$\mathcal{O R T H O G O N} \mathcal{A L} \mathcal{P O} \mathcal{L Y N O M I A L S}$

The orthogonal polynomials on $-1<\mu<1$ with the weight function "1" are the Legendre polynomials, and in a fourth order approximation for shallow water waves and flows, we would need the first five:

$$
P_{0}=1, P_{1}=\mu, P_{2}=\frac{1}{2}\left(3 \mu^{2}-1\right), P_{3}=\frac{1}{2} \mu\left(5 \mu^{2}-3\right), P_{4}=\frac{1}{8}\left(35 \mu^{4}-30 \mu^{2}+3\right) .
$$

(The last one is for w, which has an extra power of \tilde{z}.)
The substitution, $\mu=2 \tilde{z} / F$, converts the domain to $-F / 2<\tilde{z}<F / 2$, and the orthogonal polynomials on that interval are

$$
\begin{gathered}
\phi_{0}=P_{0}=1, \quad \phi_{1}=\frac{F}{2} P_{1}=\tilde{z}, \quad \phi_{2}=\frac{1}{3}\left(\frac{F}{2}\right)^{2} P_{2}=\frac{1}{2}\left(\tilde{z}^{2}-\frac{1}{12} F^{2}\right) \\
\phi_{3}=\frac{1}{15}\left(\frac{F}{2}\right)^{3} P_{3}=\frac{1}{6} \tilde{z}\left(\tilde{z}^{2}-\frac{3}{20} F^{2}\right) \text { and } \\
\phi_{4}=\frac{1}{105}\left(\frac{F}{2}\right)^{4} P_{4}=\frac{1}{24}\left(\tilde{z}^{4}-\frac{3}{14} \tilde{z}^{2} F^{2}+\frac{3}{560} F^{4}\right) .
\end{gathered}
$$

The integral of P_{n}^{2} is $2 /(2 n+1)$, and

$$
\begin{aligned}
& \left\langle\phi_{0}^{2}\right\rangle=\frac{F}{2} \cdot 2=F, \quad\left\langle\phi_{1}^{2}\right\rangle=\left(\frac{F}{2}\right)^{3} \cdot \frac{2}{3}=\frac{1}{12} F^{3}, \quad\left\langle\phi_{2}^{2}\right\rangle=\left(\frac{F}{2}\right)^{5} \cdot \frac{1}{9} \cdot \frac{2}{5}=\frac{1}{720} F^{5} \\
& \left\langle\phi_{3}^{2}\right\rangle=\left(\frac{F}{2}\right)^{7} \cdot \frac{1}{15^{2}} \cdot \frac{2}{7}=\frac{1}{100800} F^{7} \text { and }\left\langle\phi_{4}^{2}\right\rangle=\left(\frac{F}{2}\right)^{9} \cdot \frac{1}{105^{2}} \cdot \frac{2}{9}=\frac{1}{25401600} F^{9}
\end{aligned}
$$

The expansion scheme for the set $\left\{\phi_{k}(\tilde{z}, F)\right\}$ is

$$
q=Q+\sum \tilde{q}_{k} \phi_{k} \text { with }\langle q\rangle=Q F \text { and }\left\langle\phi_{k} \tilde{q}_{k}\right\rangle=\left\langle\phi_{k}^{2}\right\rangle \tilde{q}_{k} .
$$

The differential equations for the moments follow more-or-less as in the section on means and moments, with

$$
\left.\phi_{k}\left(q_{t}+u q_{x}+v q_{y}+w q_{z}\right)\right\rangle=\left\langle\phi_{k} q\right\rangle_{t}+\left\langle u \phi_{k} q\right\rangle_{x}+\left\langle v \phi_{k} q\right\rangle_{y}-\left\langle q \frac{d \phi_{k}}{d t}\right\rangle
$$

where $d / d t=\partial_{t}+u \partial_{x}+v \partial_{y}+w \partial_{z}$.
In the usual notation, where

$$
\mathbf{u}=(u, v)^{\top}, \quad \nabla=\left(\partial_{x}, \partial_{y}\right)^{\top}, \quad \Delta=\nabla^{\top} \nabla \text { and } \frac{D}{D t}=\partial_{t}+\mathbf{U}^{\top} \nabla
$$

the equations for the moments of \mathbf{u} are

$$
\left\langle\phi_{k} \mathbf{u}\right\rangle_{t}+\left(\nabla^{\top}\left\langle\phi_{k} \mathbf{u} \mathbf{u}^{\top}\right\rangle\right)^{\top}-\left\langle\mathbf{u} \frac{d \phi_{k}}{d t}\right\rangle+\left\langle\phi_{k} \nabla p\right\rangle=0 .
$$

After the pressure has been rearranged as,

$$
\begin{aligned}
& \qquad p=p_{H}+G(H-z)+\grave{p} \text { with } \grave{p}_{H}=\grave{p}_{B}=0 \\
& \text { and } \nabla p=\nabla p_{H}+G \nabla H+\frac{1}{2} F \nabla G-\tilde{z} \nabla G+\nabla \grave{p}
\end{aligned}
$$

the nine degrees of freedom of the fourth-order approximation are in

$$
\begin{gathered}
\frac{D H}{D t}+F \nabla^{\top} \mathbf{U}=B_{t}+\mathbf{U}^{\top} \nabla B, \\
\frac{D \mathbf{U}}{D t}+\frac{1}{F}\left(\nabla^{\top}\left\langle\tilde{\mathbf{u}} \tilde{\mathbf{u}}^{\top}\right\rangle\right)^{\top}+\nabla p_{H}+G \nabla H+\frac{1}{2} F \nabla G+\frac{1}{F} \nabla\langle\grave{p}\rangle=0, \\
\langle\tilde{z} \mathbf{u}\rangle_{t}+\left(\nabla^{\top}\left\langle\tilde{z} \mathbf{u} \mathbf{u}^{\top}\right\rangle\right)^{\top}-\left\langle\mathbf{u}\left(w-\frac{d Z}{d t}\right)\right\rangle=\frac{F^{3}}{12} \nabla G-\langle\tilde{z} \nabla \grave{p}\rangle, \\
\left\langle\phi_{k} \mathbf{u}\right\rangle_{t}+\left(\nabla^{\top}\left\langle\phi_{k} \mathbf{u} \mathbf{u}^{\top}\right\rangle\right)^{\top}-\left\langle\mathbf{u} \frac{d \phi_{k}}{d t}\right\rangle+\left\langle\phi_{k} \nabla \grave{p}\right\rangle=0 \quad(k=2,3) .
\end{gathered}
$$

Now

$$
\frac{d \phi_{k}}{d t}=\phi_{k \tilde{z}}\left(w-\frac{d Z}{d t}\right)+\frac{\partial \phi_{k}}{\partial F} \frac{d F}{d t}
$$

gives

$$
\begin{gathered}
\frac{d \phi_{2}}{d t}=\tilde{z}\left(w-\frac{d Z}{d t}\right)-\frac{F}{12} \frac{d F}{d t} \text { and } \\
\frac{d \phi_{3}}{d t}=\frac{1}{2}\left(\tilde{z}^{2}-\frac{F^{2}}{20}\right)\left(w-\frac{d Z}{d t}\right)-\frac{\tilde{z} F}{20} \frac{d F}{d t} .
\end{gathered}
$$

and the gravity equation follows from

$$
\begin{gathered}
W=\frac{D B}{D t}-\frac{1}{2} F \nabla^{\top} \mathbf{U}+\frac{1}{F} \nabla^{\top}\langle\tilde{z} \tilde{\mathbf{u}}\rangle \\
\text { and } G=g+\frac{D W}{D t}+\frac{1}{F} \nabla^{\top}\langle\tilde{\mathbf{u}} \tilde{w}\rangle .
\end{gathered}
$$

This time the result is

$$
\left(1+\nabla H^{\top} \nabla B-\frac{1}{2} F \Delta H\right) G-\frac{1}{3 F} \nabla^{\top}\left(F^{3} \nabla G\right)=g+\Gamma+\mathcal{T} .
$$

where

$$
\Gamma=\left(\frac{1}{2} F \nabla-(\nabla B)\right)^{\top}\left(\nabla p_{H}+\frac{1}{F} \nabla\langle\grave{p}\rangle\right)-\frac{1}{F} \nabla^{\top}\langle\tilde{z} \nabla \grave{p}\rangle
$$

There is a lot of virtual algebra to be done if we find a need for higher order approximations, but the last one of these that requires any thought to speak of is the third order approximation.

