MEANS AND MOMENTS

Another method for defining shallow water approximations employs the for-
mulation of the Euler equations and a few others as the conservation laws

1t —+ (1’&)93 —+ (1w>z = 0,
2+ (u2): + (wz), = w,

u + (uu)y + (wu). + ps =0,

wy + (uw>x + (’LU’LU)Z +p.+g=0.

The artificial conservation law for the constant 1 is familiar, and the one for z,
less so. Both appear somewhat more naturally in work on atmospheres, where
the density p(x, z,t) is not a constant.

Most of the notation to be used for 2-D flow in B(xz,t) < z < H(x,t) is

qu(z,t) = q(z, H(z,t),t) and ¢p(x,t) = q(x, B(z,t),t), (evaluations)

H
1
(q) = /qdz with (1) = F'= H—B and (z) = §F(H—|—B), (integrals)
B

and Q(z,t) = % with Z(x,t) = %(H + B), (mean values)

and the kinematic conditions are

H,+ugH, = wyg and B, + ugB, = wg.




An attractive feature of this approach is the inherited conservation laws that
follow from the kinematic conditions. We define deviations, ¢ = ¢ — (), and
observe that

(@ + (uq)e + (wq):) = (q)¢ + (uq)e = (FQ)r + (FUQ)x + (4G)a

The fatness F'(z,t) plays the the rdle of density and the integrals (iG) resemble
Reynolds stresses in the inherited conservation laws,

Fi+ (FU), = F,+UF, + FU, =0,
F(Z+UZ) + (@), = FW ,

F(Uy +UU,) + (i), + (pz) = 0,

FWy +UW,) + (uw), + Fg = pg — p -

(The first of these has been used to rewrite the others in the alternate form.)
To find another equation to govern a second order theory where
L I T LA
u—U=1u— zZu, andw—W:w—>zw1+§ Z BT Wy ,
introduce the first moments,
1

(20) = () = 154

To find the time-derivatives of the first moments, observe

(g +ug +we.)) = ((2q) + (uzq), + (W2q), — (Z + uZ, + wZ,)q)
(



From the continuity equation,

Zyu—w = zUy +
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and the result for ¢ = u is

(301); + U(Zi)y + 3U, (20) + (Zp,) = 0.

(The result for ¢ = w, which will not be used here, is slightly more complicated.)

As usual (now), before restoring v and y, rewrite the pressure as

o F?

. . 1 z
p—pu+GH—2)+p, pp=pg +GF andp:§<z —I> <p2+§p3> ;

and introduce the vector and matrix notations,

D
u=(u,v), V=(9,9,)", A=V'V and E:@+UTV

Then the five degrees of freedom are in

DH

— 4+ FV'U=B,+U'VB,

Dt
DU 1 Tme =T\ 1 Loy =
= +ﬁ(v Fiua] ) + Vpu + GVH + SFVG + ZV(p) =0,

D
and E(F:”ﬁl) + P2V +0,V)U+12(V(E) + () VZ) = F°VG,

and the gravity equation comes from



DB
W="- —F U+ —V'Fu,
Dt v U 12Fv

Dw T 3 T
= —+—V F Z —
and G =g+ D +12FV u(a] V V' U).

This time the result is

1 1
(1+VH VB 2FAH>G 55V (FPVG) =g+T+T,

where

v= (39— 98) (Vbu+ £90)) - 297 (V) + ()V2)

and 7 can be evaluated whenever it is needed. As usual, the coefficient of
F(VF)TVG can be different (from 1) in slightly different derivations of a gravity
equation.

Except for the gravity equations, the three second order approximations are
all pretty simple, so simplicity of their governing equations doesn't provide much
of a basis for comparison. The simplification that comes from the use of means
and moments appears in the formulation of approximations of higher orders.
From the counting of degrees of freedom it follows that only one equation is
needed for DF/Dt, and as Airy knew, the introduction of the mean values, U
and V gives a final determination of that equation. Other equations for DF'/ Dt
gain new terms in higher approximations. Keeping W among the properties of
w simplifies the approximations too. When the gravity equation is derived from
W, U and (Zu), it is in a final form, with references to other properties of u all
virtually buried in 7. Further uses of orthogonal polynomials will be discussed
in a separate section .



