ORTHOGON AL POLYNOMIALS

The orthogonal polynomials on —1 < 1 < 1 with the weight function ”1”
are the Legendre polynomials, and in a fourth order approximation for shallow
water waves and flows, we would need the first five:
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(The last one is for w, which has an extra power of Z.)

The substitution, 1w = 2Z/F, converts the domain to —F/2 < Z < F'/2, and the
orthogonal polynomials on that interval are

F 1 [F\? 1 1
e P e ]_ — _P — z — _ - P I ~2 . F2)
b0 0 . ;r 5 11 Z, ¢ 3 ( > > =3 (z B 7

1 /F\?3 1. /. 3
¢3 1—5 <§) pg 62 <Z2 — 2—0F2> and
1 /F\* 1 3 3
=— (=) P=—(3*— =322 —F4>.
Z 105(2) 179 (Z 11 T 560

The integral of P?is 2/(2n + 1), and
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The expansion scheme for the set {¢x(2, F')} is
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The differential equations for the moments follow more-or-less as in the sec-

tion on means and moments, with
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where d/dt = 0, + u0, + v0, + wO0,.

In the usual notation, where
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the equations for the moments of u are
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After the pressure has been rearranged as,
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1
and Vp:VpH+GVH+§FVG—2VG+V]5,

the nine degrees of freedom of the fourth-order approximation are in
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and the gravity equation follows from
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This time the result is
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There is a lot of virtual algebra to be done if we find a need for higher order

approximations, but the last one of these that requires any thought to speak of
is the third order approximation.



