#

skip navigation

This page is designed for modern browsers. You will have a better experience with a better browser.

Brown Home Brown Home Brown Academics

 

Charles Lawrence

Professor of Applied Mathematics
Room 204, 182 George Street
Phone: +1 401 863 1479
Phone 2: +1 401 863 2351
Charles_LawrenceBrown.edu



Ph.D., Cornell University, 1971


Charles (Chip) Lawrence has been involved in computational biology research since the early 1980's. His research now specifically focuses on the application of Bayesian algorithms that he and his collaborators have developed, leading to biological insights on transcription regulation and identification of regulatory motifs in prokaryotic and eukaryotic sequences, comparative genomics, antisense oligonucleotide and siRNA design, the composition of nucleotide sequences, and detailed analyses of several protein families.

Biography

Charles (Chip) Lawrence has been involved in computational biology research since the early-1980s. At a time when research in the field was focused on algorithmic approaches, he was a pioneer in developing novel statistical approaches to biological sequence analysis. In fact, he was one of the first to recognize that the inherent statistical nature of genomic processes and the immense data resulting from genomic sequencing projects could only be fully analyzed by using statistical algorithms.

Interests

Of particular note are his contributions to the development of sequence alignment algorithms, specifically through the application of Bayesian statistical methods and the adaptation of a Gibbs sampling strategy to this problem. This accomplishment is clearly demonstrated by his seminal Science paper in 1993 describing the first application of the statistical technique Gibbs sampling to the problem of multiple sequence alignment. Also at the forefront is Chip's research with Ye Ding on Bayesian statistical approaches to RNA secondary structure prediction, yielding predictions on the full ensemble of probable structures that an RNA molecule may adopt.

The past several years of statistical algorithm development by Chip and his collaborators have yielded several widely used programs: the Gibbs Motif Sampler, the Bayes aligner, Sfold, BALSA, Gibbs Gaussian Clustering, and Bayesian Motif Clustering.

Chip's research continues to be focused on the application of Bayesian algorithms that he and his collaborators have developed, leading to biological insights on transcription regulation and identification of regulatory motifs in prokaryotic and eukaryotic sequences, comparative genomics, antisense oligonucleotide and siRNA design, the composition of nucleotide sequences, and detailed analyses of several protein families.

In addition to being at the forefront of research in computational biology, Chip has devoted time to education. He developed a tutorial on Bayesian statistics and Gibbs sampling which he presented at ISMB '97 and '98, as well as to several university audiences. Chip has mentored several young investigators, introducing to this interdisciplinary field not only scientists with backgrounds in statistics, but also scientists with backgrounds in computer science and biology.

Awards and Honors

Fellow of the American Statistical Association.

Mitchell Prize for outstanding applied Bayesian statistics paper in the year 2000.

Centroid estimators for inference in high-dimensional discrete spaces (2008), Luis E. Carvalho, and Charles E. Lawrence, PNAS: USA, 105: 3209–3214.  Reported as a must read paper in the Faculty of 1000.

Exact Calculation of Distributions on Integers, with Application to Sequence Alignment, Newberg and Lawrence, J. Computational Biology (January, 2009), selected as a highlighted article.

Visiting faculty, Institute of Pure and Applied Mathematics, UCLA 10/00, & 12/00.

Rensselaer Alumni Association Fellow.

Member American Statistical Association.

 

Member International Society for Computational Biology

 Member Sigma Xi

 

Affiliations

Statistical advisor: NIH NHGRI ENCODE Project Meeting at UC, Santa Cruz

Outside scientific advisory board member: TIGR Bioinformatics

Resource Center Meeting (Scientific Working Group)


Statistical advisor: NIH National Human Genome Research Institute NHGRI) ENCODE Consortium Meeting

Associate Editor, Public Library of Science (PLoS) Computational Biology

Editorial Board, Bioinformatics and Computational Biology

Genomic Sciences Graduate Program Review Team, North Carolina State University

Ad Hoc Study Section Member, LIM-NIH and NHGRI-NIH

Permanent member Genome Research Review Committee (NHGRI-NIH)