$\mathcal{G R E E N}-\mathcal{N} \mathcal{A G H D I} \mathcal{T H E O R Y}$

What with all the virtual algebra in these pieces, it seemed appropriate that the details should be worked out in at least one example. In my opinion, this is the most interesting of the first order approximations, but I can't recommend any first approximation for a description of three dimensional flows. This will be limited to the two dimensional flows where

$$
u \rightarrow U(x, t), w \rightarrow W+\tilde{z} \tilde{w}_{1} \text { and } p \rightarrow p_{H}+G(H-z)+\frac{1}{2}\left(\tilde{z}^{2}-\frac{F^{2}}{4}\right) p_{2}
$$

As in other sections, U and W are mean values, G is the effective gravity, F is $H-B, Z$ is $B+F / 2$, and \tilde{z} is $z-Z$. The two degrees of freedom are in

$$
\begin{gathered}
\frac{D F}{D t}+F U_{x}=0 \text { with } \frac{D}{D t}=\partial_{t}+U \partial_{x} \text { and } \\
\frac{D U}{D t}+p_{H x}+G H_{x}+\frac{1}{2} F G_{x}-\frac{1}{12 F}\left(F^{3} p_{2}\right)_{x}=0 .
\end{gathered}
$$

The gravity equation follows from

$$
\begin{gathered}
W=\frac{D B}{D t}-\frac{1}{2} F U_{x} \text { and } \\
G=g+\frac{D W}{D t}=\frac{p_{B}-p_{H}}{F}
\end{gathered}
$$

and it is

$$
\left(1+H_{x} B_{x}-\frac{1}{2} F H_{x x}\right) G-\frac{1}{4 F}\left(F^{3} G_{x}\right)_{x}=g+\Gamma+\mathcal{T}
$$

where

$$
\begin{gathered}
\Gamma=\frac{1}{2} F\left(p_{H x}-\frac{1}{12 F}\left(F^{3} p_{2}\right)_{x}\right)_{x}-B_{x}\left(p_{H x}-\frac{1}{12 F}\left(F^{3} p_{2}\right)_{x}\right) \\
\text { and } \mathcal{T}=B_{t t}+2 U B_{x t}+U^{2} B_{x x}+F U_{x}^{2} .
\end{gathered}
$$

(Note that the coefficients of $F^{2} G_{x x}$ and $F F_{x} G_{x}$ are different from second order results.)

First approximations of this kind can differ in the way in which the pressure coefficient p_{2} is evaluated. In all cases

$$
u_{0}=u_{A}=U, \quad w_{0}=w_{A}=W \text { and } w_{1}=\frac{w_{D}}{F}=\tilde{w}_{1}=-U_{x}
$$

and some of the choices are:

- Use the Poisson equation, $p_{x x}+p_{z z}+2 U_{x}^{2}=0$. From the section on pressure equations,

$$
\left(p_{H}+\frac{1}{2} G F-\frac{1}{8} F^{2} p_{2}\right)_{x x}+\frac{1}{G}\left(G^{2} Z_{x}\right)_{x}+\left(1+Z_{x}^{2}\right) p_{2}+2 U_{x}^{2}=0 .
$$

- Use the equation for w_{1}. From the section on series,

$$
\frac{D}{D t} U_{x}-U_{x}^{2}-p_{2}=0
$$

- Use the equation for w_{D}. From the section on averages and differences,

$$
\frac{D}{D t}\left(F U_{x}\right)-F p_{2}=0
$$

- Use the equation for $\langle\tilde{z} w\rangle$. From the section on means and moments,

$$
\frac{D}{D t}\left(\left\langle\tilde{z}^{2}\right\rangle U_{x}\right)+2\left\langle\tilde{z}^{2}\right\rangle U_{x}^{2}-\left\langle\tilde{z}^{2}\right\rangle p_{2}=0 .
$$

- Set $p_{2}=0$ (not qualitatively different from the others).

In what may be seen as a test of virtual algebra, the three expressions that are derived from a vertical momentum equation all give the same result,

$$
\left(p_{H x}+G H_{x}+\frac{1}{2} F G_{x}-\frac{1}{12 F}\left(F^{3} p_{2}\right)_{x}\right)_{x}+2 U_{x}^{2}+p_{2}=0
$$

The result from the Poisson equation differs from the others, and that's how it is.

A familiar kind of comparison of shallow water approximations follows from the linearized (small amplitude) equations for the case where $B=0, p_{H}$ is constant, $H=h+\zeta(x, t)$ and $G=g+\gamma(x, t)$. In terms of the operators, $\omega q=i q_{t}, k q=-i q_{x}$ and $\kappa q=h k q$, the linearized equations are:

$$
\begin{gathered}
\omega \zeta=\kappa U, \omega U=g k \zeta+\frac{1}{2} \kappa \gamma-\frac{1}{12} h \kappa p_{2},\left(1+\frac{1}{4} \kappa^{2}\right) \gamma+\frac{1}{2} g k \kappa \zeta=\frac{1}{24} h \kappa^{2} p_{2} \text { and } \\
p_{2}=0,\left(1+\frac{1}{12} \kappa^{2}\right) p_{2}=g k^{2} \zeta+\frac{1}{2} k \kappa \gamma \text { or }\left(1+\frac{1}{8} \kappa^{2}\right) p_{2}=g k^{2} \zeta+\frac{1}{2} k \kappa \gamma
\end{gathered}
$$

No more virtual algebra - this is real and it's fairly nasty, with a few treacherous, unexpected cancellations of terms. The elimination of $h p_{2}$ from the equation for U gives $\omega U+2 \kappa^{-1} \gamma=0$, and $h p_{2}$ can also be eliminated from the pressure and gravity equations. When ω and κ are treated as numbers, rather than as operators, the three dispersion relations are,

$$
\frac{\omega^{2}}{g k}=\frac{\kappa}{1+\kappa^{2} / 4},=\frac{\kappa}{1+\kappa^{2} / 3} \text { or }=\frac{\kappa\left(1+\kappa^{2} / 24\right)}{1+3 \kappa^{2} / 8+\kappa^{4} / 96} .
$$

So which result, if any, is better? Well, Airy's exact result is $\omega^{2} / g k=\tanh \kappa$, and

- $p_{2}=0$ leads to the approximations, $\omega^{2} / g k \rightarrow \kappa\left(1-\kappa^{2} / 4\right)$ as $\kappa \rightarrow 0$ and $\rightarrow 4 / \kappa$ as $\kappa \rightarrow \infty$. The first result is not quite the first two terms of the Taylor series for $\tanh \kappa$, and that has led some of my former colleagues to conclude that it cannot possibly be acceptable. The second result is not a particularly good approximation of $\tanh \kappa \rightarrow 1$ as $\kappa \rightarrow \infty$.
- When p_{2} is included, and the vertical momentum equation is used to determine it, the corresponding results are $\omega^{2} / g k \rightarrow \kappa\left(1-\kappa^{2} / 3\right)$ as $\kappa \rightarrow 0$ and $\rightarrow 3 / \kappa$ as $\kappa \rightarrow \infty$. This time, the long wave limit is marginally better, and the short wave limit is marginally worse.
- When p_{2} is included, and the pressure equation is used to determine it, the corresponding results are $\omega^{2} / g k \rightarrow \kappa\left(1-\kappa^{2} / 3\right)$ as $\kappa \rightarrow 0$ and $\rightarrow 4 / \kappa$ as $\kappa \rightarrow \infty$. Much as I would like to say Aha!, I think the appropriate comment is So what?

The next stage of linear approximation within this modified Green-Naghdi approximation comes from a consideration of two more terms in
$p \rightarrow p_{H}+G(H-z)+\grave{p}$ with $\grave{p}=\frac{1}{2}\left(\tilde{z}^{2}-\frac{F^{2}}{4}\right)\left(p_{2}+\frac{\tilde{z}}{3} p_{3}\right)+\frac{1}{24}\left(\tilde{z}^{4}-\frac{F^{4}}{16}\right) p_{4}$.

Then the linearized pressure equations imply $p_{4}=\kappa^{2} p_{2}$ and, in turn, $\langle\grave{p}\rangle=$ $-\left(F^{3} / 12\right)\left(1+\kappa^{2} / 40\right) p_{2}$. ((1+ $\left.\kappa^{2}\right) p_{3}+\kappa^{2} \gamma=0$ doesn't figure in these results.) The resulting approximation of the dispersion relation is

$$
\frac{\omega^{2}}{g k}=\frac{\kappa\left(1+\kappa^{2} / 24+\kappa^{4} / 1920\right)}{1+3 \kappa^{2} / 8+5 \kappa^{4} / 384+\kappa^{6} / 7680} .
$$

As higher approximations of $\tanh \kappa$ go, this is a rather disappointing one: it misses the $\cdots+2 \kappa^{5} / 15$ when $\kappa \rightarrow 0$, and its shortwave limit is still $4 / \kappa$ when $\kappa \rightarrow \infty$. More accurate approximations will be given in a separate section on dispersion relations.

