracted deformation Qextracted
M . This is worrisome: while it is desirable to allow imperfect

fit of a statistical model to the training data (to avoid over-fitting), the fact that training

meshes cannot be accurately reproduced from training deformations should be seen as a

shortcoming of their method.

What all of the aforementioned four methods, as well as many other representations of

local deformations, have in common is that they treat deformation matrices as Euclidean

local deformations.

Definition 4.2.2 (Euclidean Local Deformations). Any 3-by-3 matrix Q, when regarded

as an element of the Euclidean space R3×3, is called a Euclidean Local Deformation.

Note that in Definition 4.2.2, the existence of two (nondegenerate) triangles X and Y

satisfying Eqn. (4.8) (i.e., Y = QX) is not required. In fact, even if X is a known triangle,

the existence of Y satisfying that equation is not required. For a trivial example, note

that the O3×3 is a Euclidean deformation. Additionally, a Euclidean deformation might

have a determinant which is negative or even zero (e.g ., consider the two trivial examples:

Q = −I3×3 and Q = O3×3). Finally, note that the Euclidean space R3×3 is a linear space

with 9 DoF.

Remark 4.2.2 (Euclidean local deformations vs. locally-Euclidean spaces). Definition 4.2.2

has nothing to do with locally Euclidean spaces (see Definition 2.4.1, page 52).

Besides the fact that there are only 6 DoF in Eqn. (4.12), treating local deformations

as Euclidean has many disadvantages. In particular, the Euclidean-space assumption is

propagated to the way triangle deformations are being synthesized (e.g ., through linear

combinations), and consequently, to the way mesh deformations are being synthesized6.

For example, recall Fig. 1.4d (page 13): the mesh depicted there is synthesized from a mesh

deformation which in turn is synthesized by a linear combination: (Q1 + Q2)/2. As we

noted then, the displeasing resulting shape looked unnaturally “squashed”. An example

6The emphasis on the terms “local deformations” and “mesh deformation” is to contrast synthesis of
triangle deformations or mesh deformations with synthesis of triangles or meshes.
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(a) X (b) Q1X (c) Q2X (d) Q1+Q2

2 X

Figure 4.7: The Euclidean averaging of local deformations. Here, θ = π/4 so c =
cos(π/4) = sin(π/4) ≈ 0.7 < 1. Note the shrinking effect caused by applying the average
deformation. The different colors of the points indicate the point-to-point correspondence
between the triangles. See text for more details.

at the individual-triangle level will help to understand where this effect comes from.

Example 4.2.2 (Averaging Euclidean local deformations). Let θ ∈ [0, 2π/2], c = cos θ,

and s = sin θ. Set the two local deformations Q1 and Q2 as follows:

Q1 =

â
c −s 0

s c 0

0 0 1

ì
, Q2 =

â
c s 0

−s c 0

0 0 1

ì
. (4.15)

If a triangle X ∈ R3×2 lies completely in the xy-plane (i.e., the third row is [0, 0]), then Q1

(or Q2) rotates X counterclockwise (respectively, clockwise) about the z-axis by the angle

θ. These deformations, Q1 and Q2, are just the opposite of each other. Thus, in terms of

their average deformation effect, one would like them to cancel each other. In other words,

we would like their average to be the identity matrix, I3×3. Simple arithmetic, however,

shows us that

Q1 +Q2

2
=

â
c 0 0

0 c 0

0 0 1

ì
. (4.16)

The result is a shrinking matrix: as θ goes from 0 to π/2, the value of c gets smaller and

smaller till it vanishes. See Fig. 4.7 for an illustration.

Analogously to our early discussion in Section 1.2.2, the failure of Euclidean averaging

in Example 4.2.2 suggests that there is a problem with not only the linear structure of
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R3×2 but also with the distances associated with it7.

The issue of redundant DoF is also worrisome. For example, a model that tries to cap-

ture as much variance as possible should not waste resources on variance inside equivalent

classes of Euclidean local deformations. Namely, for a given triplet (X,Y,Q) satisfying

Y = QX, the model should ignore the variability inside

[Q]
def
= [‹Q : Y = ‹QX] ⊂ R3×3 . (4.17)

The aforementioned heuristic suggested by Sumner and Popović in [142] does provide

a way to establish the 3 redundant DoF during deformation analysis. Additionally, as

discussed above, the resulting Q’s are bound to be elements GL+(3) (see Definition 2.3.6,

page 34). However, when these Q’s are regarded as Euclidean local deformations (as done,

e.g ., in [6,14,142]) there are still 9 DoF, the space is still linear, and there is no guarantee

that a synthesized Euclidean local deformation will have a positive (or even nonzero)

determinant.

In addition to the problems mentioned above – related to linearity, distances, DoF, and

determinants – there is another subtle problem: standard distances associated with R3×3

lack left-invariance.

Example 4.2.3 (Left-invariance fails for Euclidean local deformations). This example,

related to triangle deformations, is a modification of an example related to image deforma-

tions from Learned-Miller and Chefd’hotel [104]. Suppose Q1, Q2, and Q3, have the effects

shown in Fig. 4.8, where for the purpose of illustration we again assume all triangles are

completely contained in the xy-plane. Without worrying too much about the exact values

of Q1 and Q2, let us assume that Q3 is a uniform scale matrix (see Definition 2.3.7, page

7Note that in this example, if we think of the midpoint between two deformations in terms of minimizing
the sum of distances (or squared distances) from them, then it does not matter whether we use the `2

distance or any other of the distances appearing in Eqns. (1.5)-(1.7).
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(a) Q1X (b) Q2X (c) Q3Q1X (d) Q3Q2X

Figure 4.8: Left-invariance fails for Euclidean deformations: with X as in Fig. 4.7a, any
standard distance on Euclidean deformations fails to satisfy the equality dist(Q1, Q2) =
dist(Q3Q1, Q2Q2). This is unfortunate: the transformation between the triangles in (a)
and (b) (i.e., a rotation by 45 degrees) is exactly the same as the one between (c) and (d).
The different colors of the points indicate the point-to-point correspondence between the
triangles. See text for more details.

34) where the scale S > 1. It follows that

d(Q3Q1, Q3Q2)F = ‖Q3Q1 −Q3Q2‖F (by def.)

= ‖SQ1 − SQ2‖F

= S ‖Q1 −Q2‖F (by positive homogeneity of the norm)

= Sd(Q1, Q2)F (by def.)

6= d(Q1, Q2)F .

(4.18)

Remark 4.2.3 (Left-invariance vs. scale-invariance). Note that left-invariance should not be

confused with scale-invariance. A scale-invariance distance is one that satisfies dist(Q,SQ)

for any deformation matrix Q and any positive real number S. Also, while scale-invariance

implies dist(Q1, Q2) = dist(SQ1, SQ2), we stress that in Example 4.2.3 we happened to

pick Q3 to be a scaling matrix solely for the ease of illustration.

The fact that linear structure and Euclidean distances are inappropriate for deforma-

tions hurt statistical models that are built on them; e.g ., as Euclidean distance is not

suitable for measuring differences between deformations, it follows that statistical analysis

with standard PCA is compromised.

Of course, all of the problems mentioned in this section are trivially propagated from
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Euclidean local deformations to Euclidean mesh deformations; i.e., the space of sparse

3Ntri-by-Ntri matrices, whose only possible nonzero entries can appear in 3-by-3 blocks

along its main diagonal, when regarded as elements of the Euclidean space R3Ntri×3Ntri .

Existing statistical models of mesh deformations are built on Euclidean deformations

[6,14,48,62,72]. To large extent, this is true even for Hasler et al . [63], who use a nonlinear

over-parameterization with 15 DoF but still make use of Euclidean distances and the

linear structure of R3×3. In particular, these parametric models (with [48] excluded) use

linear-subspace techniques such as PCA to reduce the dimensionality. Besides the fact

that the linear space structure is inappropriate for mesh deformation (and hence, so is the

linear structure of these subspaces), these subspaces are learned with respect to problematic

distance measures.

Back to the drawing board.

4.3 A Novel Representation of Triangle Deformations

Our first observation is that if local deformations are treated as elements of the matrix Lie

group GL+(3) (see Definition 2.3.6, page 34), many of the aforementioned problems will be

avoided. Having said that, the issue of redundant DoF still stands: the nine-dimensional

manifold GL+(3) is too large a space. Additionally, as we shall see, there are several

concerning computational issues associated with picking GL+(3).

Fortunately, there is even better a matrix Lie group.

We now show how local deformations are fully described by a six-dimensional space.

Instead of working in either the nine-dimensional linear space R3×3 or the (smaller) nine-

dimensional nonlinear space GL+(3), we explicitly work in an appropriate nonlinear six-

dimensional space. Moreover, the space is a matrix Lie group. The idea is based on the

observation that any triangle X can be deformed to any other triangle Y by a combination
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of uniform scaling, a particular in-plane deformation, and a 3D rotation. See Fig. 4.3 for

an illustration.

We will show that a group structure is important for the statistical analysis of shape

deformations and to enable the principled combination of these deformations. We argue

for a new type of deformation to appropriately model 3D shape in triangulated meshes.

These deformations do not suffer from the problems of Euclidean deformations, have a

group structure, and give rise to a meaningful distance. This distance is also left-invariant.

Moreover, this group lends itself to easy computations of the matrix exponential logarithm,

geodesic distances, geodesic paths and manifold-valued statistics.

4.3.1 The Three Basic Components

The first and simplest component of our representation, scaling, is defined by the group of

scales (see Definition 2.3.7, page 34). As done throughout this work, we use GS to denote

US(1).

A second component models a particular type of in-plane deformation. Its definition is

best understood through the notion of canonical triangles.

Definition 4.3.1 (Canonical triangle). A triangle [v1, v2] is said to be canonical (or in a

canonical position) if

[v1, v2] =


x1 x2

0 y2

0 0

 ; x1 > 0, y2 > 0, x2 ∈ R . (4.19)

In other words, v1 lies on the positive x-axis, and v2 is in the upper open half of the

xy-plane (see the canonical triangles in Fig. 4.3).

We now define our in-plane deformations, acting on canonical triangles.



135

Definition 4.3.2. GA
def
=
¶
A ∈ GL(2) : A[1, 0]T = [1, 0]T , detA > 0

©
. Equivalently,

GA
def
=


A =


1 U 0

0 V 0

0 0 1

 : U ∈ R, V > 0


. (4.20)

Proposition 4.3.1. GA is a subgroup of GL(3).

Proof. The identity matrix, I3×3, is in GA. To prove closure under composition, let A,B ∈

GA. Note that AB[1, 0, 0]T = A[1, 0, 0]T = [1, 0, 0]T and detAB = detAdetB > 0.

Consequently, AB ∈ GA. To prove closure under inversion, let A ∈ GA. First, note that

detA−1 = 1/ detA > 0 since detA > 0. Second,

A−1 =


1 −U/V 0

0 1/V 0

0 0 1

 (4.21)

and thus A−1 ∈ GA.

By a slight abuse of notation, we can also regard GA as a subgroup of GL(2), using the

bijection 1 U

0 V

↔


1 U 0

0 V 0

0 0 1

 . (4.22)

Remark 4.3.1. This remark is a digression and can be skipped. There is also an obvious

correspondence between GA (when regarded as as a subgroup or GL(2)) and the identity

component of the two-dimensional affine group:

1 U

0 V

↔
V U

0 1

 . (4.23)

In fact, these groups are isomorphic. Consequently, many readily-available results of the
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affine group – a well studied object – apply transparently to GA. For example, this shows

immediately that GA is not unimodular.

Note that GA is neither Abelian (see Definition 2.3.3, page 33) nor it is compact8. What

we care most about GA is the geometrical implication of its action on canonical triangles:

if A ∈ GA and X is canonical, then AX is canonical too. Note that the first edge (column)

of X equals the first edge of AX (see Fig. 4.3); i.e., [1, 0, 0]T is a right eigenvector of A

with an eigenvalue 1. We also have the following result.

Proposition 4.3.2. If X and Y are two canonical triangles, then there exists a unique

(A,S) ∈ GS ×GA such that Y = ASX.

Proof. Let X = [v
(X)
1 , v

(X)
2 ] and Y = [v

(Y )
1 , v

(Y )
2 ]. Set S = ||v(Y )

1 ||/||v(X)
1 ||. Without loss of

generality assume S = 1. Let v
(X)
2 = [x

(X)
2 , y

(X)
2 ]T and v

(Y )
2 = [x

(Y )
2 , y

(Y )
2 ]T . Now solve for

the unknowns U and V (there exists a unique solution: the y’s are positive):

A∈GA︷ ︸︸ ︷1 U

0 V


x(X)

2

y
(X)
2

 =

x(Y )
2

y
(Y )
2

⇒ V =
y

(Y )
2

y
(X)
2

, U =
x

(Y )
2 − x(X)

2

y
(X)
2

. (4.24)

This is illustrated in Fig. 4.3.

Remark 4.3.2. In terms of group theory, the existence aspect of Proposition 4.3.2 tells us

that GA × GS acts transitively on the background space of canonical triangles. Namely,

we can always move from one canonical triangle to another. As an aside remark, since the

action is also continuous, this means that this background space is homogeneous.

Of course, not all triangles are canonical, hence we have the third and final component:

SO(3), the rotation group (see Definition 2.3.11, page 35).

8The (non)compactness is with respect to the topology GA inherits from R3×3 as its subspace.
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Fact 4.3.1. If X is a triangle, then we can always find a rotation matrix RX such that

RXX is canonical. RX depends on X.

Proof. Let X = [v1, v2] ∈ R3×2. First, use any standard technique to find R1 ∈ SO(3) such

that R1v1 = ‖v1‖ [1, 0, 0]T . Let [x, y, z]T denote the entries of R1v2. Then, solve for the

unknowns c and s in c −s
s c


y
z

 =

+
√
y2 + z2

0

 (4.25)

and set

RX =


1 0 0

0 c −s

0 s c

R1

(note that c2 + s2 = 1).

At last, the entire story in Fig. 4.3 is complete: if X and Y are two arbitrary triangles,

then the fact above and Proposition 4.3.2 imply we can always find rotation matrices RX

and RY such that RXX and RY Y are canonical, and a unique (A,S) ∈ GA×GS such that

RY Y = ASRXX. Equivalently, Y = RTYASRXX. Setting R
def
= RTYRX (so R ∈ SO(3)),

yields our new triangle deformation equation:

Y = RRTXASRXX . (4.26)

Consider X as belonging to the template T . Thus, X and RX are fixed. As Y varies, the

triplet (R,A, S) has 6 DoF: 3 for R, 2 for A and 1 for S. By construction,

det(RRTXASRX) = V S3 > 0 . (4.27)

We have thus found an invertible local deformation

Q = RRTXASRX (4.28)
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deforming one triangle to another and this matrix has only 6 DoF. Note that unlike the

traditional Euclidean approach, with 9 DoF, we do not resort to any heuristic to deal with

excessive DoF. Furthermore, the fact that the determinant is strictly positive eliminates

deformations that have no physical meaning such as reflections.

Remark 4.3.3. Note that instead of the scalar S we could have used a 3× 3 matrix:â
S 0 0

0 S 0

0 0 ρ

ì
, ρ ∈ R+ . (4.29)

This would have changed nothing (except the exact value of the positive determinant of

Q) as, for canonical triangles, what happens outside the plane is immaterial; i.e., unlike

the method in [142], we make no arbitrary decision about what happens in the direction

which is normal to the plane of a triangle. If ρ is fixed across all triangles, then it has also

no effect on the geodesic distance (to be defined later) between different Q’s. In turn, this

means that a statistical model (of these Q’s) is not affected. If for some reason, however,

one is interested in weighting deformations according to the size of either X or Y (S only

captures the relative scale change between them), then one can set ρ to be a function of

these quantities. This will have no effect on the resulting action of Q, but it will change the

distance between different Q’s as well as the statistical model. Finally, in our experiments

we set ρ = 1, for the following practical reason: mathematically, the z-coordinate of RXX

is zero. Due to numerical errors caused by machine-precision, however, the actual value

might deviate from zero. If S happens to be large, this error will be amplified. By setting

ρ to 1 (or even to 0), we avoid amplifying this numerical error.
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4.3.2 The Matrix Lie Groups

4.3.2.1 The Matrix Lie Group of Triangle Deformations

There still remains one problem. The set¶
RRTXASRX : R ∈ SO(3), A ∈ GA, S ∈ GS

©
(4.30)

does not form a matrix Lie subgroup of GL(3) (although it is a proper subset of GL(3));

e.g ., in obvious notation, if R1R
T
XA1S1RX and R2R

T
XA2S2RX are two elements in this set,

it may not be possible to find a third element, R3R
T
XA3S3RX satisfying

R1R
T
XA1S1RXR2R

T
XA2S2RX = R3R

T
XA3S3RX .

Fortunately, this is easily fixed by defining a new group:

Definition 4.3.3 (The triangle deformation group). The triangle deformation group, de-

noted by GT , is the set of triplets

{(R,A, S) : R ∈ SO(3), A ∈ GA, S ∈ GS} (4.31)

together with the composition map, GT ×GT → GT ,

((R1, A1, S1), (R2, A2, S3)) 7→ (R1R2, A1A2, S1S2) . (4.32)

The group GT is a direct product of SO(3), GA, and GS and so it too is a matrix Lie

group; see Section 2.3.3. It is not Abelian (because of both SO(3) and GA) nor compact

(because of both GA and GS), and has has a natural identification with a six-dimensional

matrix Lie group – which is a matrix Lie subgroup of the GL(6) whose dimension is 36 –
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using the bijection:

(R,A, S)↔


R 03×2 03×1

02×3 A 02×1

01×3 01×2 S

 ∈ R6×6 (4.33)

(where we here regard A as a 2-by-2 matrix).

4.3.2.2 The Matrix Lie Group of Mesh Deformations

So far we have discussed the deformation of a single triangle. For a mesh of Ntri trian-

gles, we use a direct product to represent the Lie group of triangular mesh deformations:

M
def
= GNtriT , rendering M a matrix Lie group of dimension 6Ntri. Recall that a group is

usually denoted by G and a manifold is usually denoted by M . A matrix Lie group is

both, so either notation may be used. Here we choose M to emphasize the nonlinearity

manifold structure of mesh deformations.

We use the term M -valued to describe elements in that manifold. A point p ∈ M

corresponds to a mesh deformation Q as in Eqn. (4.9). The only difference from that

equation is that now the {Qi}Ntrii=1 that comprise Q have form as in Eqn. (4.28). The

structure of M gives us group closure (ensuring a consistent representation) as well as a

meaningful measure of distance between shapes.

As was discussed in Chapter 2, when working with matrix Lie groups (or any Lie groups

for that matter), their Lie algebras (see Definition 2.3.14, page 41) play an indispensable

tool.
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4.3.3 The Lie Algebras

4.3.3.1 The Lie Algebra of Triangle Deformations

We now describe gT
def
= exp−1(GT ), the Lie algebra, of GT . As GT is a direct product of

three matrix Lie groups, gT is defined analogously using the direct product of their three

Lie algebras.

Definition 4.3.4 (The Lie algebra of triangle deformations). The Lie algebra of triangle

deformations is given by

gT = so(3)× gA × gS . (4.34)

The Lie algebras so(3) and gS were defined earlier (see Definition 2.3.19, page 42, and

Definition 2.3.17, page 42), while gA
def
= exp−1(GA) is to be described soon. For gl(3) (the

Lie algebra of GL+(3)), the computation of the matrix exponential (see Definition 2.3.13,

page 40) usually involves an infinite sum. Likewise for the matrix logarithm. In several

cases, however, it is possible to derive closed-form formulas; e.g., for exp : so(3) → SO(3)

and log : SO(3) → so(3), computations are given by the well known Rodrigues’ formula

[110]. While only the first map is surjective, the pair does form a local bijection around

03×3 in so(3) the I3×3 in SO(3).

For gA and GA, we have the following result, where for convenience we regard GA as a

subgroup of GL(2).

Proposition 4.3.3. gA
def
= exp−1(GA), is given by

gA =

A ∈ gl(2) : g =

0 u

0 v


 . (4.35)

The maps exp : gA → GA and log : GA → gA are given in closed-form; together, they form

a bijection.
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Proof. First, assume v = 0. This implies A2 is the zero matrix and thus so is Ak for every

integer k ≥ 2. By Definition 2.3.13, page 40,

exp(A) = exp

Ö0 u

0 0


è

= I +

0 u

0 0

 =

1 u

0 1

 def
=

1 U

0 V

 ∈ GA . (4.36)

If v 6= 0, induction shows that

An =

0 u

0 v


n

=

0 uvn−1

0 vn

 . (4.37)

Consequently,

exp(A) = exp

Ö0 u

0 v


è

=

1 u
v (ev − 1)

0 ev

 def
=

1 U

0 V

 ∈ GA , (4.38)

where in the second equality we have used Definition 2.3.13 and simple calculations of

limits. The two cases taken together imply a bijection (u, v) 7→ (U, V ), R2 → R×R+, and

thus exp : gA →: GA is bijective too. Finally, For computing the log, set v = log(V ). If

V = 1, set u = U . Otherwise, set u = Uv/(V − 1).

Proposition 4.3.3 is important for not only ensuring bijectivity but also providing simple

and exact closed-form formulas. For example, generic expm and logm functions in Matlab

or SciPy use the Padé approximation [69], are slower, and are not easily vectorized. Since

such computations are needed frequently and apply to all Ntri triangles, this makes their

use impractical here9.

9Of course the computations can be parallelized as they apply to each triangle independently; however,
approximation errors often lead to losing the group structure as the result falls outside the manifold (or
Lie algebra).
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Analogously to Eqn. (4.33), we identify gT with a Lie subalgebra of gl(6):

â
0 −ωz ωy

ωz 0 −ωx
−ωy ωz 0

 ,
0 u

0 v

 , s
ì
↔



0 −ωz ωy 0 0 0

ωz 0 −ωx 0 0 0

−ωy ωz 0 0 0 0

0 0 0 0 u 0

0 0 0 0 v 0

0 0 0 0 0 s


↔



ωx

ωw

ωz

u

v

s]


(4.39)

where here the second “↔” indicates an identification of an element of gT with a six-

dimensional vector. Finally, the map exp : gT → GT is defined by the product map:

(exp : so(3)→ SO(3), exp : gA → GA, exp : gS → GS) . (4.40)

4.3.3.2 The Lie Algebra of Mesh Deformations

Lie algebra of M is given by m
def
= gNtriT while the product map exp : m → M is given by

an Ntri-tuple of exp : gT → GT maps. The corresponding logarithm is defined in a similar

way. Let p, q ∈ M . We use the Lie algebra, interpreted as TIM , as an intermediate step

for moving from M to another tangent space TpM ; see Section 2.3.7.2. For example, here

are the steps for mapping q to TpM :

p−1q ∈M (group closure) ; (4.41)

log(p−1q) ∈ TIM (by the definition of the Lie algebra) . (4.42)

Since we identify (see Section 2.3.7.1) TIM with TpM we interpret the last result, log(p−1q),

as an element of TpM . See Fig. 4.1 for an illustration. Conversely, if x ∈ TIM is interpreted
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as an element of TpM , then we map it to M as follows:

exp(x) ∈M (by def. of the Lie algebra) ; (4.43)

p exp(x) ∈M (group closure) . (4.44)

Note that:

1. The logarithm map here is the Lie group logarithm map, which, for a matrix Lie

group, coincides with the matrix logarithm. We here use the approach that identifies

all tangent spaces of M with TIM ; see Section 2.3.7.1. Since M is also a Riemannian

manifold, we could also have used the Riemannian logarithm map in order to move

from M to TpM , when the latter is not identified as a copy of TIM . The same remark

applies to the exponential map.

2. In this chapter, we stick to the Lie-algebraic approach for such transitions (as well

as for PGA) as it is easier to understand (and explain!) and keeps the reader’s focus

on the Lie group structure rather than on a particular Riemannian metric that M

may be endowed with. In Chapter 5, we will introduce a new tool for statistics on

manifolds and we will use the manifold presented here as an example manifold to

which the tool applies. When we do that, we will adopt a Riemannian approach as

it will have several advantages in that context.

4.3.4 Geodesic Distances

To measure distances between mesh deformations (i.e., points in M), we use the distance

from Eqn. (2.66); i.e., if p and q are in M , then their distance is

d(p, q) =
∥∥∥log(p−1q)

∥∥∥
F
. (4.45)
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Specifically, the block diagonal structure in Eqn. (4.33) enables easy computation: If pi =

{gi,j}Ntrij=1 ∈M , i ∈ {1, 2} and gi,j
def
= (Ri, Gi, Si)j ∈ GT , then

d(p1, p2)2 =
Ntri∑
j=1

dGT (g1,j , g2,j)
2 (4.46)

where, for (g1, g2) ∈ GT ×GT (dropping the j notation),

dGT (g1, g2)2 def
=
∥∥∥log(RT1 R2)

∥∥∥2

F
+
∥∥∥log(A−1

1 A2)
∥∥∥2

F
+ |log(S2/S1)|2 . (4.47)

Remark 4.3.4. The first term is a geodesic distance on SO(3), while the third is a geodesic

distance on GS . The second term is not a geodesic distance on GA, for elements of gA

are usually not normal matrices; see Section 2.3.8.4. It is, however, a true metric (in

the sense of a metric space) and a good proxy to a geodesic distance. This nuance applies

transparently to dGT . By a slight abuse of terminology, we will still refer to both as geodesic

distances. The same remark applies to the geodesic curves we will discuss momentarily.

Finally, note that d is left-invariant: d(p3p1, p3p2) = d(p1, p2) for every p1, p2, p3 in M .

This often-desired property (e.g ., see Example 4.2.3) is especially attractive for models

that factor deformations. For example, one may want the distance between the shapes of

two people standing in one pose to be the same as the distance between the shapes of the

same two people standing in a second pose.

4.3.5 Geodesic Paths

As in Eqn. (2.61), a geodesic path interpolating between p1, p2 ∈M is given in closed-form

by

p(t) = p1 exp(t log(p−1
1 p2)) , (4.48)

where t ∈ [0, 1], p(0) = p1, p(1) = p2. Taking t < 0 or t > 1 is extrapolation.
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By now it should be clear how we generated the deformation from which we synthesized

the mesh in Fig. 1.4e: we simply set t = 0.5 in the geodesic path equation. Compare this

result with its Euclidean counterpart Fig. 1.4d. Examples for longer sequences can be seen

in Figs. 4.9, 4.10, and 4.11. Note that the process illustrated in these figures are performed

completely locally at the level of individual triangles; i.e., no global information about

kinematic tree structure or mesh segmentation are used. A movie containing additional

results is available online at:

http://www.dam.brown.edu/people/freifeld/shapes/shape_interpolation.avi

For an explanation of the contents of this movie, please see the following file:

http://www.dam.brown.edu/people/freifeld/shapes/shape_interpolation_ReadMe.

txt

In terms of interpolation, there are two limitations worth noting. Before explaining

them, note that the Euclidean methods we saw earlier suffer from these limitations too.

1. The first is related rotational ambiguity. Given only two triangles and no additional

information, the rotation component between them is not fully determined as there

is ambiguity about the direction; i.e., a θ-angle clockwise rotation about some axis

produces the same triangle as a (2π − θ)-counterclockwise rotation. We always pick

that rotation that corresponds to an angle smaller than π. For applications for

statistical modeling of human shape, we report this causes no problem, as body

shape deformations are usually not greater than π and we work with pose-aligned

data. For interpolation between arbitrary poses, however, the geodesic path might

end up in the wrong direction. A possible solution, and one we tested successfully

on human shape data in various poses, is to use information about the kinematic

tree and mesh segmentation: once the global rotation of the body parts are factored

out, the residual deformations do not contain rotations of angles greater then π.

Another possible solution we have yet to explore, is to determine the direction by

the deformations between neighboring triangles10.

10The idea has been suggested to us by Yaron Lipman.

http://www.dam.brown.edu/people/freifeld/shapes/shape_interpolation.avi
http://www.dam.brown.edu/people/freifeld/shapes/shape_interpolation_ReadMe.txt
http://www.dam.brown.edu/people/freifeld/shapes/shape_interpolation_ReadMe.txt
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2. The second limitation is the possible self-intersection of articulated bodies. Again,

this happens since the process is local (and thus, in particular, happens with the

Euclidean approaches as well). One possible solution is to penalize self-intersection

as done, e.g ., in [58].

We also note that due to the locality, our representation of mesh deformation does not

preserve the 3D volume of the shape, in contrast to,e.g ., the interpolation method in [83].

However, we do not regard this as a limitation: when interpolating between shapes of,

say, a thin person and a fat person of similar height, volume-preserving is not a desired

property.

To conclude this section, we reiterate that our interest in interpolation is not for the

sake of interpolation itself: rather, it provides us a way to visualize how much the Euclidean

approach is based on the wrong type of distance, a fact that compromises the resulting

statistical models. Additionally, the most naive approach to shape representation – whose

disadvantages are mentioned in several places in this work – is to work directly on the

vertices of the meshes. The average shape, in terms of vertices, of the two 3D meshes in

Fig. 1.4b and Fig. 1.4c is practically indistinguishable (and thus is not shown) from the

one produced from the average of Euclidean deformations shown in Fig. 1.4d (i.e., just as

bad). This is hardly a surprise as both approaches share the linear structure assumption.

4.4 The Statistics of Lie Shapes

In this chapter we focus on the comparison of a Lie-algebraic PGA model (see Section

2.6.1) and Euclidean PCA models. In Chapter 5 we will also use Riemannian PGA for the

manifold introduced in this chapter, in order to demonstrate a new tool for statistics on

manifolds.

Given a training set of shapes, human bodies in our case, {M}Ni=1, we extract {Qi}Ni=1,
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Figure 4.9: Geodesic interpolation of shape deformations. The sequence starts at the top-
left corner and continues in a raster scan, from left to right, row by row. The sequence
is generated from only two meshes: the red ones. These are two (aligned) laser scans
of real people. Light blue stands for interpolation along a geodesic path between their
deformations (with respect to a template not shown here). Green stands for extrapolation.
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Figure 4.10: This sequence is analogous to Fig. 4.9. The only difference is that here the
two red shapes that are used to generate the sequence are taken from the Technion Tosca
dataset: http://tosca.cs.technion.ac.il/. Note that no global information about the
kinematic tree structure or mesh segmentation is used.

http://tosca.cs.technion.ac.il/
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Figure 4.11: Another sequence generated in a similar way to the one from Fig. 4.10.
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their mesh deformations from T , using our (R,A, S) approach. Note once this is done, we

may regard this deformation-dataset as either M -valued or Euclidean data. The latter just

means that although we know that each one of the local Q’s has form Q = RRTXASRXX,

we can still regard this Q as a nine-dimensional Euclidean deformation; unlike in other

Euclidean approaches, this Q was at least extracted in a heuristic-free way. To create a

notation distinction, we denote the deformations, when regarded as M -valued, by {pi}Ni=1 ⊂

M . In contrast, when regarded as Euclidean data, we keep the {Qi}Ni=1 notation. Of

course, the manifold approach is preferred, but this will be useful later when we compare

with the standard Euclidean approach. Finally, and again for the purpose of comparison,

we compute the Euclidean deformations, using the method from [14], and denote them by¶
QEuclidean
i

©N
i=1

.

We compute two Euclidean PCA models: one for {Qi}Ni=1 and one for
¶
QEuclidean
i

©N
i=1

.

For {pi}Ni=1, we first compute the intrinsic mean using the algorithm from [113]. In our

experiments convergence is typically reached with few iterations. Note this algorithm can

can be applied to each one of the Ntri local triangles in parallel. This iterative algorithm is

the only non-closed-form computation required in this chapter. Note, however, that there

also exists a simple closed-form approximation: µ ≈ exp(1/N
∑
i log pi) [37].

Once the intrinsic mean (or more precisely, the Karcher mean), µ, is computed, we

compute the Lie-algebraic PGA. Finally, for each one of these three models, we compute

the corresponding coefficients, as defined by projecting the data on the resulting subspaces.
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4.5 Experiments

4.5.1 Data

4.5.1.1 Mesh Data

We model a dataset of 986 body scans of adult women standing in a similar pose [120].

Because here we are interested in body shape, we remove the head and hands for the

analysis but they can trivially be included (e.g ., in Chapter 5 we will work with full

bodies). A template mesh with 16218 triangles is aligned to each of the scans and we then

work with these aligned meshes.

4.5.1.2 Deformation Data

Given aligned triangles we compute the deformations (both M -valued and Euclidean) to

produce three types of training deformation data (where N = 986):

1. {pi}Ni=1 (M -valued deformations);

2. {Qi}Ni=1 (Euclidean Deformations);

3.
¶
QEuclidean

©N
i=1

(Euclidean Deformations).

These datasets were produced as was described in Section 4.4. We seek a parsimonious

statistical representation of body shape variation where parsimony has two components:

it implies that the model has low variance and low reconstruction error.
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4.5.2 Variance Comparison

A direct comparison between the Euclidean variance of the manifold data and theQEuclidean

data is not possible as these spaces are different. Instead, to fairly compare our represen-

tation with the existing Euclidean representation, we compare the variance of the Q’s and

the variance of QEuclidean’s. Note these variances are measured the same Euclidean space:

(R3×3)Ntri . We find that the total variance for the QEuclidean’s is 1.68 times the total vari-

ance of the new deformations Q’s. We attribute this to the fact that our method does

not admit non-physical deformations, as well as ignoring variance in equivalent classes (see

Eqn. (4.17) and its associated discussion regarding equivalence classes of deformations).

This suggests that, even if one avoids a manifold approach, one is still better off computing

M -valued deformations, encoding them as Q = RRTXASRX , and then working with these

in a Euclidean space.

4.5.3 PCA, Lie-Algebraic PGA, and Reconstruction of Triangle Edges

Table 4.1: Mean edge RMS for mesh reconstruction using a subspace

#PC’s 5 10 15 20 25 30 35 40 45 50 100
Euclidean method. Ave. RMS [mm] 2.71 2.53 2.43 2.34 2.28 2.23 2.19 2.15 2.11 2.08 1.91
Our method. Ave. RMS [mm] 2.57 2.43 2.32 2.26 2.21 2.17 2.12 2.09 2.06 2.03 1.88

In addition to low variance, a good representation must model the data. In particular,

we seek a low-dimensional approximation of body shape variation that captures as much

of the variance as possible. Consequently we evaluate our ability to reconstruct the data

meshes using the Euclidean and our Manifold approaches. We compute the interior mean

and PGA and show the first few eigenvectors in Fig. 4.12 We also compute Euclidean PCA

for the Euclidean deformations.

We reconstruct all the meshes using the same number of components computed with

PCA and Lie-Algebraic PGA. For each meshMi we compute the root mean squared (RMS)
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Figure 4.12: Lie-algebraic PGA on human shape data. The single shape in the leftmost
column is µ. The other columns present, from left to right, the first five eigenvectors by
showing µ exp(+4σei) (top) and µ exp(−4σei) (bottom), where ei is the ith eigenvector,
i ∈ {1, 2, 3, 4, 5}.

reconstruction error across all edges in Mi and then average the result over all {Mi}:

Error
def
=

1

#edges

∑
edges

Ã
1

N

∑
examples

‖true edge− recon. edge‖2`2︸ ︷︷ ︸
RMSE per edge

(4.49)

The results in Table 4.1 show a lower error for every number of basis vectors used. Note this

is despite the fact that RMS is a Euclidean error. The fact that our representation is doing

better in terms of reconstruction is perhaps more interesting than it may seem at first sight.

As mentioned in Section 2.5.3.1, PCA can be generalized to manifolds in two ways, defining

two optimization problems over the space of geodesic subspaces: variance maximization

(PGA) and reconstruction-error minimization (GPCA). Unlike in the Euclidean case, the

optimizers of these two problems need not coincide. We use PGA, and yet, the we still do

better than the Euclidean method in terms of reconstruction.
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Figure 4.13: Perceptual task. Examples images shown in the shape perception experiment
(workers did not see the “M” and “E” notations). The true mesh is always in the center.
On either side, at random, is either the manifold representation (M) or the Euclidean
representation (E) generated with 20 coefficients. Workers had to indicate which body
looked more like the center. Green indicates examples that were “easy” (i.e. the manifold
was selected as better more than 90% of the time) and red indicates “hard” examples
where workers were roughly split in their decisions.

4.5.4 Human Shape Perception

We also evaluate the perceived quality of the reconstructions using a two-alternative forced

choice perceptual experiment. This evaluates how well each representation captures fea-

tures of body shape that are important to human perception. Mechanical Turk work-

ers were shown images like those in Fig. 4.13 drawn from a set of 300. The center

shape always showed the original mesh (head and hands were removed to focus peo-

ple on body shape). On either side, in the same pose, we showed the PCA and Lie-

algebraic PGA reconstructions. The left/right location was randomly varied and the re-

constructed bodies were shown in a random order in one of 3 viewing directions: profile,

frontal, and oblique. Each comparison was presented 10 times and each worker could

try as many of the 300 examples as they wished. Of the 3000 answers, 7 were dis-

qualified for technical reasons. M -valued reconstruction was preferred in 1670 out of

2993 answers (55.8%). For each of the 300 test images, the portion (usually out of 10)

of the workers who preferred the M -valued reconstruction to the Euclidean was com-

puted. A tie was reached in 20 % of the cases (59/300) while in 80%, a majority was

achieved. When a majority was achieved, the manifold approach was selected as bet-
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ter significantly more often: Pr(M won|majority was achieved) ≈ 55/80 = 0.69 while

Pr(Euclidean won| majority was achieved) ≈ 25/80 = 0.31.

4.5.5 Predicting Biometric Measurements

An important quantitative measure of body mesh quality is the accuracy with which body

shape can be used to compute anthropometric measurements. We compute a simple linear

regression from subspace coefficients to body measurements as in [149]. We compare three

subspaces: PCA on the QEuclidean’s, PCA on the Q’s, and Lie-algebraic PGA on the M -

valued deformations.

The dataset was split into two halves for training and test sets. Summary results

are shown in Fig. 4.14, while individual results are shown in Fig. 4.15. There is a clear

advantage to the manifold approach, especially for a small number of coefficients: with this

representation, the same amount of accuracy can be predicted from less shape coefficients.

4.6 Conclusion

When we want to infer a 3D shape from either partial and noisy 3D measurements (e.g .,

laser scans in Anguelov et al . [6] or range data as in Weiss et al . [149]) or from image

measurements (e.g ., Bălan et al . [16] or Guan et al . [59]), we often resort to doing analysis-

by-synthesis using a statistical model. This necessitates a choice of a representation that

supports synthesis of new shapes, as well as composition of different sources of deforma-

tions. With the availability of devices like Microsoft’s Kinect, there is increasing interest

in modeling the 3D shape of non-rigid and articulated objects – particularly, human body

shape.

To model object shape variation we need an appropriate consistent representation that

leads to effective statistical modeling. We propose a new Lie group for representing shape
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Figure 4.14: Linear prediction of body measurements from shape coefficients (summary).
RMS error as a function of the number of coefficients. Left: Average results for length mea-
surements (‘spine to elbow’, ‘shoulder breadth’, ‘stature’, ‘knee height’, ‘spine to shoulder’,
‘arm’). Center: Average results for circumference measurements (‘chest’, ‘thigh’, ‘ankle’,
‘under bust’). Right: Cube root of weight.

as a deformation from a template mesh. The approach has many nice properties. Un-

like previous Euclidean methods, representing triangle deformations with our nonlinear

manifold gives a heuristic-free exact solution for the required 6 DoF.

The distance between shapes is properly defined as a geodesic distance on the manifold

of mesh deformations. Statistics of shape variation are represented using Principal Geodesic

Analysis. These benefits come with little additional computational overhead since the main

equations are efficiently computed in closed-form. In addition to theoretical benefits, we

have shown that the Lie representation of shape deformation consistently outperforms the

Euclidean approach.

In both existing representations and ours, the distances and statistical models depend

on the arbitrary choice of the template T . This is unsatisfying as the distance between,

say, the shapes of two people should be independent of any third person. It is easy to

redefine our distance, making it right-invariant. This would eliminate the aforementioned
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Figure 4.15: Linear prediction of body measurements from shape coefficients; RMS error
as a function of the number of coefficients.
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dependencies on T . This, however, would come at the cost of losing left-invariance. As

there is a tradeoff, the decision should be determined on an application-specific basis.

In our representation, we treat SO(3) as a matrix Lie group. This is consistent with the

way we represent the scaling and planar deformations, and enables us to perform statistical

analysis in a similar setting for all these three components. There are, of course, other

representations for SO(3) (e.g ., quaternions, which, among other things, provide the basis

for the SLERP method for interpolating rotations [132]), which might be preferred in some

applications. As long as one can measure distances, interpolate, and do statistics on these

alternate manifolds of rotations, our (R,A, S) decomposition is still applicable by a simple

drop-and-replacement of representation of the SO(3) component.

Of note, statistical models based on representations of triangle deformations – our

representation included – assume meshes have been aligned during preprocessing. The

alignment problem – also known as the correspondence problem – is a fundamental prob-

lem in shape analysis that has drawn the interest of many researchers (e.g ., see [13,143]).

Typically, mesh alignment is done pairwise, as this is simpler than to solve the harder

problem of corpus mesh alignment ; i.e., aligning multiple meshes simultaneously. A suc-

cessful corpus alignment of the training mesh data improves the resulting statistical model

while conversely, a good statistical model helps in mesh alignment of new meshes. In a

recent work by Hirshberg et al . [72], the authors show that these two problems can be

written as a single cost function. Thus, an alternate optimization between model learning

and corpus alignment ensures both type of errors are reduced, and the eventual statistical

model is superior to the initial one. Our representation can be naturally used in the setting

suggested by Hirshberg et al ., improving the statistical model even further.

While focusing on human bodies, we emphasize the generality of the approach and

envision Lie Shapes providing an improved foundation for shape representation, analysis,

and synthesis.



Chapter 5

Riemannian Covariance Transport

We address the problem of learning statistical models on a known nonlinear Riemannian

manifold, denoted by M , where the data of interest may be scarce but where we can

leverage statistics learned on some other part of the manifold. More concretely, given two

sets of M -valued data, one large (denoted by DL) and one small (denoted by DS), we show

how the sample covariance of the larger dataset can be used to improve the estimation

of the covariance of the smaller one. This echoes, and in fact generalizes, ideas from the

literature of transfer learning.

Unfortunately, existing transfer learning methods for leveraging knowledge from one

class to another are limited to Rn-valued data. Here we develop a new framework for

covariance transport of manifold-valued data that takes statistics learned on one part of

the manifold to another part using any parallel transport that respects the Riemannian

metric of the manifold1.

We prove that covariance matrix learned in a part of the manifold where data are

plentiful can be transported in a principled way to a part of the manifold where data

are scarce. This enables us to augment or regularize the covariance of the few using the

1By this we mean any metric parallel transport – a notion to be explained later on.

160
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covariance of the many.

Our method is equally applicable to both full covariance matrices and low-dimensional

Riemannian PGA models (see Section 2.5.3) that are often used for dimensionality reduc-

tion. In the latter case, we stress that we use Riemannian PGA (as opposed to Lie-algebraic

PGA) even if M happens to be a Lie group. In other words, our approach is purely Rie-

mannian. In addition to making the method more broadly applicable (i.e., not restricted

to Lie groups) as well as more tied to distances, this simplifies the use of a metric parallel

transport.

We here show the approach applies well to 3D human body shape deformations. Note,

however, that in [42] we show that the approach is also successful for several computer

vision problem involving image descriptors for face modeling.

To summarize, our main contribution here is a framework for estimating covariance

matrices of small-sample classes on nonlinear Riemannian manifolds. The framework,

based on leveraging data from related classes, uses a principled way that takes the geometry

of the manifold into account, and thus overcomes a limitation of conventional techniques,

the latter being limited to Euclidean spaces. We also prove that covariance transport

preserves statistical information. Our method is applicable to all (geodesically-complete)

Riemannian manifolds, including those that are not Lie groups, whenever a metric parallel

transport is analytically or numerically computable. This class includes, but is not limited

to, spherical data, several popular image features, and 3D human body shape deformations.

We here use the latter to illustrate the effectiveness of the approach. All computational

details are provided.
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5.1 Previous Work

Statistics on manifolds has a long history, starting with Ronald A. Fisher’s work on spher-

ical data [33]. Recently, various authors have generalized statistical tools from Euclidean

spaces to nonlinear manifolds. A full literature survey of statistics on manifolds is beyond

our scope; however, for a partial list – biased toward computer vision, medical imaging,

and shape analysis – of recent works in this field, see [10,25,34–39,49,56,66,67,70,73,99,

102,104,113–115,135,137,139–141,146,150].

We go beyond previous work to provide the first generalization, from a Euclidean

setting to a Riemannian one, of a transfer learning approach that addresses data scarcity

by leveraging data from another class.

Using data from one class to improve parameter estimation for a model of another

related class is a type of transfer learning and is sometimes called domain adaptation [26].

Given our two data sets, DS and DL, the most straightforward idea is to learn a model

from DL and use it as a prior for learning the model of DS [92]. A related approach

learns models of the two datasets independently and then combines them using shrinkage

estimation [129]. Daumé III and Marcu [26] propose to model both DS and DL as two-

component mixture distributions, where one component is shared by the two distributions,

such that both datasets contribute to the estimation of the shared component. While these

ideas have been successful in Euclidean spaces, they are currently not applicable to data

on nonlinear manifolds.

Manifold alignment [60] is a branch of machine learning where transfer learning is done

through manifold learning techniques and is based on estimating a latent low-dimensional

manifold shared by two RD-valued (or an RD1- and an RD2-valued) datasets. Despite the

terms “manifold” and “transfer learning”, our approach tackles a very different problem.

Rather than RD, the space here is a known manifold, perhaps high dimensional, and we

show how to overcome the known nonlinearity to achieve transfer learning of manifold-
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valued data between two classes that live on two different parts of the manifold. See also

our discussion in Section 2.5.1 regarding the differences between manifold learning and

manifold-valued statistics.

Riemannian PGA [38] is a popular technique for dimensionality reduction for manifold-

valued data. While dimensionality reduction is not our focus, we prove mathematically

that our approach is applicable to PGA models just as it is to full covariances. This is also

supported by our experiments.

As we will see, our method – for transfer learning of manifold-valued data – exploits a

notion called parallel transport. This concept, providing a principled way to move vectors

between different tangent spaces, will be defined in Section 5.4. We are not the first to

employ parallel transport in statistical problems in computer vision. We now proceed

to mention several examples of such works, but please note that this is a partial list2.

Recently, parallel transport of data has been employed in image registration [96, 97]. Our

work differs in both the objects being transported (in our case: covariance matrices) and the

application (in our case: transfer learning between classes). Hauberg et al . [66] have used

parallel transport of the uncertainty covariance in a Kalman Filter for tracking applications.

That work did not address transfer learning and our application of covariance transport

is different and more general. Moreover, while the authors of [66] showed that some

covariance can be generated from the parallel transport of another, we prove a stronger

result: the new covariance is not just an arbitrary covariance but has a concrete statistical

meaning tied to the transport of the data that generated the old one.

Importantly, we stress that while used before, parallel transport was never used for

transfer learning. The only recent exception is Wei et al . [147]. Before explaining the main

difference between that work and ours, we point out a well-known fact from differential

geometry: parallel transport has many types.

2In particular, applications of parallel transport in non-statistical problems in computer vision are
beyond our scope.
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We observe that for transporting correlations or variance, however, it is crucial that the

parallel transport preserves inner-products; see Section 5.5. Wei et al . [147] suggest sharing

information across a Lie group of image deformations using the parallel transport implied

by a spatial image transformation. In particular, they transport linear bases, each one

of which spans a subspace of the Lie algebra and is also associated with a different mean

deformation (and thus each basis is associated with a different region of the manifold).

Unfortunately, their choice of parallel transport has the unwanted side-effects that neither

the inner-product between two vectors nor the length of a vector is preserved. Thus, while

Wei et al . are able to transport a basis across the manifold, the basis is distorted, and, more

importantly, they are unable to transport a covariance matrix or preserve variance, hence

statistical information is lost. Our approach does not suffer from this shortcoming. Also,

while their approach is Lie-algebraic, ours is purely Riemannian and hence, besides being

applicable to a much broader class of manifolds, utilizes true geodesic distances rather than

their approximations; see Section 2.6.

5.2 The Euclidean Setting

Before moving to the manifold setting, let us briefly describe the simpler scenario where

the space is Euclidean. Consider two sets of RD-valued data, denoted by DL and DS. The

first dataset consists of NL points, while the second consists of NS points. It is assumed

that NL > NS. As shorthands, and as we will do throughout this chapter, we use L to

denote ‘large’ and S to denote ‘small’. Suppose DL and DS represent two sets of i.i.d .

samples from two D-dimensional Gaussians:

DL = {x1, . . . , xNL
} ⊂ RD , xi

i.i.d.∼ N (µL,ΣL) ; (5.1)

DS = {y1, . . . , yNS
} ⊂ RD , yi

i.i.d.∼ N (µS,ΣS) , (5.2)
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where µL and µS are points in RD, while ΣL and ΣS are D ×D covariance matrices. Note

that the two covariance matrices can also be seen as bilinear forms on RD:

ΣL : RD × RD → R : (a, b) 7→ aTΣ−1
L b ; (5.3)

ΣS : RD × RD → R : (a, b) 7→ aTΣ−1
S b . (5.4)

In particular, note that the domain of both these bilinear forms is the same: RD × RD.

We will return to this point in the next section.

Let ”µL and µ̂S denote the corresponding sample means:

”µL
def
=

1

NL

NL∑
i=1

xi ; (5.5)

µ̂S
def
=

1

NS

NS∑
i=1

yi . (5.6)

Likewise, let ”ΣL and ”ΣS denote the corresponding sample covariances:”ΣL
def
=

1

NL − 1

NL∑
i=1

(xi −”µL)(xi −”µL)T ; (5.7)”ΣS
def
=

1

NS − 1

NS∑
i=1

(yi − µ̂S)(yi − µ̂S)T . (5.8)

If NS is too small, then ”ΣS is usually a poor estimate of ΣS. Suppose, however, that

we have reasons to believe that ΣL and ΣS are not unrelated3. In which case, one may try

to improve ”ΣS by also using ”ΣL. There are plenty of methods to combine two (or more)

covariance matrices in order to produce a new one4. The particular method of choice

is not so important for our discussion. What is important, however, is to understand

that there is a particular property of RD that is being used here transparently. The

property we allude to is that once both datasets are centered with respect to their (sample)

3For example, we may suspect that their geodesic distance with respect to the manifold of D-by-D
SPD matrices is small, or we may believe that their inverse matrices can be well modeled as samples from
the same (possibly unknown) Wishart distribution.

4For example, we can use a convex combination of Σ̂L and Σ̂S.
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means, both covariance matrices, ”ΣL and ”ΣS, “live” on the same space; i.e., both are

covariance matrices of zero-mean D-dimensional Gaussians. In other words, one implicitly

uses ordinary translation as the very first part of the process. Geometrically speaking,

a ”µL-centered Gaussian that is associated with ”ΣL is translated from ”µL to µ̂S. Another

way to think of it is that had we added the constant (but random) offset µ̂S −”µL to each

one of the elements of DL, then this would have not changed the value of ”ΣL. Of course,

in practice there is no need to do this translation since it has no effect on the resulting

estimates; however, this line of thinking prepares us for the more complicated scenario that

is coming up next.

5.3 The Manifold Setting

In the setup we are interested in, however, the space is not Euclidean. To be more explicit,

let the data lie on a geodesically-complete Riemannian manifold (see Definition 2.4.10, page

64). As usual, we use M to denote the manifold. Our goal is to move a statistical model

learned in one region of M to another. While in RD this can be achieved by translation,

such an approach fails for nonlinear manifolds as a translation of a tangent vector rarely

produces another tangent vector.

On manifolds, statistical models are often expressed in tangent spaces. For example,

recall how a sample covariance is expressed in a tangent space (see Eqn. (2.83), page 69)

or how PGA is defined (see Section 2.5.3.2, page 69). Consequently, in order for us to be

able to apply a similar idea to the one we have just seen in Section 5.2, we need to be able

to move a covariance matrix between between tangent spaces.

We again consider two datasets, DL and DS, but henceforth we will assume these
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datasets consist of points in M :

DL = {p1, . . . , pNL
} ⊂M ; (5.9)

DS = {q1, . . . , qNS
} ⊂M . (5.10)

Let µL and µS represent two, possibly unknown, points in M . It is assumed that the two

datasets satisfy the following statistical rules:¶
LogµL(p1), . . . ,LogµL(pNL

)
©
⊂ TµLM , LogµL(pi)

i.i.d.∼ N (0,ΣL) ; (5.11)¶
LogµS(q1), . . . ,LogµS(qNS

)
©
⊂ TµSM , LogµS(qi)

i.i.d.∼ N (0,ΣS) . (5.12)

In other words, when DL is expressed (as tangent vectors) in the tangent space (to M) at

µL, it can be seen as a set of i.i.d . samples from a zero-mean Gaussian with covariance ΣL.

Likewise, when DS is expressed in the tangent space at µS it can be seen as a set of i.i.d .

samples from a zero-mean Gaussian with covariance ΣS. This generalizes the Euclidean

case.

The two covariance matrices can also be seen as bilinear forms:

ΣL : TµLM × TµLM → R : (a, b) 7→ aTΣ−1
L b ; (5.13)

ΣS : TµSM × TµSM → R : (a, b) 7→ aTΣ−1
S b . (5.14)

Note that unlike in the Euclidean case (Eqns. (5.3) and (5.4)), here the domains are

different: ΣL defines a bilinear form on TµLM , while ΣS defines a bilinear form on TµSM .

This means that as mathematical objects, the two covariance matrices do not “live” on

the same space. Thus, standard Euclidean methods for combining covariance matrices to

produce a new one do not apply here. Earlier, in Section 5.2, we noted that these methods

implicitly rely on ordinary Euclidean translation. This is exactly what breaks down here.

If x is in TµLM , then x+ (µS − µL) is usually not in TµSM . In fact, if there is no ambient

space present, this linear combination is not even defined. Consequently, a covariance

cannot be simply translated between tangent spaces as if M were linear; see Fig. 5.1.
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Figure 5.1: On a manifold, the ordinary translation of a covariance matrix (expressed in
tangent space) usually fails. Here we see that when the red covariance is translated by
the Euclidean difference of two points of tangency, the result (green) is no longer in any
tangent space to the manifold.

To remedy this problem, we need to replace ordinary translation with a method that

moves vectors from one tangent space to another. However, this alone is not enough: not

every map between tangent spaces suffices for our needs. We want a method that can be

used to move not only vectors but also a covariance matrix. Moreover, the new covariance

must preserve the statistical information of the old one, for otherwise the new covariance

will be of limited use to us.

Fortunately, these goals can be accomplished by using a (metric) parallel transport.

5.4 Parallel Transport

5.4.1 Parallel Transport on the Sphere

As a warm-up, we start our discussion with a relatively easy example: the unit sphere. Let

M = Sn−1 where

Sn−1 def
= {p : p ∈ Rn, ‖p‖`2 = 1} , (5.15)
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Figure 5.2: Two points on the sphere connected by a geodesic.

and let the Riemannian metric on M be defined as in Example 2.2.3, page 30. Let p and q

be points in M , and let x0 be a tangent vector in TpM . As a first step, we would like to map

x0 from TpM to TqM . Of course, there are many possible way to do it, but here will focus

our attention on a particular one. Set x = Logp(q) , u = x/‖x‖ and m = ‖x‖. Note that

the formula for computing Logp(q) is given by Eqn. (2.19), page 31. Let c(t) : [0, 1]→ M

be the geodesic curve between p and q (see Eqn. (2.20), page 31); see Fig. 5.2. Note that

c(0) = p and so Tc(0)M = TpM . Likewise, c(1) = q and so Tc(1)M = TqM . Now consider

the following collection of maps,¶
Γc(0)→c(t)(·) : Tc(0)M → Tc(t)M

©
t∈[0,1]

(5.16)

where, for a given t,

Γc(0)→c(t)(x0) =
Ä
−p sin(mt)uT + u cos(mt)uT + (In×n − uuT )

ä
x0 . (5.17)

In particular, for t = 1, we get that Γc(0)→c(1)(x0) is indeed in TqM . The results of applying

these maps to x0, for several different values of t, can be shown in Fig. 5.3. The maps

defined by Eqn. (5.17) are known as the (Levi-Civita) parallel transport of a tangent vector

along a geodesic curve on the sphere (with the particular Riemannian metric mentioned

above) [1]. Several remarks are in order, some of which may be better understood later on

when we discuss the more general case:
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Figure 5.3: Parallel transport of x0 along the geodesic between p and q.

1. Γc(0)→c(0)(x0) = x0.

2. Let u, s and t be in [0, 1]. If Γc(u)→c(t) and Γc(s)→c(u) are defined in a similar way to

Γc(0)→c(t), then Γc(u)→c(t) ◦ Γc(s)→c(u) = Γc(s)→c(t).

3. If x0 is fixed and t varies, then Γc(0)→c(t)(x0) : [0, 1]→ Rn is a smooth function of t.

4. If x and y are in TpM , then, for every t, their inner-product is preserved:

〈x, y〉c(0) =
¨
Γc(0)→c(t)(x),Γc(0)→c(t)(y)

∂
c(t)

. (5.18)

Consequently, norms of tangent vectors and angles between tangent vectors are pre-

served; see Fig. 5.4.

5. Γc(0)→c(t) : Tc(0)M → Tc(t)M is a bijective linear map.

5.4.2 The General Case

We now proceed to the more general case. Let M be a geodesically-complete Riemannian

manifold. To see how a covariance can be moved across M , consider first tangent vectors.

While simple translation will not do, we can transport vectors from one tangent space to

another using parallel transport, to be defined as follows5.

5Another way to define it is trough the notion of a connection - a term we avoid elaborating on. See [27].
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Figure 5.4: The Levi-Civita parallel transport preserves angles and norms.

Definition 5.4.1 (Parallel transport). Suppose that for every smooth curve c : [0, 1]→M

we have a collection, depending on c, of maps,
¶

Γc(s)→c(t) : Tc(s)M → Tc(t)M |s, t ∈ [0, 1]
©
c

such that

1. Γc(s)→c(s) is the identity map on Tc(s)M .

2. Γc(u)→c(t) ◦ Γc(s)→c(u) = Γc(s)→c(t).

3. The dependency of Γc(s)→c(t) on s and t is smooth.

In which case, if x ∈ Tc(s)M , we call Γc(s)→c(t)(x) ∈ Tc(t)M the parallel transport of x.

When c, s, and t are understood from the context, we use Γ instead of Γc(s)→c(t) for

brevity.

5.4.3 Metric Parallel Transport

As there are many ways to satisfy the conditions from Definition 5.4.1, there exist many

different types of parallel transport. In our context, some types are more useful than others.

Definition 5.4.2 (Metric parallel transport). A metric parallel transport is one that pre-
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Normal component

Figure 5.5: Levi-Civita parallel transport: an infinitesimal construction. This figure has
been adapted from a similar figure in [28].

serves inner-products; i.e.,

〈x, y〉p = 〈Γ(x),Γ(y)〉q (5.19)

for all points p, q on c, and every x, y ∈ TpM .

Consequently, orthogonality and distance between vectors are preserved by a metric

parallel transport. As in the more general case, there exist many types of metric parallel

transport.

5.4.4 The Levi-Civita Parallel Transport

Our framework is general and be can be used with any metric parallel transport. For

concreteness, simplicity, and ease of computation, in our experiments we use the one asso-

ciated with the Levi-Civita (LC) connection. While often defined via a connection it may

also be constructed as follows [28]: a tangent vector can be transported along a curve by

infinitesimally translating the vector and removing the normal component of the translated

vector. See Fig. 5.5 for an illustration.

This construction leads to an ordinary differential equation (ODE) whose solution co-

incides with the LC parallel transport. For some manifolds, closed-form solutions for this

ODE can be derived. This includes the orthogonal group, rotation group [28] and the
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unit sphere in Rn [1]. In our experiments, we use the manifold from Chapter 4; that is, a

manifold whose building blocks are SO(3), GA, and GS . For GS and SO(3), closed-form

solutions are available. For manifolds for which no closed-form formula is available, such

as GA in our experiments, we use a technique known as Schild’s ladder.

5.4.4.1 Closed-Form Solutions for GS and SO(3)

GS: For GS ∼= R+ the LC parallel transport of x is simply x. Here is a simple proof.

Proof. Let M = R+. First, observe that 〈x, y〉p = xy for all p ∈ M . Let Γ(x) denote the

parallel transport of x along the geodesic from p to q. Since the LC parallel transport

preserves inner-products, xy = Γ(x)Γ(y). In particular, this is true for x = y = 1. Thus,

Γ(1) = 1 (it cannot be the case that Γ(1) = −1 since if we take p = q this would mean a

huge change to a vector - although we did not even move from the starting point). Now,

take y = 1 and x 6= 1. This implies 1x = 1Γ(x) and so Γ(x) = x for all x.

SO(3): Let R0, R1 ∈ SO(3). The LC parallel transport of x0 ∈ TR0SO(3) to TR1SO(3)

along the geodesic between R0 and R1 is given by

R0 exp(A/2)B0 exp(A/2) . (5.20)

where B0
def
= RT0 x0 ∈ so(3) and A

def
= log(RT0 R1) ∈ so(3). See [28] for a proof. In fact, this

result holds for SO(n) in general, and not just for SO(3) [28].
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Figure 5.6: An illustration of Schild’s Ladder for approximating the parallel transport (for
K = 3). See text for details.

5.4.4.2 Schild’s ladder

When there is no closed-form solution, we use Schild’s ladder [106], a strikingly simple

numerical technique to compute an arbitrarily accurate approximation6 of the LC parallel

transport using only the Exp/Log maps7. We are not the first to use Schild’s ladder in

computer vision applications (although we are the first to use it in the context of transfer

learning). For example, the technique has been recently used in modeling longitudinal

medical data [96,115] and in tracking [66].

Schild’s ladder is a numerical scheme that enables computation of the LC parallel

transport [106]. We wish to parallel transport a tangent vector v0 from x0 to xK on

M along the geodesic curve α that joins them. Schild’s ladder places points along α

and approximately parallel transports v0 to these by forming generalized parallelograms8

on M (see Fig. 5.6): Let {x1, . . . , xK−1} denote points along α. Start by computing

a0 = Expx0(v0) and the midpoint b1 of the geodesic segment joining x1 and a0. Follow the

geodesic from x0 through b1 for twice its length to the point a1. This scheme is repeated

for all sampled points along the geodesic from x0 to xK . The final parallel transport of v0

6This is not true for every parallel transport – but it does hold at least for parallel transport associated
with a symmetric connection [82] such as LC, the only connection which is both metric and symmetric.

7Note that if Exp/Log maps are unavailable analytically, then Exp maps can be computed by integrating
an initial value problem and geodesics/Log maps can be computed by solving a boundary value problem
[111].

8This generalization is known as the Levi-Civita parallelogramoid.
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is then given by LogxK (aK).

Remark 5.4.1. The infinitesimal construction of the LC parallel transport described above,

while elegant and simple to understand, relies on the presence of an ambient space. When

an ambient space is not present, the traditional connection-based construction should be

used instead. We stress, however, that this nuance merely refers to how the LC parallel

transport is constructed as a mathematical object: for actually computing the parallel

transport, Schild’s ladder is applicable regardless of which construction is used, and does

not rely on the presence of an ambient space.

5.5 Covariance Transport

Recent work [96,115] has explored the implications of different choices of parallel transport

of vectors for several computer vision applications. While the optimal choice depends on the

application, note that in our new application, we are interested in transporting covariance

matrices, not just vectors. For this purpose, it is imperative to restrict the choice to metric

parallel transports. While this restriction is intuitive since the notion of a covariance is

strongly tied to inner products and distances9, our following Covariance Transport Theorem

makes this precise; a metric parallel transport enables the transport of a covariance matrix

through the transport of its eigenvectors while still preserving statistical information.

5.5.1 The Covariance Transport Theorem

Theorem 5.5.1 (Covariance Transport). Let p and q be points in a D-dimensional (geodesically-

complete) Riemannian manifold M , and let {xi}Ni=1 ⊂ TpM denote the data. Let V S2V T

be the eigen-decomposition of XXT ∈ RD×D where X
def
= [x1, . . . , xN ] and let V SUT be the

Singular Value Decomposition (SVD) of X ∈ RD×N with {Si,i}Di=1, the diagonal entries of

S, sorted in a non-increasing order: S1,1 > S2,2 > . . . > SD,D. Let [v1, . . . , vN ] denote the

9Consider the Rn definitions of variance, correlations, and angles.
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columns of V and let x̃
def
= Γ(x) ∈ TqM denote the transport of x ∈ TpM according to a

metric parallel transport along a smooth curve c : [0, 1]→M . Let k < D. Then:

1. Ṽ SUT is the SVD of X̃, where X̃
def
= [x̃1, . . . , x̃N ] is the transported data, and Ṽ

def
= [ṽ1, . . . , ṽN ]

is the transported left singular vectors. Similarly, Ṽ S2Ṽ T is the eigen-decomposition

of X̃T X̃ ∈ RD×D.

2. The k-dimensional PCA model of {x̃i}Ni=1 ⊂ TqM is given by

(eigenvectors) [ṽ1, . . . , ṽk] ⊂ TqM and (5.21)

(eigenvalues)

ñ
S1,1√
N − 1

,
S2,2√
N − 1

, . . . ,
Sk,k√
N − 1

ô
∈ Rk . (5.22)

In other words, this model is equivalent to computing a k-dimensional PCA model of

{xi}Ni=1 ( i.e., in TpM) given by

(eigenvectors) [v1, . . . , vk] ⊂ TpM and (5.23)

(eigenvalues)

ñ
S1,1√
N − 1

,
S2,2√
N − 1

, . . . ,
Sk,k√
N − 1

ô
∈ Rk , (5.24)

and then transporting the eigenvectors while keeping the standard deviations un-

changed.

Remark 5.5.1. Note that while X and X̃ have different left-singular vectors (V and Ṽ ,

respectively), they share the same singular values (S) and same right-singular vectors (U).

Before the proof, we need some preliminaries:

Claim 1. Parallel transport between tangent spaces is surjective.

Proof. By part ii) of Definition 5.4.1, Γc(t)→c(s)◦Γc(s)→c(t) = Γc(s)→c(s). By part i) Γc(s)→c(s)

is the identity map on Tc(s)M . Thus Γc(s)→c(t) is a bijection between Tc(s)M and a subset of

Tc(t)M . We need to show that this subset is in fact the whole of Tc(t)M . Similar reasoning

shows that Γc(t)→c(s) is a bijection between Tc(t)M and a subset of Tc(s)M . We now use a
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proof by contradiction. Suppose there exists y in Tc(t)M such that y 6∈ Γc(s)→c(t)(Tc(s)M).

We know that Γc(t)→c(s)(y) ∈ Tc(s)M and thus z
def
= Γc(s)→c(t)(Γc(t)→c(s)(y)) is in the image

of Γc(s)→c(t). By assumption, z 6= y. However, this is in contradiction to the fact that

Γc(t)→c(s) ◦ Γc(s)→c(t) is the identity map on Tc(t)M .

The following theorem is well known from functional analysis.

Theorem (Mazur-Ulam). Every surjective isometry between two normed linear spaces is

affine.

The term isometry means a distance-preserving map.

Claim 2. Every surjective inner-product-preserving map between two inner-product spaces

is linear.

Proof. An inner-product-preserving map between two inner-product spaces is an isometry.

If the map is also surjective then by the Mazur-Ulam Theorem it is affine. Let f : U → V

be a surjective inner-product-preserving map between two inner-product spaces U and V .

Thus, f is affine: f : x 7→ Ax + b where A is linear map A : U → V and b ∈ V . We need

to show that b = 0V , the zero element of V . If x, y ∈ U then,

〈x, y〉U = 〈Ax+ b, Ay + b〉V = 〈Ax,Ay〉V + 〈Ax, b〉V + 〈b, Ay〉V + ‖b‖2V . (5.25)

Taking x = y = 0U , we get that

0 = ‖0U‖2U

= ‖A0U‖2V + 〈A0U , b〉V + 〈b, A0U 〉V + ‖b‖2V

= ‖0V ‖2V + 〈0V , b〉V + 〈b, 0V 〉V + ‖b‖2V

= 0 + 0 + 0 + ‖b‖2V ,

(5.26)

implying that b = 0V .
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The following corollary follows immediately.

Corollary 5.5.2. Every metric parallel transport is linear.

We now prove the theorem.

Proof. Recall that V S2V T is the eigen-decomposition of XXT ∈ RD×D and V SUT is the

SVD of X ∈ RD×N . Let A
def
= V TX = SUT , A ∈ RD×N . Denote the columns of A by

A = [a1, . . . , aN ] = [SuT1 , . . . , Su
T
1 ] where [u1, . . . , u1]

def
= U . Thus, X = V V TX = V A ∈

(TpM)N ∼= RD×N and so xj = V aj =
∑D
k=1 vkAk,j ∈ TpM ∼= RD. Applying a metric

parallel transport, we get (for x̃j ∈ TqM ∼= RD),

x̃j =

‰�D∑
k=1

vkAk,j
linearity

=
D∑
k=1

ṽkAk,j = Ṽ aj . (5.27)

In other words, X̃ = Ṽ A = Ṽ SUT . Since V is orthogonal and inner products are preserved,

we know that Ṽ is orthogonal too. And since S is diagonal and U is orthogonal, it follows

that Ṽ SU is indeed the SVD of X̃; namely, the left singular vectors of X̃ are exactly the

transported left singular vectors of X, while the singular values and right singular vectors

are unchanged. As an aside remark, note that A
def
= V TX = Ṽ T X̃ since inner products

are preserved. That Ṽ S2Ṽ T is the eigen-decomposition of X̃X̃T ∈ RD×D follows from

X̃X̃T = Ṽ SUUTSṼ T = Ṽ S2Ṽ T , concluding the proof of part i).

Finally, by the usual connections between SVD and PCA, part ii) is a direct conse-

quence of part i).

5.5.2 Implications of the Theorem

In Hauberg et al . [66], the authors worked with LC parallel transport and show that

from parallel-transported eigenvectors of a covariance matrix in TpM , some covariance

matrix can be built in TqM . Theorem 5.5.1 is much stronger. First, it shows that not
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only can a covariance be transported to yield a second covariance, but that the result

is indeed the covariance of the transported data. Second, it shows that computing a k-

dimensional PCA model at TpM , followed by transporting its implied covariance to TqM ,

is the same as transporting the data from TpM to TqM and computing the k-dimensional

PCA model at TqM . Thus, while our framework is not limited to low-dimensional models,

when dimensionality reduction is needed, we do not have to transport the entire dataset;

it is enough to transport the model.

Note that the setup is purely Riemannian. Thus, in the low-dimensional case, in case

we want to transport a PGA model using the method described in the theorem, even if

the manifold happens to be a Lie group this model is Riemannian and not Lie-algebraic.

This is not a limitation: while a Lie-algebraic PGA model is (slightly) simpler to work

with in general, in the case of a metric parallel transport it is in fact easier to stay in the

Riemannian setting. Moreover, the Riemannian model is more strongly tied to distances

than the Lie-algebraic is.

Henceforth, in order to minimize notational clutter, we will drop the “̂” notation which

was previously used to create a distinction between a parameter (e.g . µ) and its estimator

(e.g ., µ̂). Returning to our statistical learning problem, we first compute µL and µS, the

sample intrinsic means of DL and DS respectively. For the running example from Section

1.3 (which is depicted here again in Fig. 5.7a), which involved many shapes of women but

only few shapes of men, these are shown in Fig. 5.8a (µL) and Fig. 5.8b (µS).

Let ΣL denote the covariance of DL, computed at TµLM , and ΣS denote the covariance

of DS, computed at TµSM . We now compute ΣL and ΣS (Fig. 5.7b). Next, we parallel

transport ΣL from TµLM to TµSM along the geodesic between µL and µS. We denote the

result by ΣΓ (Fig. 5.7c). In practice, we are typically interested in high-dimensional data

so the covariance cannot be stored, let alone computed directly; e.g . for body shape our

covariance matrix is 258600 × 258600. Thus, typically we only compute dominant eigen-

vectors of the covariance as is common in Rn. We compute VL ⊂ TµLM and VS ⊂ TµSM
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(a) DS and DL (b) ΣS and ΣL (c) ΣΓ and ΣL

Figure 5.7: Covariance Transport. (a) DL (red) and DS (blue). (b) ΣL (red) and ΣS (blue).
(c) ΣL (red) and ΣΓ (green). See text for details.

which denote the first KL eigenvectors of ΣL (where KL ≤ NL) and first KS eigenvectors

of ΣS respectively (we take KS = NS).

Similarly, σ2
L ∈ RKL and σ2

S ∈ RKS denote the eigenvalues. We now parallel transport

VL to TµSM , and denote the result by VΓ ⊂ TµSM . Despite its adaptation to the curvature

of the manifold, VΓ is still orthogonal for the transport is metric. Moreover, by Theorem

5.5.1, through VΓ and σL we are able to transport the statistical variation captured in VL

and σL to the region of M where DS resides (Fig. 5.7c). Relying on a principled geometric

approach, this simple novel idea leads to remarkable statistical results on real-world data

as we will see in Section 5.6. By respecting the underlying geometry, it turns out that

VΓ often performs quite well in modeling unseen examples of the small-sample class; e.g .,

shape variation of women, once transported to the mean shape of only few men, generalizes

gracefully.

Of course, we can do even better: we can combine VΓ with VS.

5.5.3 Subspace Fusion and Regularization

Our goal is to use the transported model in order to improve the model learned from

the small-sample class. Note that, as VΓ and VS are subspaces of the same linear space
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(a) (b) (c)

Figure 5.8: Mean body shapes. Intrinsic means computed using 1000 female shapes (a),
50 male shapes (b), and 50 shapes of women with high BMI (c). See text.

(TµSM), we are now back in the Euclidean realm. We here suggest several methods to

combine the models. These methods are based on similar ideas from the literature on

domain adaptation in Euclidean spaces.

Of course, if the dimension is small enough to work with full covariances, we do not

have to use lower-dimensional subspaces and can instead use the full covariance matrices.

For example, we can combine models by a convex combination:

Σλ
def
= λΣΓ + (1− λ)ΣS , 0 ≤ λ ≤ 1 . (5.28)

In Euclidean spaces, this technique is known as shrinkage estimation [129].

Otherwise, let VF ⊂ TµSM denote the result of orthonormalization applied to [VΓ, VS].

VF contains KL + KS vectors, and we think of it as the fusion of the two models. The

fused model is able to generalize better beyond DS because it also contains the transported

variation from DL. To enable a direct comparison with VL or VΓ, we can also restrict the

resulting model to have the same dimensionality by using only KL vectors. To do so we
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introduce the notion of CT regularization. Let X = [x1, .., xNS
] ⊂ TµSM represent DS,

expressed in TµSM . Define Xλ ⊂ TµSM by

Xλ
def
= [λVΓσL, (1− λ)X] , 0 ≤ λ ≤ 1 , (5.29)

and let Vλ represent the KL-dimensional PCA subspace of Xλ. This is simply weighted

PCA, where we treat vectors in VΓ as examples weighted by their associated standard

deviations. In both equations, the larger λ is, the stronger is the influence of DL. This

influence can be thought of as regularization. The value of λ may be chosen by cross-

validation.

For summary of the algorithms described above, see Algorithms 1, 2, and 3.

Input: DL = {p1, . . . , pNL
} ⊂M and DS = {q1, . . . , qNS

} ⊂M

Output: Σλ

begin1

µL, µS←− compute the Karcher means for DL and DS (using, e.g ., the algorithm2

from [113])

XL←− map DL from M to TµLM using LogµL3

XS←− map DS from M to TµSM using LogµS4

ΣL←− compute the covariance of XL5

ΣS←− compute the covariance of XS6

VL, σL←− compute the eigen-decomposition of ΣL7

VS, σS←− compute the eigen-decomposition of ΣS8

VΓ←− apply a metric parallel transport (from TµLM to TµSM) to VL9

ΣΓ←− VΓ diag(σL)V T
Γ10

Σλ ←− λΣΓ + (1− λ)ΣS , 0 ≤ λ ≤ 1 (λ may be chosen by cross-validation)11

end12

Algorithm 1: Covariance Transport: the full covariance case
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Input: DL = {p1, . . . , pNL
} ⊂M and DS = {q1, . . . , qNS

} ⊂M

Output: VF

begin1

µL, µS←− compute the Karcher means for DL and DS (using, e.g ., the algorithm2

from [113])

XL←− map DL from M to TµLM using LogµL3

XS←− map DS from M to TµSM using LogµS4

VL, σL←− compute the first KL eigen-vectors/eigen-values pairs of the covariance5

of XL (no need to compute the full covariance)

VS, σS←− compute the first KS eigen-vectors/eigen-values pairs of the covariance6

of XS (ditto)

VΓ←− apply a metric parallel transport (from TµLM to TµSM) to VL7

VF←− orthogonalize the KL +KS vectors in [VΓ, VS]8

end9

Algorithm 2: Covariance Transport for PGA models: fusion

Input: DL = {p1, . . . , pNL
} ⊂M and DS = {q1, . . . , qNS

} ⊂M

Output: Vλ

begin1

µL, µS←− compute the Karcher means for DL and DS (using, e.g ., the algorithm2

from [113])

XL←− map DL from M to TµLM using LogµL3

XS←− map DS from M to TµSM using LogµS4

VL, σL←− compute the first KL eigen-vectors/eigen-values pairs of the covariance5

of XL (no need to compute the full covariance)

VΓ←− apply a metric parallel transport (from TµLM to TµSM) to VL6

Xλ ←− [λVΓσL, (1− λ)XS] , 0 ≤ λ ≤ 1 , (λ may be chosen by cross-validation)7

Vλ ←− KL-dimensional PCA subspace of Xλ8

end9

Algorithm 3: Covariance Transport for PGA models: regularization
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Figure 5.9: Summary for body shape experiments. Left: Gender. Right: BMI. In each
subfigure, the four bars represent the overall reconstruction error for four models: VL, VS,
VΓ, and VF. For a given model, the height of the column represents the reconstruction
error (measured in terms of squared geodesic distances on GT – the Lie group of triangle
deformations – averaged over both the entire test dataset as well as all of the Ntri triangles
in the mesh. See text for an interpretation of these results.

5.6 Results

While CT is applicable on numerous manifolds, we here focus on human shape modeling.

For additional experiments with image descriptors, involving the manifold of SPD matrices,

see [42]. For our experiments here, we use the manifold of mesh deformations we introduced

in Chapter 4. Recall that at the core of this manifold, there is a six-dimensional manifold,

called GT , which in turn is built on three other smaller ones: SO(3), GA, and GS . Note

that in Chapter 4 dimensionality-reduction was achieved by Lie-algebraic PGA. In contrast,

here we do Riemanninan PGA. Additionally, in this chapter we also use another dataset

of meshes – with better alignment and better pose normalization – that was not available

to us when we performed the experiments in that chapter.

5.6.1 From Venus to Mars

We consider a challenging scenario to illustrate the surprising power of CT. Here DL and

DS consist of shapes of NL = 1000 women and NS = 50 men respectively. First we use

an iterative algorithm [113] to compute the respective intrinsic means, µL (Fig. 5.8a) and
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(a) VL (b) VS (c) VΓ (d) VF (e) Vλ

Figure 5.10: Model mean error: Genders. Blue and red indicate small and large errors
respectively. The heat maps are overlaid over the points of tangency associated with the
models: µL for (a), and µS for (b-e). See text for details.

µS (Fig. 5.8b). We then compute the Riemannian PGA subspaces with KL = 200 and

KS = 50. Thus, VL is a 200-dimensional subspace of TµLM , while VS is a a 50-dimensional

subspace of TµSM . Next, we use the LC parallel transport to move VL, from TµLM to

TµSM , to produce VΓ, a 200-dimensional subspace of TµSM . An animated illustration is

available online at:

http://www.dam.brown.edu/people/freifeld/shapes/CovTransport.mpg

For an explanation of the contents of this movie, please see the following file:

http://www.dam.brown.edu/people/freifeld/shapes/CovTransport_ReadMe.txt

Finally, we create two additional subspaces of TµSM . The first is the fused model, VF,

a 250-dimensional subspace. The second is the regularized model Vλ, a 200-dimensional

subspace. Both these models were obtained using the procedures described in Section

5.5.3.

We evaluate performance on 1000 test male shapes. As explained in Chapter 4, for

each test mesh, denoted by Mi, we extract its associated mesh deformation, denoted by

pi. Our goal here is to evaluate the reconstruction of the pi’s using the different models.

The process has similarity to our reconstruction experiments from Chapter 4. However,

as there we use Lie-algebraic PGA models while here we used Riemannian PGA models,

http://www.dam.brown.edu/people/freifeld/shapes/CovTransport.mpg
http://www.dam.brown.edu/people/freifeld/shapes/CovTransport_ReadMe.txt
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there are slight differences in the projection and reconstruction procedures so it is worth

going over the details. Let V denote any one of the 5 models of interest: VL, VS, VΓ, VF,

and Vλ. Let µ denote the point of tangency associated with the model. For VS, this point

is µL, while for the other 4 models it is µS. To project pi on V we compute the subspace

coefficients V TLogµ(pi). To reconstruct the mesh deformation, we map the coefficients

back to M by setting precon
i = Expµ(V TLogµ(pi)). We then compute the geodesic distance

between pi and precon
i . We think of this distance as the reconstruction error. In fact,

since M = GNtriT , this is done by first computing the geodesic distance associated with

the deformation of each one the triangles in Mi. This enables us to define reconstruction

error in terms of Squared Geodesic Error (SGE), computed per triangle10. We also, for a

fixed i, average the SGE over all triangles inMi to compute the Mean SGE (MSGE). This

defines the performance of the model for pi, the mesh deformation. Finally, the overall

performance of the model is defined by averaging the MSGE over all test examples. The

MSGE results are summarized in Fig. 5.9 (left). To visualize the performance, we average

the SGE, per triangle, over all test examples and display these per-triangle errors over the

mesh associated with the point of tangency of the model (Fig. 5.10).

Figure 5.10a shows that VL performs very poorly; a shape model of women fails to

model men. While the errors for VS are much lower (Fig. 5.10b), there are still noticeable

errors due to poor generalization. The surprise is Fig. 5.10c, which shows the result for

VΓ: the parallel transport dramatically improves the female model (Fig. 5.10a) to the

point it fares comparably with the male model (Fig. 5.10b), although the only information

used from the male data is the mean. Combining transported and local models lets us do

even better. Figure 5.10d shows the result of VF; it significantly improves over VS or VΓ.

Figure 5.10e shows the regularized model, Vλ, which has the same dimensionality as VL

and still performs well. Figure 5.11 shows selected results for test bodies; see Appendix B

for additional results and reconstructions.

10Geodesics with respect to GT , not to the 2D body surface.
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5.6.2 From Normal-Weight to Obesity.

A good statistical shape model of obese women is important for fashion and health appli-

cations11 but is difficult to build since the data are scarce as reflected by their paucity in

existing body shape datasets. Here DL stands for 1000 shapes of women with BMI ≤ 30

while DS consists of only 50 shapes of women with BMI > 30. Figure 5.8c shows µS; µL is

not shown as it was very similar to the µL from the gender experiment. Figures 5.9 (right)

and 5.12 summarize the results. Compared with the gender experiment there are two

main differences: 1) Here VΓ is already much better than VS so fusion only makes a small

difference. 2) Error bars in are larger (Fig. 5.9, right) than before (Fig. 5.9, left) due to

the limited amount of test data available for high-BMI women; this is truly a small-sample

class: we were able to obtain only 50 test examples. Compared with using VS, mesh re-

construction is noticeably improved using our method (VF). In both the gender and BMI

experiments, results for Vλ look nearly identical to VF, and are not shown. See Appendix

B for individual reconstruction results.

5.7 Conclusion

We have described a principled approach for transporting a covariance matrix across a

Riemannian manifold and for using the transported covariance to improve the estimation

of another covariance on that manifold. This goes beyond previous methods of domain

adaptation and transfer learning for Rn-valued data. We have proven that the parallel

transport of a covariance matrix preserves the statistics as long as the parallel transport

is metric. The approach is broadly applicable to any manifold in which a metric parallel

transport can be computed. This includes, but is not limited to, mesh deformation models

as we showed here by our experiments and image descriptors (omitted here; see [42] for

11BMI is known to be a poor predictor of risk for cardiovascular disease and diabetes, while body shape,
as captured by hip to waist ratio, is better. An open question, and beyond our scope, is whether more
detailed body shape properties are better predictors. Accurate shape modeling is the first step toward an
answer.
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more details).

Finally, while LC is often considered a natural choice, and we find it works very well

for CT of real-world data, future work should explore implications of other types of metric

parallel transport on CT.



189

Ground
Truth

VL

(Women)

VS

(Men)

VΓ

(Par. Tran.)

VF

(Fuse)

Figure 5.11: Selected results: Gender. Each column represents a different test body. The
heat maps are overlaid on the reconstructions using different models.
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(a) VL (b) VS (c) VΓ (d) VF (e) Vλ

Figure 5.12: Model mean error: BMI. Analogous to Fig. 5.10.
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Ground
Truth

VL

(BMI≤ 30)

VS

(BMI> 30)

VΓ

(Par. Tran.)

VF

(Fuse)

Figure 5.13: Selected results: BMI. Analogous to Fig. 5.13.



Chapter 6

Final Words and Future Directions

Throughout this work we showed how 2D and 3D deformable shapes are represented via

matrix Lie groups, how to build statistical models on these manifolds, and the advantages

of such representations over standard Euclidean approaches.

Several of the key ideas behind the Contour Person model (Chapter 3), which we first

introduced in [43], have already provided the basis for additional models and applications

of 2D articulated-but-detailed human shape; see our recent works (Guan et al . [57] and

Zuffi et al . [155]), as well as Zuffi and Black [154] and Jhuang et al . [75].

Our CP model is view-based and in Chapter 3 we have only shown examples for frontal

bodies. A key next step is to extend this to other discrete views. A general solution to the

human pose and shape estimation problem will require an inference method to search over

a discrete set of views; however, for achieving this aim, rather than using the single-contour

approach described here, it is preferable to employ a multiple-contour approach such as the

one we have recently employed in Zuffi et al . [155]. In that work, we built a variant of the

CP representation that supports an arbitrary range of poses (including more complicated

self-occlusions).

192
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We expect that due to their superiority as generative models, the emerging detailed

2D models of articulated shape, perhaps together with richer appearance models (e.g .,

see [78]), will gradually replace the traditional Pictorial Structures models.

The Lie Shapes representation (Chapter 4), which we first introduced in [41], provides

an elegant way to represent deformable shape without many of the problems associated

with Euclidean representation while keeping a low computational cost. We showed how

this representation leads to better distances and better statistical models.

Future work should incorporate our representation into factored statistical models such

as SCAPE [6] (which factors body-shape variation into separate pose, shape, and pose-

dependent deformations) or its derivative DRAPE [58] (which adds a clothing deformation

layer on top of SCAPE). Here our group structure is ideal for composition of deformations.

For example, SCAPE factorizes a local deformationQ asRposeQshapeQpo.dep., whereRpose is

a rotation matrix that affects the entire body part, while Qshape and Qpo.dep. are Euclidean

deformations and po.dep. is short for ‘pose-dependent’. With our representation, this will

now have form

Y =

R∈SO(3)︷ ︸︸ ︷
RposeRshapeRpo.dep.R

T
X

A∈GA︷ ︸︸ ︷
AshapeApo.dep.

S∈GS︷ ︸︸ ︷
SshapeSpo.dep.RXX. (6.1)

This composition is consistent and more natural as here the different kinds of the defor-

mations (rotation, planar, scaling) are grouped accordingly.

As our representation can be used through a simple drop-and-replacement within exist-

ing models, we anticipate wide application for Lie shapes in computer vision and computer

graphics. In particular, the ability to easily compute meaningful averages on the manifold

of mesh deformations suggests that classical problems such as key-frames, shape inter-

polation, and blend skinning, should be revisited so their solutions can benefit from the

advantages of our representation. Each one of the three components in our representation

of a local deformation (R, A and S) can be modeled using a different method. For example,

consider blend skinning: a particular part of a skeleton may have different influences on the
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R, A, and S of a particular triangle of interest. In addition, the averaging associated with

the blending should be done directly on the manifold of triangle deformations using the

intrinsic mean, and is thus expected to yield better results than the traditional Euclidean

averaging. More generally than blend skinning, there is no reason to expect that the op-

timal type of statistical distribution for modeling rotations (R) should be the same as the

one for the planar deformations (A) or the scaling (S). We expect that a considerable gain

will be achieved once statistical models take this into account.

On the manifold of mesh deformations, in addition to defining new parametric statistical

models (e.g ., SCAPE-like), it is possible to define models based on nonparametric statistics

(as was done, e.g ., in [10] for other shape spaces). For example, in Ghosh et al . [48] triangle

deformations are modeled using a Bayesian nonparametric statistical model in order to

automatically segment an articulated mesh into its different parts. We plan to explore the

effect of adapting their model to use our manifold-based representation.

Likewise, Markov-random-fields methods for mesh regularization can be adapted to take

into account geodesic distances between local deformations of adjacent triangles; that is,

the local potentials will be defined through statistics on manifolds rather than the inferior

Euclidean statistics. Closely related to this line of thinking is the notion of natural 3D

shape statistics: similarly to natural image statistics, an ensemble of real-world 3D shapes

presents us with a way to define and learn the local statistical characteristics of shape

deformations. To the best of our knowledge, and unlike the well-studied case of image

statistics, this direction has yet to be explored; we believe that our manifold provides a

natural tool for such statistics. Additional concepts related to graphical models, such as

belief propagation, may also be generalized to work with manifold-valued data. Specifically

in our context, it makes sense to represent the skeleton of a 3D human shape via a graphical

model whose random variables at the nodes represent the joints and take values in SO(3).

Coupled with our manifold of mesh deformation to represent the skin, this gives a unifying

probabilistic representation for variability of 3D human shapes using nonlinear manifolds.
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Our manifold-based representation, much like its related Euclidean representations, is

based on deformations of single triangles. It is possible to push the manifold representation

further by explicitly encoding more constraints on the way adjacent triangles deform. For

example, the deformation of a pair of triangles sharing an edge is fully defined by 9 DoF

(instead of 12 = 6 × 2) and so. Here we decided against such an approach in order to

keep the representation simple as well as to maintain the Lie group structure. However,

because of the possible gain that can be achieved due to the reduction of DoF, it is worth

pursuing research on such more complicated manifolds of triangle deformations even if

these manifolds will not be Lie groups.

An additional promising future research direction is to combine the Lie shapes represen-

tation with the emerging new information-theoretic methods on Lie-groups; see, e.g ., the

recent textbooks by Chirikjian [20,21]. While there are some obstacles here – for example,

GA is not unimodular – such an approach can be very useful to answer questions such as

the following: across a corpus of meshes of human bodies, which triangles are more infor-

mative than others? A satisfying answer to this question can lead to useful modification

of the Riemannian metric.

We also showed how to generalize a transfer learning idea from Rn-valued data to

manifold-valued data (Chapter 5). This new tool for statistics on manifolds is not restricted

to either shape-deformation manifolds or matrix Lie groups. Rather, it is applicable to

every geodesically-complete Riemannian manifold. We expect that this tool will provide

the basis for tackling interesting problems related to scarce manifold-valued data. We

here focused on covariance matrices and Riemannian PGA models. The method applies

transparently to other types of linear subspaces. for example, the parallel-transport-based

framework suggested by Wei et al . [147] for learning image deformations can be readily

improved by switching from Lie-algebraic PGA models and non-metric parallel transport

to Riemannian PGA models and a metric parallel transport.

We view Riemannian covariance transport as a particular case of the more general – and
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yet-to-be-explored – case of Riemannian statistics transport. Future work will extend the

framework to more complex statistics, e.g . by modeling multi-modal data with transported

mixtures. Other learning problems like canonical correlation analysis, weakly-paired data

[85], probabilistic PGA, and classification could be treated similarly.

In particular, Riemannian statistics transport provides a natural tool for transporting

the statistics of shapes of few people in many poses to shapes of new people of whom only

one pose is available. Consequently, this should enable reposing people in new poses in a

more principled way than the current state-of-the-art approaches. We expect this kind of

tool to have an important impact on applications in, e.g ., animating avatars.

But let us now go back to the issue of covariance transport. In some sense, parallel

transport is nothing more than a generalization, from Euclidean spaces to manifolds, of

ordinary translation. Thus, it is a useful tool whenever we want to generalize techniques

from Euclidean statistics that employ (even if only implicitly) translation. On the face of

it, it seems that the other side of the coin is negative; that is, if in a given situation with

manifold-valued data we have no reason to expect that translation would have helped us in

a hypothetical analogous Euclidean scenario, then it seems like parallel transport will have

no merit. We argue, however, that a useful statistical lemonade can be still made from

these lemons. This is because while parallel transport indeed generalizes translation, this

generalization depends on the curve along which the parallel transport is done as well as

on the Riemannian metric (recall our discussion is restricted to metric parallel transport).

Importantly, while in Chapter 5 we focused on parallel transport along geodesics, both

the covariance transport framework and the covariance transport theorem hold for any

differentiable curve in M . It should be understood that choices of different curves, between

the same two points, lead to different results in terms of the transported covariance. An

interesting future research direction is to explore how the performance of the transported

covariance can guide us in picking the best path between two points on M – and this

path need not be a geodesic. It is also interesting to consider integrating the results over

an ensemble of possible curves, possibly weighted by how probable each curve is. As we
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pointed out, the transported covariance is affected by not only the choice of the curve but

also the Riemannian metric. Thus, the performance of the transported covariance may

help us understand what choices for Riemannian metric are better than others. Moreover,

throughout this dissertation we focused on known manifolds. However, we believe that

combining the covariance transport (presented here) with the learning of a Riemannian

metric (as we presented in Hauberg et al . [65]) will prove to be a powerful tool1.

To summarize, our final conclusion from this dissertation is that before diving into the

statistical modeling, it behooves us to pay attention to the problem at hand and to consider

whether the space of interest has a particular geometrical structure that can be exploited.

1The idea of working with these two new tools in conjunction was first suggested by Søren Hauberg.



Appendix A

Mathematics

In this appendix, we cover several mathematical definitions that are referred to throughout

this work. The appendix is by no means intended to serve as a complete reference to the

topics it touches upon. Rather, it is only meant to provide a quick reference to make the

main text more self-contained.

A.1 Topology

Let us motivate the discussion. A topological space is a concept more general than a metric

space: every metric space is a topological space but the converse is false; i.e., there are

topological spaces on which no metric can be defined. Compared with topological spaces,

the notion of metric spaces is less abstract in the sense it is easy to wrap our mind around

a space in which we can measure distances between points, convergence can be defined

through the notion of a distance, a limit point of a convergent sequence is unique, and

so on. In most practical problems in computer vision and pattern theory, the spaces of

interest are metric spaces, and not merely topological. This raises the question: why

should we care about topological spaces? One reason is that often it is useful to define and

198
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understand concepts in their most abstract setting. One example is that using topological

terminology it is possible to define manifolds without having to rely on an ambient space;

even if there is a natural ambient space, this kind of a definition relieves us from many

annoying technical details. Another concrete example is that topological terminology helps

us to see immediately that full-rank n× p rectangular matrices form an open subset (and

thus, an open submanifold) of Rn×p. In particular, this holds for invertible matrices and

thus we get that invertible matrices form an open set. Of course, one can reach the same

conclusion by sticking to metric space terms, but this requires a significantly greater effort.

The main reference in this Section is [108].

Definition A.1.1 (Topological space). Let X be space. A topology on X, is any collection

τ of subsets of X such that:

1. The ∅ and X are in τ ;

2. The intersection of the elements of any finite subcollection of τ is in τ :

{U1, U2, . . . , Un} ⊂ τ =⇒
n⋂
i=1

Ui ∈ τ . (A.1)

3. The union of the elements of any subcollection of τ is in τ :

{Uα}α∈I ⊂ τ =⇒
⋃
α∈I

Uα ∈ τ , (A.2)

where I is some index set1.

The ordered pair (X, τ) is called a topological space.

When τ is understood from the context, we often omit τ and say that “X is a topo-

logical space” although, strictly speaking, different topologies on X give rise to different

topological spaces.

1Note this includes cases when I is uncountable.
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Remark A.1.1. The word “space” in the first sentence of Definition A.1.1 means the exact

same thing as the word “set”: a collection of elements. Since we often refer to subsets of

the set X as “sets” themselves, it is convenient to make an artificial distinction between

X and its subsets by using the term “space” for X. Of course, since X ⊂ X, we may also

regard X as its own subset.

Definition A.1.2 (Open and closed sets). If (X, τ) is a topological space, the members of

τ are called open sets (or open subsets of X). A complement of an open set (with respect

to X) is called closed.

Example A.1.1 (Sets that are both open and closed). It is easy to see that X and ∅ are

both open and closed. If some additional conditions hold, then X and ∅ are the only sets

that are both open and closed.

Definition A.1.3 (Open cover). If (X, τ) is a topological space, then any subcollection

of τ whose union is X is called an open cover of X.

In particular, since X ∈ τ (by Definition A.1.1), τ itself is an open cover of X, and

thus there always exists at least one open cover.

Remark A.1.2. As pointed out by Royden [126], the term ‘open cover’ is an abuse of

language: the adjective ‘open’ refers to the sets themselves, not to the cover. For example,

in the term ‘finite cover’, the adjective ’finite’ refers to the cover and does not imply that

each one of the sets is finite. Be that as it may, this terminology is well established in

mathematics.

Definition A.1.4 (Second-countable space). A topological space (X, τ) is said to be

second-countable if its topology has a countable base; namely, if there exists a count-

able collection U = {Ui}∞i=1, where U ⊂ τ , such that every U ∈ τ can be written as a union

of elements of some subcollection of U .

Fact A.1.1. A countable product of second-countable spaces is second-countable.

Definition A.1.5 (Hausdorff space). A topological space X is called Hausdorff if for
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every pair of points x, y ∈ X, there exist open sets U and V such that x ∈ U , y ∈ V , and

U ∩ V = ∅.

Fact A.1.2. A product space of Hausdorff spaces is Hausdorff.

Example A.1.2. The real line, R, is Hausdorff. Rn is Hausdorff since it is the product

space of n copies of R. Likewise, Rn is second-countable since R is second countable: the

collection of all open intervals whose endpoints are rational numbers is a countable bases

for the standard topology on R.

Remark A.1.3. Every Hausdorff space is T1; namely, if x ∈ X, then the singleton {x} is a

closed set.

Example A.1.3. {0} ⊂ R is closed, and thus its complement R− {0} is open.

Definition A.1.6 (Continuous function). Let X and Y be topological spaces. A function

f : X → Y is called continuous if f−1(V ) is an open subset of X whenever V is an open

subset of Y .

Remark A.1.4. Definition A.1.6 holds even if the spaces X and Y are not metric spaces.

However, all spaces of interest in our work are metric spaces. For metric spaces, an equiv-

alent definition for a continuous function can be made using the “ε − δ” machinery that

is familiar from Calculus and does not require knowledge of topology. That said, Def-

inition A.1.6 (in addition to being analogous to the concept of measurable functions or

random variables) is still useful even in the context metric spaces as the following example

illustrates.

Example A.1.4. The determinant, det : Rn×n → R, is a continuous function, as can be

shown by expanding the determinant using the Leibniz formula.

Example A.1.5. Invertible matrices form an open subset of Rn×n. This follows from

Definition A.1.6, Example A.1.3 and Example A.1.4.

Corollary A.1.1 (Composition of continuous functions yields a continuous function). By

Definition A.1.6, if X,Y ,Z are topological spaces and f : X → Y and g : Y → Z are

continuous, then so is g ◦ f : X → Z
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Proof. Consider (g ◦ f)−1(W )
by def.

= f−1(g−1(W )) where W ⊂ Z is open and note that

g−1(W ) is open.

Example A.1.6 (Matrix multiplication is continuous). Matrix multiplication,

Rn1×n2 × Rn2×n3 → Rn1×n3 : (A,B) 7→ AB,

is a continuous function.

Proposition A.1.2. Let n1 ≥ n2. The set of full-rank rectangular matrices is open (as a

subset of Rn1×n2).

Before the proof, let us recall the definition of a full-rank matrix:

Definition A.1.7 (Full-rank matrix). Let n1 ≥ n2. A “skinny-tall“ rectangular matrix

A ∈ Rn1×n2 is said to be full rank if rank(A) = n2, or equivalently, if det(ATA) 6= 0.

Thus the set of full rank matrices is given by¶
A ∈ Rn1×n2 : A ∈ f−1(R− {0})

©
(A.3)

where

f : Rn1×n2 → R : A 7→ det(ATA). (A.4)

Proof. Let f be as in Eqn. (A.4). By Example A.1.3, the set R − {0} is open. Thus, by

Definition A.1.6 it is enough to show that f is continuous, since this would imply that

f−1(R−{0}) is open in Rn1×n2 . The continuity of f follows from Example A.1.4, Example

A.1.6 and Corollary A.1.1.

Proposition A.1.2 generalizes Example A.1.5.
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Definition A.1.8 (Homeomorphism). Let X and Y be two topological spaces. A function

f : X → Y is called a homeomorphism if f is a continuous invertible function such that

f−1 is also continuous. In which case, X and Y are said to be homeomorphic to each other.

A homeomorphism should not be confused with a homomorphism.

Remark A.1.5. The requirement for the continuity of f−1 is not superfluous; there exit

examples for an invertible continuous function whose inverse is not continuous.

Definition A.1.9 (Connected space). A topological space (X, τ) is said to be connected

if it cannot be written as the union of two disjoint nonempty open sets. In other words,

X 6= U ∪ V for every choice of two nonempty sets U, V ∈ τ .

Definition A.1.10 (Path-connected space). A topological space (X, τ) is called path-

connected if for every two points p and q in X, there exists a continuous curve, c : [0, 1]→

X, such that c[0] = p and c[1] = q.

Path-connectedness is a stronger requirement than connectedness. However, under

some mild conditions (that hold for all the manifolds used in this work), a connected space

is also path-connected.

A.2 Calculus

Definition A.2.1 (Smooth function from Rn to Rm). If U and V are open subsets of Rn

and Rm, respectively, a function f : U → V id said to be smooth if each of its component

functions has continuous partial derivatives of all order.

Definition A.2.2 (Diffeomorphism between two open subsets of Rn). Let f : U → V be

smooth function from an open subset of Rn to an open subset of Rm. If f is not only

smooth but also bijective (which implies n = m) with a smooth inverse, then f is called a

diffeomorphism.
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A.3 Real Analysis

Definition A.3.1 (Metric space). A metric space is an ordered pair (M,d) where M is a

set2 and d : M ×M → R is a metric on M ; namely, for every x, y, z ∈ M , the following

properties hold:

d(x, y) ≥ 0 (A.5)

d(x, y) = 0 ⇐⇒ x = y (A.6)

d(x, y) = d(y, x) (A.7)

d(x, z) ≤ d(x, y) + d(y, z) . (A.8)

When it is understood from the context which metric is used, we usually refer to M

alone as a metric space (i.e., omitting d), although strictly speaking it is the (M,d) pair

that forms the metric space; different metrics on the same set M give rise to different

metric spaces. We usually think of d as a distance function. Note that a metric space need

not be linear. In particular, if M is a manifold (see Chapter 2), then it is also space (or a

set). To make the manifold a metric space, we need to define a metric d.

Definition A.3.2 (Normed vector space). A Normed vector space is an ordered pair (V, ‖‖)

where V is a vector space and ‖‖ : V → R is a norm on V ; namely, for every x, y ∈ V , and

every α ∈ R, the following properties hold:

‖αx‖ = |α|‖x‖ (A.9)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ (A.10)

‖x‖ = 0⇒ x = 0V (A.11)

where 0V is the zero vector of V .

Remark A.3.1. Every norm implies a metric. The converse is false. If the metric space is

2Or a space – the words “set” and “space” can be used interchangeably here.
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not linear, then a norm cannot even be defined; however, it is worth pointing out that the

converse is still false even if the space is linear.

Definition A.3.3 (Frobenius norm). Let A ∈ Rm×n. Its Frobenius norm is given by

‖A‖F =

Ñ
m∑
i=1

n∑
j=1

A2
i,j

é1/2

. (A.12)

Definition A.3.4 (Inner-product space). An inner-product space (over the field F) is an

ordered pair (V, 〈·, ·〉) where V is a vector space and 〈·, ·〉 : V × V → F is an inner product

on V ; namely, for every x, y, z ∈ V and every α, β ∈ F, the following properties hold:

〈x, y〉 = 〈y, x〉 (A.13)

〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉 (A.14)

〈x, x〉 ≥ 0 (A.15)

〈x, x〉 = 0 ⇐⇒ x = 0 . (A.16)

Every inner product implies a norm:

‖x‖ =
»
〈x, x〉 , (A.17)

the converse is false.

Definition A.3.5 (Angle). Let (V, 〈·, ·〉) be an inner-product space, and let x, y ∈ V . The

angle between x and y is defined by:

angle(x, y) = arccos
〈x, x〉
‖x‖ · ‖x‖ . (A.18)
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This appendix contains additional results for Chapter 5.

See figures in the next pages. We first show results for 10 test examples from the BMI

experiment, and then another 10 from the gender experiment. Each figure shows, from

left to right: Ground Truth; VS reconstruction; VF reconstruction; VS reconstruction error;

VF reconstruction error. Frontal view is shown in the top row and profile is shown in

the bottom. Typically differences in reconstruction results are most noticeable in regions

where the corresponding error maps differ significantly in colors.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.1: BMI reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.2: BMI reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.3: BMI reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.4: BMI reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.5: BMI reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.6: BMI reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.7: BMI reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.8: BMI reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.9: BMI reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.10: BMI reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.11: Gender reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.12: Gender reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.13: Gender reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.14: Gender reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.15: Gender reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.16: Gender reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.17: Gender reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.18: Gender reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.19: Gender reconstruction example.
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(a) Ground Truth (b) VS (c) VF (d) VS (e) VF

(f) Ground Truth (g) VS (h) VF (i) VS (j) VF

Figure B.20: Gender reconstruction example.
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