
INTRODUCTION AND OV ERV IEW

This is about shallow water theory, and an appropriate subtitle for it might be:

shallow waters can be treacherous

The reason for that is not because shallow water approximations are hard to find,
but rather because it is pretty easy to find a great many different ones. Various
results differ from one another, and the choice of one approximation in preference
to another may depend upon the problems that are to be treated. Some different
styles of approximation that will be discussed in sections to follow are:

• Power series • Averages and differences • Means and moments
• Mixed approximations • Direct methods • Multiple layers

The physical situation in all cases is that of 3-D unsteady flow of a liquid
with a constant density. The flow takes place between a specified lower surface
at z = B(x, y, t) and a free upper surface at z = H(x, y, t). Generally speaking,
a shallow water approximation will be taken to be any description of the 3-D
flow that is defined by equations of motion for any number of 2-D quantities,
Q(x,y,t). Capital letters will sometimes be used for 2-D quantities that are very
closely related to certain 3-D quantities, q(x,y,z,t), but there are many cases
where that can’t be done. In other cases the differential equations that govern
the q(x,y,z,t) and the corresponding Q(x,y,t) look alike, but they have to be
interpreted in entirely different ways.

The underlying (Euler) equations that govern the three-dimensional, unsteady
flow are

ux + vy + wz = 0,

ut + uux + vuy + wuz + px = 0 ,

vt + uvx + vvy + wvz + py = 0 ,

wt + uwx + vwy + wwz + pz + g = 0 .

In these p(x, y, z, t) is the physical pressure divided by the (constant) density.
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These equations are accompanied by the kinematic boundary conditions at the
upper and lower surfaces,

Ht + uHHx + vHHy = wH ,

Bt + uBBx + vBBy = wB .

The notation is that the subscripts t, x, y, and z denote partial derivatives, and
the subscripts H and B denote the evaluations,

qH(x, y, t) = q(x, y,H(x, y, t)) and qB(x, y, t) = q(x, y, B(x, y, t)) .

Here and in sections to follow much use is made of the chain rules (e.g.)

qHt = qtH +HtqzH , qBt = qtB +BtqzB, · · · .

The third boundary condition is that the pressure is specified at the upper
surface, i.e. that values of pH(x, y, t) are externally specified data. The pressure
at the bottom pB(x, y, t) is somehow to be predicted by the equations of motion.
The last condition, also a boundary condition, is that the position of the lower
surface B(x, y, t) is an externally specified function. Time dependence of B is
not usually included in theories of water waves, but it might as well be included
since it doesn’t introduce any significant difficulties.

To begin a discussion of equations that have exactly the same form but have
entirely different functions, let it be supposed that at some specific time t we
have whatever information we might need about u(x, y, z; t), v(x, y, z; t) and
H(x, y; t). The aim then is to see if that (with semicolons) plus the external
data B(x, y, t) and pH(x, y, t) (without semicolons) is sufficient information to
evaluate ut(x, y, z; t), vt(x, y, z; t) and Ht(x, y; t). If so, there is sufficient infor-
mation to solve initial value problems, and the semicolons can be promoted to
commas.

Consider first the lower kinematic condition: since the left-hand-side contains
information that is known at time t, it is an evaluation of

wB(x, y; t) = Bt + uBBx + vBBy .
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The equation of continuity, can now be integrated to define

w(x, y, z; t) = wB −
z

B

(ux + vy) dz ,

and given that, the upper kinematic condition is an evaluation of

Ht(x, y; t) = wB −
H

B

(ux + vy) dz − uHHx − vHHy .

One down - two to go, and note the entirely different uses of the kinematic
conditions.

A fairly direct approach to the evaluation of ut(x, y, z; t) and vt(x, y, z; t)
follows from the pressure equation,

∆ p+ φ = 0 with φ = u2x + v
2
y + w

2
z + 2(uyvx + vzwy + wxuz) .

The boundary values, pH(x, y, t) are specified, and if pB were known, the eval-
uations of p, px, py, ut and vt would follow directly. The bottom pressure is
not specified, however, and the lower boundary condition for p will have to be
derived from what is already here. To find it, introduce the the time derivative
of the lower kinematic condition,

wBt = Btt + uBBxt + vBByt +BxuBt +ByvBt .

Now it follows from the same kinematic condition that

(qt + uqx + vqy + wqz)B = qBt + uBqBx + vBqBy .

(Similar results that follow from the upper kinematic condition are used in the
sections on averages and differences, mixed approximations and dispersion rela-
tions.) From the result above,

wBt + uBwBx + vBwBy + pzB + g = 0 ,

uBt + uBuBx + vBuBy + pBx = BxpzB ,
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vBt + uBvBx + vBvBy + pBy = BypzB .

The lower boundary condition for pressure that follows from the four equations
that contain uBt, vBt and wBt is

1 +B2x +B
2
y pzB −BxpBx −BypBy + Φ = 0 ,

where

Φ = g +Btt + 2 (uBBxt + vBByt) + u
2
BBxx + 2uBvBBxy + v

2
BByy .

The only time derivatives in the boundary condition are derivatives of the pre-
scribed function B(x, y, t), and that establishes the result. Well posed initial
value problems can be based upon the process,

given pH(x, y, t), B(x, y, t) and the kinematic conditions,

(u, v,H)→ w(x, y, z; t)→ p(x, y, z; t)→ (ut, vt, Ht) .

The excuse for deriving a result that was probably known by Poincaré, and
perhaps before him, is that it is the paradigm that reappears in all the shallow
water approximations. Their shared structure can be described by an order, which
is the number of properties that are included in the description of the horizontal
velocity components, and a number of degrees of freedom, which is the number
of time derivatives that appear in the formulation of initial value problems. In all
cases the number of degrees of freedom is twice the order plus one.

A simple example is the approximate result of Green & Naghdi, which is for-
mulated in terms of mean values of velocity components, U(x, y, t) and V (x, y, t),
and the fatness, F (x, y, t) = H −B. From results in the sections on means and
moments and Green-Naghdi theory, the time derivatives that cannot be elimi-
nated by the use of the continuity equation and the kinematic conditions are in
the equations

Ft + UFx + V Fy + F (Ux + Vy) = 0 ,
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Ut + UUx + V Uy +
1

F

H

B

px dz = 0 ,

Vt + UVx + V Vy +
1

F

H

B

py dz = 0 .

The number of degrees of freedom is three, and equations to determine suitable
approximation(s) of the pressure can be found. The well posed initial value
problem is: given pH(x, y, t), B(x, y, t) and the kinematic conditions,

(U, V, F )→ w(x, y, z; t)→ p(x, y, z; t)→ (Ut, Vt, Ft) .

To indicate just how treacherous shallow waters can be, let it be noted that
there are countless numbers of ways one or two properties of the horizontal
velocity components can be chosen to define first or second order shallow water
approximations. None of them is inherently more correct than another, but some
may be preferred for no other reason than that they are simpler than others.
Three fairly simple second order approximations are developed in the sections
named power series , averages and differences and means and moments. The
three approximations really are different from one another, and in the section
named mixed approximations it is shown how simple second order results can be
used in tandem to find relatively simple third, fourth, fifth and sixth order results.
The section named direct methods treats Galerkin methods, and a different direct
method is described in the section named orthogonal polynomials. In most of
these sections, derivations are carried out for the 2-D flows defined by variables,
q(x, z, t), and 3-D results are cited at the end. The section named multiple layers
comes near to describing a full-blown numerical simulation of three dimensional,
unsteady flow. There are also sections named pressure equations and gravity
equations that contain results that apply to all the others, and sections named
Green-Naghdi theory and dispersion relations where some details are worked out.
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