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in the high
activity state� which is undesirable� A more realistic situation results from
introducing some form of symmetry between the high
 and low
activity phases� making
use of the �ring thresholds� We investigated two ways�formally di�erent but function

ally equivalent�to do this� The mathematically simpler way is to enforce an accurate
symmetry on the dynamics� by imposing an appropriate relationship between the �ring
thresholds and the synaptic weights �equations �	� This results in a reduced system� with
only four parameters� in this system� there occurs a double bifurcation when the system
traverses the critical surface�now denoted S�separating the oscillatory phase from the
bistable� high�low� steady
�ring phase �Section �	� Regulation of the sole E
to
E weight
brings the system to this doubly critical surface S �Section �	�

A biologically more satisfactory solution is to regulate one or both of the �ring thresh

olds so as to control the mean �ring rates �Section �	� Thus� when we regulate the
threshold for the excitatory neurons in addition to the E
to
E weight� the system con

verges to the intersection of Sh with another critical surface� Sl� which separates the
oscillatory phase from the low
activity �xed
point region� Intersection points between Sh

and Sl are again doubly critical�
When the system is on this doubly critical surface� it takes only a small weight per


turbation to induce either of the three behaviors intrinsic oscillation �region P of section
�	� high activity� quiescence� It is easily seen that� when in this state� the network can
also be e�ciently driven by a small
amplitude time
varying signal� i�e�� an external �eld�
it is thus highly sensitive to input�

We further investigated the e�ect of regulating the E
to
I weight in addition to the
E
to
E weight� according to a similar covariance rule� We showed that regulating these
two weights as well as the two �ring thresholds results� under appropriate parametric
conditions� in convergence to an even more degenerate state� When the system is in that
state� its �ow vanishes on an entire one
dimensional curve in the two
dimensional phase
space� instead of on isolated points� This convergence is slow and parameter
dependent�
yet it is interesting to note that when the system is in or near this highly degenerate state
it exhibits a range of diverse behaviors� including chaos �Section �	� The chaotic behavior
shown in Figure �� c�e consists of an irregular sequence of spontaneous transitions between
the three fundamental phases of the system oscillatory� high
activity� low
activity�

While the uniform
weight network studied in this paper lends itself to a convenient
mathematical analysis� it would be interesting to know whether critical behavior may arise
from local covariance plasticity� where synaptic changes are made to depend on pre
 and
post
synaptic activities relative to individual synapses� This question should be focused
by considerations about the elaborate forms of input sensitivity that could play a role in
higher brain functions�
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and� as the well
studied mechanism of induction shows� highly susceptible to external
signals� From a dynamical
system perspective� the emergence of qualitatively new behav

ior� e�g�� the splitting of one attractor into two� is a bifurcation� The complexi�cation of
an individual�s cognitive apparatus in the course of his or her life may be viewed as an
open
ended sequence of such bifurcations� Such an interpretation has been defended by
Ren�e Thom �����	� and related ideas have been expressed by several authors �e�g� van
der Maas and Molenaar ����	� Thom �����	 also suggested that structurally stable non

generic singularities may arise from a process he termed the stabilization of thresholds�

this process itself would result� in various biological contexts� from the reinforcement of
homeostatic mechanisms���

Central to the mechanism of regulated criticality proposed here is a covariance plastic

ity rule� this rule is linear and straightforward� Equation � may be viewed as a mean
�eld
version of the covariance rule used in the associative
memory literature �see e�g� Will

shaw and Dayan ����	� However� we make a rather di�erent use of this rule� In an
associative
memory model� pre
 and post
synaptic activities are generally assumed to be
independent� yielding a zero expected value for the covariance� Weights are modi�ed ac

cording to the instantaneous covariance� and� as noted in Dayan and Sejnowski �����	�
storage is marked by the departures of the empirical average of this quantity from its
expected value� which is zero� In our model� the expected covariance is positive in the
oscillatory phase� The regulation mechanism acts on a slow time scale� and� although we
use the instantaneous covariance in the modi�cation rule �Equation �	� we might as well
have used the time
averaged covariance� fast variations of the instantaneous covariance
are actually smoothed out in the integration of the di�erential equation� Of course� by
the very principle of regulation proposed� the system does not dwell in the oscillatory
phase� in the regulated state� the average covariance is low�

The other major di�erence between the situation studied here and the associative

memory paradigm is the assumption of uniform weights� As noted in Section �� the co

variance in our uniform
weight network is simply the variance of the population
averaged
activity about its mean� and it is always non
negative� This makes it necessary to sub

tract from it a positive constant �EE in order to allow for decreases of the weights� Thus�
whereas in associative
memory models a synaptic weight decreases as a result of negative
instantaneous covariance between the pre
 and post
synaptic neurons� the condition for
weight decrease in our model is that the mean covariance be small or zero� which happens
when the system is at rest in a point attractor� of either low or high activity�

The uniform
weight network used in the present study lends itself to a detailed math

ematical�numerical analysis� We performed a bifurcation analysis of the continuous
time
di�erential system that describes the behavior of this network in the thermodynamic limit�
This analysis �Section �	 reveals� among other features� the existence of a critical surface
Sh in parameter space� where the system undergoes an abrupt transition from oscillatory
behavior to high
rate steady �ring� We showed �Section �	 that Hebbian modi�cation of
the E
to
E synaptic weights drives the system toward this surface Sh� this is the main
mechanism of regulated criticality proposed�

However� when the system is at a general position on Sh� it spends most of its time

��We thank Jean Petitot for pointing out to us that regulated criticality as proposed here is closely
related to Thom�s ideas�

��



�I � �E � ����� the system displays strongly chaotic behavior �Figure �� c�e	��� Both
of these behaviors are actually attractors� reached after considerable time� yet similar
behaviors also take place while the system is still moving slowly on the critical surface�

To summarize� both in the reduced and in the full system� convergence to a doubly
critical surface between the regions of fast oscillations and of high and low steady �ring
takes place reliably for a broad range of parameters� Once this doubly critical surface
is reached� motion becomes slow� depends on parameters� and� when examined in detail�
reveals a variety of behaviors� ranging from simple periodic �ring to chaos�

� Discussion

This paper proposes that a regulation mechanism underlies criticality in brain dynamics�
In such a scheme� regulation stabilizes the dynamics near an instability� The force driving
the system towards criticality is a covariance
governedmodi�cation of synaptic e�cacies in
a recurrent network� Although it has been argued that criticality in some physical systems
may be self
organized �Bak et al� ����	� this phenomenon may not be very widespread�
The nervous system is actually regulated homeostatically to withstand perturbations of
various sorts� It is then of interest to explain how criticality in brain dynamics may
nevertheless arise from synaptic plasticity�

The chief motivation for seeking criticality in the dynamics of the nervous sytem is
the observation that brains are very sensitive organs� i�e�� are able to draw distinctions
between stimuli that di�er only in minute details� To quote from Freeman and Barrie
�����	  These distributed neural populations are dynamically unstable and are capable
of very rapid global state transitions� by which the amplitude modulation of the common
oscillation� the carrier wave� switches abruptly from one spatial pattern to another� and
thereby it can easily ful�ll the most stringent timing requirements encountered in object
recognition�!

A mechanism which actively brings the system near criticality moreover appears to
be necessary in order to explain how sensitivity is maintained in the face of the profound
changes that a�ect the connectivity of the brain throughout development and learning� If
no such mechanism were present� one would expect that the ongoing modi�cation of the
networks that carry mental representations would soon bring these networks to generic
states� as mentioned in Section �� a dynamical system in a generic state does not show
high susceptibility to external in�uences�

A further argument in favor of regulated criticality is our apparently unlimited ability
to create new cognitive categories by drawing a �ne line where none existed before� To
quote again from Freeman and Barrie �����	  If a new pattern is to be created� then the
activity that drives the synapses must be new� A chaotic generator appears to be an opti

mal way for cortex to do this�! While this topic is beyond the scope of the present paper�
it may be worth mentioning that the emergence of new cognitive categories is not unlike
a process of morphogenesis in embryology� or di�erentiation in cell biology� A biological
structure that is about to undergo di�erentiation is at that particular instant unstable�

��This behavior takes place only for some initial values in the �wEE� wIE� plane� other initial values
converge to a point attractor�
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Figure � Various behaviors of regulated full system after it has reached critical surface
�Figure �	� Diagrams show s�t	 for three slightly di�erent parameter settings �see text	� in
all cases� the projection of the motion on the �wEE� wIE	 plane remains of small amplitude�
�a	 Simple periodic attractor� point G of Figure �� similar periodic attractors are reached
for most parameter settings� �b	 Complex quasi
periodic attractor� �c�e	 Chaotic attrac

tor� for a given parameter setting� three diagrams corresponding to di�erent instants of
time and di�erent lengths of time� characteristic are the irregular transitions between the
high
activity� low
activity� and oscillatory phases�
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Figure � Behavior of full system under simultaneous regulation of four parameters� Di

agram shows projection on �wEE� wIE	 plane� illustrating the similarity of behavior with
reduced system �compare with Figure �c and note again the two di�erent time scales�
as indicated by arrowhead size	� Limits of the attraction basin to the left are roughly
indicated by the starting points of the trajectories shown� attraction basin is unbounded
in all other directions�

�IE � ���� �IE � ������ �E � ��� �E � ����� �I � ��� �I � ����� In the sequel� this parameter
setting will be referred to as standard� In a �rst stage� the system converges to a doubly
critical point F as described above� each such point F belongs to the common boundary
of the regions of oscillation� high steady �ring� and low steady �ring� Although we cannot
thoroughly characterize the surface of F points in the four
dimensional �wEE� wIE� hE� hI	
space as we did in the �wEE� wIE	 plane for the reduced system� there is� as remarked
above� a "functional equivalence� with the S surface� Note that the projection of the F
surface on the �wEE� wIE	 plane has a shape quite similar to that of S in the reduced
system� As before� when the system reaches a point F � all variables settle in a slow�
synchronous� almost
periodic motion� The oscillation of s and � is a nearly rectangular
wave� the system spending nearly all its time in the two corners of the square� where
the relative amount of time spent in each corner is determined according to the value of
parameter �E�� �I	� As before too� the �rst stage� which consists of the convergence to
a doubly critical point F � is robust against parameter changes� most parameters can be
individually varied over several orders of magnitude without qualitatively a�ecting this
part of the behavior�

The second stage� consisting of a much slower motion on the F surface� depends on
the values of the various parameters� For most parameter settings� including the standard
set �see above	� the behavior on this critical surface is a slow� simple� periodic motion� of
large amplitude in �s� �	 and very small amplitude in �wEE� wIE	� The system eventually
settles in a periodic attractor of such simple type� denoted again G in Figure �� Figure �a
shows the �s� �	 projection of this attractor for the standard parameter set� its �wEE� wIE	
projection is a small cycle around point G� whose nullcline diagram is similar to the one
shown in Figure � �largely overlapping nullclines	�

There exists however a small region of parameter space� mostly around �I � �E� for
which a variety of more complex behaviors are observed during the second stage� The
following two cases are examples of such complex behavior� For parameters as above
�standard	 except that �E � ������ �I � ������ and �EE � ����� the system settles in
a complex quasi
periodic motion �Figure �b	� For parameters as standard except that
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When regulating wEE according to equation � and leaving all other parameters �xed�
the behavior of system � is as follows� When starting in region P to the left of the critical
line Sh� the system oscillates� covariance is high� hence wEE increases until it reaches the
critical line Sh� A point of contact is then established near the high
activity corner of the
square� The system settles in a slow periodic attractor� of small amplitude in wEE and
large amplitude in �s� �	� whereby nearly all the time is spent in the high
activity state�

We now regulate the threshold hE as well� in such a way as to stabilize #s� the time
average of s� around a given target value �E

dhE�t	

dt
� �E�#s�t	� �E	� ���	

The rate constant �E is positive and small� and the control parameter �E is chosen well
in the interior of the interval ��� �	� e�g� between �� and �� �remember that in system �
the activity variables s and � lie in the interval ��� �		� To see how equation �� achieves
the desired regulation� note for instance that� if #s�t	 � �E� hE will increase� which in turn
will result in a decrease of #s�t	�

When both wEE and hE are regulated� the system converges to the intersection of the
two critical lines Sh and Sl� In e�ect� we saw that the full system� when at a generic point
of Sh� stays nearly all the time in the high
activity state� this results in a high value of #s�
Therefore� to achieve the condition #s � �E�the equilibrium for equation ���the system
must be on Sl as well�

The joint �wEE� hE	 dynamics is illustrated in Figure �b� for parameters wEI� wIE� wII

and hI as above� and � � ��� �E � ����� �E � ��� �EE � ���� �EE � ���� The intersection of
Sh and Sl� denoted F in Figure �b� is reached from all directions in the �wEE� hE	 plane�
When coming from low wEE values� the system oscillates and converges to F through
region P� When coming from high wEE values� the system reaches F through region T�
where it bounces back and forth between the high
 and low
activity point attractors �an
oscillation much slower than in P	�

The nullcline diagram for point F of Figure �b is illustrated in Figure �c� There are
now two points of contact between the nullclines� a situation more degenerate than the
one that obtains from regulating wEE only� This situation can be deemed "equivalent� to
the situation obtained in the reduced system by regulating a single parameter� wEE or
wIE �compare Figure �b to Figure �b	� What characterizes the dynamics at point F is
that the system is on the verge of oscillation and on the boundary of each of the two
steady
�ring phases�

We �nally consider the system with the four parameters hE� hI� wEE and wIE regulated�
We thus include� in addition to equations �� �� �� ��� �� and ��� a regulation equation for
the inhibitory threshold hI

dhI�t	

dt
� �I�#��t	� �I	� ���	

As in equation ��� the rate constant �I is positive and small� and �I is chosen in the
interval ���� ��	� with �I � �E� The variables now include the activity state �s� �	 as well
as the four regulated parameters hE� hI� wEE and wIE�

Figure � illustrates the behavior of this system projected on the �wEE� wIE	 plane�
for the following parameter values wEI � ��� wII � �� � � ���� �EE � ���� �EE � ����
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Figure � Regulation of two parameters in system �� �a	 Bifurcation diagram in �wEE� hE	
plane� �b	 Regulation of wEE and hE causes convergence to point F � the intersection of
critical lines Sh and Sl� �c	 Nullcline diagram at F �

corresponds to the establishement of one point of contact between the nullclines� We next
consider the system with all four parameters hE� hI� wEE and wIE regulated� and study
the projection of the dynamics on the �wEE� wIE	 plane� There are again two stages� the
�rst essentially reproduces the behavior observed with the sole �wEE� hE	 regulation� while
the second is analogous to that observed when regulating wEE and wIE in the reduced
system� this applies for a broad range of the remaining �xed parameters wEI and wII�

Figure �a is the bifurcation diagram of system � in the �wEE� hE	 plane� for the following
values of the �xed parameters wEI � ��� wIE � ��� wII � �� hI � �� As before� we ignore
unstable equilibria and unstable limit cycles� As before there are three regions� denoted
respectively by O� T and P� corresponding to three types of asymptotic behavior single
�xed
point attractor� two �xed
point attractors �high and low activity	� one periodic
attractor� We now however subdivide region O�somewhat arbitrarily�according to the
location of the �xed
point attractor in the phase space the three subregions denoted Oh�
Om� and Ol� correspond� respectively� to high� middle� and low activity for this attractor�
The transition between region P and region Om takes place through the familiar� smooth�
Hopf bifurcation� The transition between P and Oh� as well as its continuation between
Ol and T� takes place through a saddlenode bifurcation� We denote by Sh the locus of
this transition� it marks the appearance of a point of contact between the nullclines near
the high
activity corner� and is thus similar to the S transition in the reduced system�
However� in the reduced system� another point of contact appeared simultaneously near
the low
activity corner� giving rise to a double bifurcation� this was due to the symmetry
of that system� In system � there is no such symmetry� and the intersection of the
nullclines near the low
activity corner gives rise to a distinct saddlenode bifurcation line�
the transition between P and Ol� we denote this new bifurcation line Sl�

��



-0.5        0.5         
s      

-0.5        

0.5         

σ  

Figure � Nullcline diagram at point G �see �gure �c	� Nullclines overlap almost perfectly
over much of the interval $���� ��%�

the two
dimensional phase space� Further� s�t	 and ��t	 remain nearly identical at all
times���

� Behavior of the regulated full system

Recall that system �� which we used so far� was derived from system � by eliminating the
�ring thresholds hE and hI �equations �	 in such a way as to make ���� ��	���� �	 in system
��a center of symmetry of the dynamics� While easier to analyze� the reduced system
is less realistic� There is no clear biological justi�cation for this hard
wired symmetry�
moreover� when the system is in phase T� i�e�� to the right of the critical surface S� it can
stay for arbitrarily long periods of time in one of the two �xed point attractors� e�g� in
the high
activity one� this is unrealistic�

In this section we consider a biologically more plausible way of introducing symmetry
in the dynamics� Rather than eliminating the thresholds according to equations �� we
regulate them� thereby implementing a form of "soft� symmetry� Regulating the �ring
thresholds in a neural network is a simple way to maintain the mean activity around
an intermediate� useful� value� This may be viewed as a simpli�cation of the regulation
mechanisms at work in real brains� which� in all likelihood� involve systems of inhibitory
neurons acting on various time scales�

The simultaneous regulation of four parameters results in a complex dynamics� which
makes a thorough analysis impractical� We shall proceed as follows� We �rst consider� in
system �� the regulation of wEE and hE for a given setting of all other parameters� We
show that the system converges to the intersection of two critical curves� each of which

��Giving di�erent values to parameters �EE and �IE mostly a�ects the behavior of the system after it
has reached S� if �EE is larger� resp� smaller� than �IE� the state moves downward� resp� upward� on S�
When �wEE� wIE� is on S but above point G� the nullclines are tangent to each other but do not overlap�
such a situation is illustrated in Figure 	b� When �wEE� wIE� is on S but below point G� the nullclines
do overlap� but over a smaller domain� With �EE 
 ���� and �IE 
 ������ the state stabilizes in the
narrow three�attractor region described in the last footnote of Section 	� The state �s� �� then visits
each of the three �attractors� in turn� its motion consists of a succession of large�amplitude oscillations
�periodic attractor� and of spiraling orbits around two symmetric points in the interior of the large cycle
�point attractors�� The amplitude of the motion of �wEE� wIE� remains small� This is a mildly chaotic
behavior� a more pronounced chaotic behavior will be described in the next section for the full system�
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intermediate between the fast periodic motion observed in P and the bistable situation
prevailing in T� The period of this oscillation and the amplitude of the oscillation of wEE

depend on parameters �� �EE� and �EE��

We next consider thewIE
regulated system� where wEE and all other parameters remain
�xed� This system consists of coupled equations �� ��� ��� As noted� the E
to
I covariance
cIE vanishes outside region P� just like cEE� within P it varies� in a �rst approximation�
like cEE� Since we chose �IE to be negative� wIE decreases in P and increases in T� whereas
the opposite was true of wEE when it was regulated� Figure �b shows this wIE dynamics
in the same region of the �wEE� wIE	 plane as before� Parameters are wEI � ��� wII � ��
� � ��� �IE � ��� and �IE � ����� The trajectories are now parallel to the wIE axis� and
�wEE� wIE	 is again attracted to the critical line S separating region P from region T�
This is true only to the left of the vertical asymptote of that curve� trajectories to the
right of that line go to &��

In sum� regulation of either one of the two parameters wEE� wIE has the e�ect of
bringing the system to the critical surface S separating the region of oscillation from the
region of bistable steady �ring� the nullcline diagram is then as in Figure �b� Note that
when the system is on S� a small perturbation in the weights will elicit either oscillation�
constant �ring at near
maximum rate� or constant �ring at near
minimum rate�

We now turn to the behavior of the system when the two regulation loops act simul

taneously� we thus study the system of coupled equations �� �� �� ��� ��� Figure �c shows
the �wEE� wIE	 dynamics for the same parameters as before� i�e�� wEI � ��� wII � �� � � ���
�EE � ���� �EE � ���� �IE � ��� and �IE � ����� It appears from this diagram that the
evolution proceeds in two clearly distinct stages� In the �rst stage� which can be predicted
from the study of the regulation loops acting separately� �wEE� wIE	 moves toward line S���

When this line is reached� motion slows down considerably�typically by several orders
of magnitude�and proceeds along the critical line� eventually converging to a point on S
denoted G in Figure �c� As before� attractor G is in reality a slow limit cycle� of small
amplitude in wEE and wIE� and large amplitude in s and �� All four variables� s�t	� ��t	�
wEE�t	� and wIE�t	� are now synchronized� the distinction between slow and fast variables
has thus vanished� The basin of attraction of G in the �wEE� wIE	 plane roughly consists
of the union of the two domains of attraction of S for the separate wEE and wIE regulation
dynamics� only the region to the left of and around the Hopf line is not attracted to the
saddlenode line S and eventually to G�

The location of S in the �wEE� wIE	 plane depends on the values of the �xed parameters
wEI and wII� The location of the attractor G on S further depends on the control param

eters �EE and �IE� When the latter are given identical values� as in the case illustrated
in Figure �c� the attractor G has the remarkable property that the s
 and �
nullclines
stand in near overlap over a large portion of the interval $
���&��% �Figure �	� the �ow of
the system in this con�guration nearly vanishes on a large one
dimensional manifold in

�Not shown on Figure �a is the leftmost part of region P� near the Hopf bifurcation� where the limit
cycle is of small amplitude hence the condition �cEE � �EE is not realized� When initialized there� the
system does not converge to S� However� in both the wEE and the wIE directions� the domain of attraction
of S extends to ���

��The direction of this linear motion is roughly parallel to the line wEE 
 �wIE� This is because
�EE 
 ��IE� �EE 
 �IE� and the two covariances cEE and cIE are nearly the same� Another choice of
parameters would result in a di�erent slope� but otherwise similar behavior�
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Figure � Regulation of system � by covariance plasticity� �a	 wEE is regulated� wIE is
constant state converges to critical surface S� �b	 wIE is regulated� wEE is constant
state converges to critical surface S� �c	 both wEE and wIE are regulated state converges
�rst to critical surface S and then moves very slowly �smaller arrowheads	 along S� it
eventually converges to a particular point� denoted G� on S�

increases� To the right of S the covariance vanishes� and wEE decreases� Therefore� wEE�t	
is attracted to the transition line S��

The behavior of this wEE regulation loop is illustrated in Figure �a for the following
setting of parameters wEI � ��� wII � �� � � ��� �EE � ���� �EE � ���� This �gure focuses
on a small region of the �wEE� wIE	 plane� and shows the projection of the trajectory of
�s� ��wEE� wIE	� Several trajectories are shown� they are all horizontal� since wIE is a
constant� These trajectories terminate on the critical line S� and the behavior of the s
and � components on them is as follows� On the trajectories coming from the left� in the
P region� �s� �	 moves along a cyclic orbit� whose amplitude grows as wEE increases and
approaches the bifurcation line� On the trajectories coming from the right� in theT region�
�s� �	 stays in one of the two point attractors while wEE decreases until it reaches the
bifurcation curve� When S is reached� either from the left or from the right� motion does
not really stop� Rather� wEE sets in a periodic oscillation of small amplitude synchronized
with a large
amplitude periodic motion of �s� �	� the frequency of this oscillation is several
orders of magnitude slower than in P� hence covariance is small�it matches� on average�
the control parameter �EE� When in this regime� the system spends a long time in one
of the two almost
attracting corners of the $����&��%� box before leaving it and moving
rapidly to the other corner� This results in an almost
square wave� a behavior that is

�The control parameter �EE should be smaller than the value of �cEE immediately to the left of S�
The portion of the boundary line where the bifurcation is a subcritical Hopf rather than a saddlenode
�last footnote of Section 	� yields similar behavior� since the disruption of the large�amplitude limit cycle
occurs very near the emergence of point attractors �see also footnote at the end of present Section��
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The regulation equation for wIE then reads

dwIE�t	

dt
� �IE�cIE�t	� �IE	� ���	

In equation ��� �IE is a positive constant� as �EE in equation �� However� the modi�cation
rate constant �IE is negative� The main reason for this will be given in the next section�
for now� note that this choice is consistent with the spirit of Hebb�s principle� for� when
considered postsynaptically to the target neuron� the e�ect of synapse reinforcement if
that target neuron is inhibitory is the opposite of the e�ect obtained if the target neuron
is excitatory�

� Behavior of the regulated reduced system

This section describes the behavior of the regulated reduced system� We demonstrate that
each of the two regulation loops introduced in Section �� when acting separately� brings
the system to the critical surface S� the locus of an abrupt phase transition �saddlenode
bifurcation	� We then examine the behavior of the system with the two regulation loops
active simultaneously� we show that under some conditions the state converges to a point
on S with a remarkable nullcline con�guration�

Before we consider the regulation proper� let us examine how the covariances change
across the �wEE� wIE	 plane� Figure �b shows the values of #cEE� the time average of the
instantaneous variance of s�t	�� along several horizontal lines in the �wEE� wIE	 plane� As
expected� #cEE is positive only in region P� where the dynamics is periodic�� although not
shown� the same is true of #cIE� the time average of the E
to
I covariance� Note that as wEE

crosses the O
to
P boundary �Hopf bifurcation	 from left to right� #cEE increases smoothly

from � to positive values as discussed above� the amplitude of the limit cycle at this
bifurcation is in�nitesimal� In contrast� the change in #cEE and in #cIE at S �saddlenode
bifurcation	 is a sharp one� as the system undergoes there a transition from a large limit

cycle regime to a �xed
point attractor�

We now start our study of covariance plasticity by regulating parameter wEE in system
� while all other parameters� including wIE� remain �xed� The system under study then
consists of coupled equations �� �� �� Equation � prescribes an increase of wEE when
cEE � �EE� and a decrease when cEE 	 �EE� Referring to Figure �b� we see that to
the left of S� where cEE is high� the �rst of the two conditions applies� in this region wEE

�This corresponds� in the original system� to the population� and time�average of the covariance�
h�cEEij i� the latter becomes �cEE in the thermodynamic limit N � �� In the regulation equation� we use

the instantaneous covariance cEE�t� rather than its time average �cEE �see Discussion�� The time�averaged
variance �cEE is used here for illustration purposes only� In order to obtain an essentially constant value
for �cEE rather than an oscillating function of time� di�erent values of � are used for the two averaging
operations� the kernel used to average cEE into �cEE is ten times broader than the kernel used to compute
�s from s�

�In general� positive average covariance across a neuronal population indicates collective �uctuations�
in our simpli�ed two�dimensional system� the only possible nontrivial asymptotic behavior is periodic
oscillation�
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the Introduction� system ��the full system�is not amenable to such a thorough analysis�
however� we shall see in Section � that the two systems behave in much the same way
under the plasticity rules that we shall now introduce�

� The regulation equations

Whereas in the previous section the synaptic weights wEE and wIE were �xed parameters�
they will now be made to evolve� Their evolution will obey a Hebbian covariance rule�
hence be a function of second
order temporal averages of the dynamic variables s and
�� Synaptic plasticity creates a regulation loop� changing the parameters a�ects the
dynamics of the system� which in turn alters the second
order moments of s and ��
Formally� the regulation is implemented by introducing additional di�erential equations�
coupled to system � �or to system ��see Section �	� The rate of change of wEE and wIE

will typically be several orders of magnitude slower than that of s and ��
Let us �rst de�ne� for any function of time r�t	� a moving time average

#r�t	 � �
Z t

��

r�u	e�	u�t
du� ��	

Parameter � is a positive constant� physically an inverse time� the larger �� the narrower
the averaging kernel� Equivalently� #r�t	 may be de�ned by a di�erential equation� more
convenient for simulation purposes

d#r�t	

dt
� ��r�t	� #r�t		� ��	

Consider now� with reference to the original stochastic model �Section �	� the instanta�

neous covariance between two excitatory neurons i and j� de�ned as cEEij �t	
def
� �xEi �t	�

#xEi �t		�x
E
j �t	 � #xEj �t		� If we take the population average hcEEij �t	i of this instantaneous

covariance� we obtain� in the thermodynamic limit N � �� the instantaneous variance
of s�t	

cEE�t	
def
� �s�t	� #s�t		�� ��	

It is this quantity cEE that we use to regulate the excitatory
to
excitatory synaptic
weight wEE� The regulation equation is linear in cEE

dwEE�t	

dt
� �EE�cEE�t	� �EE	� ��	

Parameters �EE and �EE are positive� Note that the quantity cEE�t	 is always non
negative�
the term ��EE is therefore necessary to allow for decreases of wEE�

We shall also consider a regulation for wIE� the synaptic weight from excitatory to
inhibitory neurons� although this regulation will play a less important role than that of
wEE� The modi�cation rule for wIE has the same form as equation �� yet it uses the
excitatory
to
inhibitory instantaneous covariance� de�ned as

cIE�t	
def
� �s�t	� #s�t		���t	� #��t		� ���	
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Figure � Bifurcation diagram in �wEE� wIE	 plane� �a	 Diagram shows three regions�
characterizing di�erent attractor con�gurations� Region O single point attractor� of
intermediate activity level� region P periodic attractor� as depicted in Figure �a� region
T two point attractors� of high and low activity� as depicted in Figure �c� Transitions
between regions occur through bifurcations� of Hopf type betweenO and P� of saddlenode
type between P and T �curve S	� and of pitchfork type between O and T� �b	 Average
covariance along four di�erent lines of constant wIE in the �wEE� wIE	 plane� Note the
sharp variation of the covariance on the critical line S separating P from T�

of the general case��

In sum� the �wEE� wIE	 bifurcation diagram for system � is characterized by a large
central periodic
attractor region� which extends to &� in the wIE direction �phase P	� and
is �anked by point
attractor regions on either side �phases O and T	� The transition from
P to T is abrupt �S line	� while the transition from O to P is smooth� As mentioned in

	It is however simpli�ed in two ways� First� the transition from region P to region T is of the
saddlenode type only for large enough values of wIE� corresponding roughly to the straight portion of
curve S �Figure �a�� in the lower� curved� part of S� the transition is more complicated� To see why
this is so� consider again Figure 	b� the nullcline diagram at the saddlenode bifurcation� with wIE 
 �
Note that the points of contact between the nullclines appear near the corners of the square� far from
the origin� this is due to the fact that wIE is large� hence the slope of the ��nullcline at the origin is
larger than the slope of the s�nullcline� The bifurcation is then of the saddlenode type� as described� If
however wIE is small� and so is the slope of the ��nullcline at the origin� the transition from P to T as
wEE is increased takes place di�erently� A pair of intersection points between the nullclines �rst split o�
from the origin� these are unstable equilibria� As wEE increases� these two equilibria move away from the
origin� while remaining inside the large stable limit cycle� At a certain critical value for wEE they become
stable�a �double� subcritical Hopf bifurcation�and almost immediately thereafter the large limit cycle
disappears� Thus� the transition from region P to region T really takes place in two steps� giving rise to
a three�attractor behavior� the system has one large limit�cycle attractor as well as two point attractors�
the latter being inside the cycle� The region of the �wEE� wIE� plane where this behavior takes place is a
very narrow strip extending along the lower� curved� part of the P	T boundary� in fact it is too narrow
to be seen in Figure �a� �With parameters wEI and wII as above and wIE 
 	���� the three�attractor
behavior occurs for wEE between ���� and ������ For some other values of wEI and wII this behavior
does not occur at all� and the transition from P to T is always of the saddlenode type�� For the purpose
of this paper� it is important to note that the point attractors appear either exactly or almost at the
same time as the periodic attractor disappears� The second approximation in the bifurcation diagram�
mentioned only for the sake of completeness� concerns the O�to�P transition� This is generally a smooth�
supercritical� Hopf bifurcation� However� as mentioned in the previous footnote� this Hopf bifurcation
becomes subcritical for very large values of wIE� There is thus a narrow region to the left of the bifurcation
line wEE 
 �wEE

hopf where the limit�cycle attractor coexists with the point attractor ������ for instance� at

wIE 
 ���� the width of this region is � �����
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somewhat above the critical value 'wEE
sn � Four trajectories are shown� in addition to the

two nullclines� The system has �ve �xed points� three unstable ones and two stable ones
�attractors	� Only the stable �xed points are of interest to us� they are very near the
upper right
hand and lower left
hand corners of the square� corresponding� respectively�
to high and low activities �excitatory as well as inhibitory	�

The bifurcation occurring at 'wEE
sn is of the saddlenode type� It results in a drastic

change of behavior of the system the periodic attractor disappears and is "siphoned�
into the two new point attractors� These two points attract the entire square �except
a set of measure � which includes the three unstable �xed points	� Thus� altough this
bifurcation is caused by a qualitative change of the �ow that is purely local� it results in
a reorganization of the dynamics that is both abrupt and global��

Having described the breakdown of oscillations when parameter wEE is increased� we
now consider the opposite change� that is� we let wEE decrease� This results in a decrease of
the slope of the central� increasing� portion of the s
nullcline �equation �	� Eventually� the
curve becomes monotonically decreasing �not illustrated in Figure �	� This does not alter
the number of intersections of the nullclines� point ��� �	 remaining the sole equilibrium�
However� the amplitude of the limit cycle decreases along with wEE� The cycle eventually
collapses to a point� the equilibrium ��� �	 has then become stable� This can be seen
in a linear stability analysis of system � around point ��� �	� It is easily shown that� in
case there are two complex conjugate eigenvalues�� the real part of these eigenvalues is
negative if and only if wEE 	 wII & �T � Thus� wII & �T is a critical value for parameter

wEE� We de�ne 'wEE
hopf

def
� wII & �T �with the current parameter setting� 'wEE

hopf � �	� The
change of behavior occurring at 'wEE

hopf is a normal� Hopf bifurcation�
So far� we studied the behavior of system � for di�erent values of parameter wEE�

all other parameters being �xed� In other words� we described the system�s behavior
on a particular �
dimensional subspace of the �
dimensional parameter space� We now
extend this study to a �
dimensional subspace� the �wEE� wIE	 plane� Figure �a is the
bifurcation diagram of system � in that plane� with other parameters as before �wEI � ���
wII � �	� This diagram shows three distinct regions� corresponding to three di�erent
attractor con�gurations �unstable �xed points and unstable limit cycles are ignored in
the diagram	� In the middle region�which we call region P� for Periodic�the system
oscillates� The boundary of this region to the right is the saddlenode bifurcation curve�
which we denote S� as discussed above� the rightmost region has two point attractors� and
we call it region T� The leftmost region� which we callO� has only one point attractor� the
center of symmetry ��� �	� it is separated from region P by the Hopf bifurcation curve� a
vertical line of equation wEE � 'wEE

hopf� The curve in the lower left of the diagram� separating
region O from region T� is the locus of a pitchfork bifurcation� This bifurcation diagram�
obtained for one particular set of values of the parameters wEI� wII and 
� is representative

�As mentioned� two distinct saddlenode bifurcations take place simultaneously� Such a double bifur�
cation is not generic� it occurs here due to the symmetry that we introduced when reducing system �
into system ��

�The condition for this is �wEIwIE � �wEE � wII���

That is� supercritical� However� for very large values of wIE� the bifurcation is subcritical�see next

footnote�
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Figure � Behavior of mean
�eld system for di�erent values of the E
to
E synaptic weight
wEE� Diagrams show trajectories and nullclines� �a	 wEE � �� �parameters are as in
Figure �	� all trajectories converge to a limit cycle� �b	 wEE � 'wEE

sn � ������ the system
is at the saddlenode bifurcation nullclines are tangent to each other �no trajectories
shown	� �c	 wEE � ��� nullclines intersect� the periodic attractor has vanished� two point
attractors have appeared�

Figure �a� the only intersection is ��� �	� an unstable equilibrium� Trajectories intersect
the s
� resp� �
� nullcline in a direction parallel to the �
� resp� s
� axis�

The study of the nullclines is of interest because it is often possible to predict how a
parameter change will a�ect the dynamics of a system by reasoning about how the nullcline
diagram will change� The bifurcation we shall be mostly interested in is associated with
a conspicuous change in the nullcline diagram� Note that the s
nullcline is a�ected by
parameters wEE and wEI� whereas the �
nullcline is a�ected by parameters wII and wIE�

Let us consider �rst the changes brought about by letting parameterwEE grow� starting
from the point wEE � �� for which the system oscillates �Figure �a 	� other parameters
are unchanged� When wEE grows� the slope of the central� quasi
linear� part of the s

nullcline increases �see equation �	� that part of the curve rotates about the symmetry
center ����	� As a result� the peak of the s
nullcline to the right approaches the upper
part of the sigmoid
shaped �
nullcline� while� because of symmetry� the minimum of the
s
nullcline to the left approaches the lower part of the �
nullcline� Eventually� at a certain
critical value 'wEE

sn �subscript "sn� stands for saddlenode�see below	� the two curves become
tangent to each other� This happens in two points at once� near the upper right
hand
corner and near the lower left
hand corner �symmetry again	� This situation is depicted
in Figure �b� where wEE is exactly equal to the critical value 'wEE

sn �with parameters as
above� 'wEE

sn � �����	� and the nullclines are just tangent to each other�
When wEE grows a little further� each point of contact splits into two intersection

points� one of which is an attractor� Figure �c shows this situation� with wEE � ���
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by s and � �
(s�t	 � ��� s�t	 & �� tanh$
�wEEs�t	� wEI��t	� hE	%
(��t	 � ��� ��t	 & �� tanh$
�wIEs�t	� wII��t	� hI	%�

��	

Note that the variables s�t	 and ��t	 remain at all t within the interval $���%� When 
 � �
system � has a unique attractor� �s� �	 � ���� ��	� Indeed� in the high
temperature limit�
all neurons act independently of each other and �re with probability �� at all times�

We shall now make a last simpli�cation� whose purpose is to render ���� ��	 a �xed
point�though not necessarily stable�at all temperatures and for all values of the synaptic
weights� This is easily achieved by letting the thresholds hE and hI be determined by the
synaptic weights as follows

hE � ���wEE � wEI	
hI � ���wIE � wII	�

��	

It is convenient to adopt the change of variables s �� s � ��� � �� � � ��� and system �
then becomes �

(s�t	 � �s�t	 & �� tanh$
�wEEs�t	� wEI��t		%
(��t	 � ���t	 & �� tanh$
�wIEs�t	� wII��t		%�

��	

In �� the variables s and � are in the interval $����&��%� and the only parameters left
are the four synaptic weights and the inverse temperature� For all parameter values�
the origin is a �xed point of system �� A di�erent position for the �xed point could be
obtained with an appropriate modi�cation of equations �� yet an added bene�t of the
current version is that the �xed point is also a center of symmetry� For the moment� this
hard
wired symmetry should be regarded as an ad�hoc device� whose purpose is to make
the mathematical analysis more convenient� We shall refer to system � as the full system�
and to system � as the reduced system� We shall see in Section � that� under appropriate
regulation� the two systems behave very similarly �a heuristic statement	�

We now discuss some important properties of the reduced system� system � �see also
Rubin ����	� Consider �rst Figure �a �phase diagram	� which shows four trajectories
of the state �s�t	� ��t		� the starting points of these trajectories are indicated by small
triangles� The parameters �synaptic weights	 used in this example are identical to those
used in Figure �� i�e�� wEE � ��� wIE � �� wEI � ��� wII � �� As expected� the asymptotic
behavior is periodic� there is a limit cycle which attracts all points of the square $���� ��%��
except the unstable equilibrium ��� �	� Motion is counterclockwise� for� as mentioned
above� ��t	 lags behind s�t	�

In addition to these four orbits� Figure �a shows two curves� the s
 and �
nullclines
for system �� These are the loci of the points �s� �	 such that ds�dt� resp� d��dt� vanish�
The equations for the s
 and �
nullclines are easily seen to be� respectively

� �
�

wEI
�wEEs� T tanh����s		� ��	

s �
�

wIE
�wII� & T tanh�����		� ��	

The �
nullcline is an increasing sigmoid
shaped curve� whereas the s
nullcline generally
has the shape of an "S� lying on its side� Of particular interest are the intersection points
of the two nullclines� these are the �xed points of the dynamics� In the case illustrated in
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Figure � Population averages of excitatory and inhibitory activities as a function of
time in a moderate
size uniform
weight system exhibiting oscillatory behavior �N � ���
Glauber dynamics	�

across each class� Speci�cally� for all i� j � �� � � � � N � we assume that hEi � hE� hIi � hI�
wEE

ij � wEE�N � wEI
ij � �wEI�N � wIE

ij � wIE�N � and wII
ij � �wII�N � where hE� hI� wEE�

wEI� wIE and wII are �xed parameters� and wEE� wEI� wIE and wII are non
negative� The
dynamics is thus parameterized by six constants� four synaptic weights and two thresholds�

 is merely a common multiplicative factor� and� unless otherwise mentioned� 
 will be ��

Due to the uniformity assumption� all neurons in any of the two populations experience
the same �eld� This system exhibits a limited number of fairly simple behaviors� of which
Figure � is an example� This �gure shows the time variation of hxEi �t	i and hx

I
i�t	i� the

average activation levels across the excitatory and inhibitory populations� In this example�
parameters are N � ��� wEE � ��� wIE � �� wEI � ��� wII � �� hE � �� hI � �� One
unit on the time axis corresponds to �N updates� so that each neuron is updated� on
average� once every time unit� For these parameter values� the system oscillates� Note
that the oscillation is not perfectly regular� a �nite
size e�ect� Note also that the inhibitory
activity lags somewhat behind the excitatory activity the excitatory neurons �rst trigger
the inhibitory ones� which in turn extinguish� for a while� the excitatory population�

The presence of oscillations and the amplitude and shape of the waveform depend
on the various parameters� However� rather than pursuing this study of the stochastic
system� we shall consider the approximation that obtains in the thermodynamic limit�
that is� when N � �� The update interval �t � ����N	 then goes to � and so does
each individual synaptic weight� Straightforward approximations �Rubin ����� Schuster
and Wagner ����	 then lead to a continuous
time di�erential system for the population
averages of the excitatory and inhibitory activation levels� which we denote� respectively�
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thresholds�

� The �xed�parameter model

This section describes the dynamics of the model with �xed parameters� We �rst brie�y
describe a network consisting of a large number ��N	 of binary
valued neurons operating
under a stochastic dynamics� However� rather than using this network for our study of
plasticity� we make a number of simpli�cations and approximations� leading to a deter

ministic two
variable di�erential system with just six parameters� The two variables are
the excitatory and inhibitory population averages of cell activity in the �N 
dimensional
model� the six parameters include the four average weights of the synapses within and
between these two populations� as well as the average �ring thresholds for the two pop

ulations� We then study the asymptotic behavior of this di�erential system for various
parameter values� Di�erent types of asymptotic behavior� in di�erent regions of the
parameter space� correspond to di�erent phases of the stochastic system� and we pay par

ticular attention to the bifurcations of the solutions� where the bifurcation parameters are
the synaptic weights�see Schuster and Wagner �����	 and Borisyuk and Kirillov �����	
for a related bifurcation analysis� Bifurcations correspond to phase transitions in the
statistical
physics formulation �the original �N 
dimensional model	�

We consider a fully
connected network ofN excitatory and N inhibitory linear
sigmoidal
f�� �g
valued neurons�� operating under a stochastic dynamics� We denote the activity of
the i
th excitatory� resp� inhibitory� neuron by xEi �t	� resp� x

I
i�t	� with xEi �t	� x

I
i�t	 � f�� �g�

i � � � � � N � and we denote the synaptic weights by wEE
ij � wEI

ij � w
IE
ij � w

II
ij� i� j � � � � � N � where

i is postsynaptic and j presynaptic� and the superscripts indicate� for each of the two neu

rons� whether it is excitatory or inhibitory� Thus� for all i and j� wEE

ij and wIE
ij are positive

or zero� whereas wEI
ij and wII

ij are negative or zero�
The local �eld on excitatory neuron i� i�e�� the di�erence between its membrane po


tential and its �ring threshold hEi � is g
E
i �t	 �

P
j w

EE
ij xEj �t	 &

P
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the local �eld on inhibitory neuron j is gIi�t	 �
P

j w
IE
ij x

E
j �t	 &

P
j w

II
ijx

I
j�t	� hIi� where hIi

is the threshold of inhibitory neuron i� The network dynamics is de�ned by �i	 select

ing at random� with uniform probability� one of the �N neurons� �ii	 computing its local
�eld g�t	� of the form gEi �t	 or gIi�t	� and �iii	 de�ning the state of the network at time
t & �t to be equal to the state at time t except� possibly� for the selected neuron� whose
state becomes�or stays�� with probability �

��� & tanh�
g�t			� Parameter 
 is a �xed
non
negative number� an inverse temperature� The temperature T � ��
 measures the
amount of noise in the system the higher the temperature� the noisier the dynamics� The
update interval is �t � ����N	� so that each neuron is updated on average once every time
unit� This asynchronous dynamics� of the Glauber type �Glauber ����	� is widely used
in statistical
mechanics models� it lends itself to a convenient mean
�eld approximation
�see below	�

A system such as the one just described will exhibit a highly diverse range of behaviors�
depending on the values of the synaptic weights and �ring thresholds� But we now make
the much simplifying assumption that synaptic weights and �ring thresholds are uniform

�It is not essential that the numbers of excitatory and inhibitory neurons be the same�

�



shall demonstrate that� under fairly general conditions� it causes the network to converge
to� and stay near� a critical surface in parameter space� the locus of an abrupt transition
between di�erent activity modes� Note that most regulation mechanisms at work in the
brain are believed to have a stabilizing e�ect� In contrast� the regulation of synaptic
weights studied here brings the system near criticality�

Schematically� the convergence to a critical state can be explained as follows� Networks
of excitatory and inhibitory neurons have a tendency to oscillate� such behavior takes place
if the synaptic weights linking excitatory neurons to each other�we will refer to these
as E
to
E weights�are high enough but not too high� Oscillation entails high covariance
values� hence� according to the covariance rule� results in further increase of the E
to
E
weights� hence even stronger oscillation� If� however� the E
to
E weights are allowed to
reach a certain critical value� oscillatory behavior is disrupted and is replaced by steady
�ring� Covariance then collapses� and� in accord with the covariance rule used� the E
to
E
weights now decrease� As a result� the E
to
E weights stabilize around the critical surface
that separates the region of oscillation from the region of steady �ring�

Our study is conducted in the simplest type of network that will support oscillatory
activity all synaptic weights of a given type�e�g� E
to
E�are given identical values�
and so are all �ring thresholds of a given type� This results in a system with just six
parameters�four synaptic weights and two thresholds�and a limited range of behaviors�
Essentially� all neurons �re uniformly� either at a constant rate �the number of possible
rates of �ring is one or two� depending on parameters	 or periodically in time� In the ther�
modynamic� i�e�� large
size� limit� the dynamics of the network is adequately described by
a system of di�erential equations obtained through a classical mean
�eld approximation�

We �rst perform a simple bifurcation analysis �Guckenheimer and Holmes ����	 of
this di�erential system� We then show that the e�ect of covariance regulation is to
stabilize the parameter state at a surface of transition� where the dynamics exhibits an
instability� Such a critical parameter state for a dynamical system may be characterized
as degenerate� i�e�� exceptional� A generic� i�e�� non
exceptional� state is one where one
would expect to �nd the system in the absence of special assumptions� Mathematically�
a generic parameter state is always in the interior of a region corresponding to a given
behavior �the set of non
generic parameter states has measure zero	� and the system in
such a parameter state is said to be structurally stable�

We shall further show that a state of high degeneracy� characterized as a point of
intersection of several critical surfaces� can be achieved by the simultaneous regulation of
several parameters� In the vicinity of that highly degenerate state� the system displays a
range of behaviors� including chaos�

The plan of the paper is as follows� In the next section we study the dynamical
properties of our simple network�in the di�erential
equation formulation�with �xed

parameters �synaptic weights and �ring thresholds	� We fully characterize �somewhat
beyond what is strictly needed here	 the bifurcations that take place at the boundaries
between domains corresponding to di�erent modes of behavior� This study is conducted
for a reduced system� where the thresholds are eliminated in such a way as to render
the dynamics symmetric about the origin� Section � describes the regulation equations�
Section � describes the behavior of these regulation equations acting on the reduced
system� Finally� Section � studies the regulated full system�including a regulation of the
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Abstract

We propose that a regulation mechanism based on Hebbian covariance plasticity

may cause the brain to operate near criticality� We analyze the e�ect of such a

regulation on the dynamics of a network with excitatory and inhibitory neurons

and uniform connectivity within and across the two populations� We show that�

under broad conditions� the system converges to a critical state lying at the common

boundary of three regions in parameter space� these correspond to three modes of

behavior� high activity� low activity� oscillation�

KEYWORDS � Brain� criticality� synaptic plasticity� bifurcation� covariance�

� Introduction

The ability of our brain to respond to small perturbations� whether extrinsic �stimuli	 or
intrinsic �intentional processes	� by abrupt transitions between markedly di�erent activity
patterns has often been remarked upon �e�g� Freeman and Barrie ���� and references
therein	� In e�ect� it is tempting to postulate that the brain as a dynamical system is
operating near some form of instability� or criticality� this hypothesis is related to the
notions of computation at the edge of chaos �Langton ����	 and self
organized criticality
�Bak et al� ����	� Here� we propose that a simple mechanism of synaptic plasticity�
i�e�� activity
dependent change of the e�cacy of transmission of the synaptic junctions
between neurons� may actively maintain the brain near criticality�

Hebbian synaptic plasticity �Hebb ����	 plays an important role in the development
of the nervous system and is also believed to underlie many instances of learning in the
adult� A covariance rule of Hebbian plasticity roughly states that the change in the
e�cacy of a given synapse varies in proportion to the covariance between the presynaptic
and postsynaptic activities� As noted by many authors �e�g� Sejnowski ����a� ����b�
Bienenstock et al� ����� Linsker ����� Sejnowski et al� ����	� a covariance
type rule
is preferable to a rule that uses the mere product of pre
 and post
synaptic activities
because the covariance rule predicts not only weight increases but also activity
related
weight decreases� as a consequence� it allows convergence to non
trivial connectivity states�
Some forms of covariance plasticity have been shown to be optimal for information storage
�Willshaw and Dayan ����� Dayan and Willshaw ����� Dayan and Sejnowski ����	� In
Metzger and Lehmann ������ ����	� a covariance
type Hebbian rule has been studied in
the context of supervised learning of temporal sequences� Finally� evidence for Hebbian
plasticity of the covariance type has been reported in many preparations �Fr�egnac et al�
����� ����� Stanton and Sejnowski ����� Artola et al� ����� Dudek and Bear ����	� for
a recent review� see Fr�egnac and Bienenstock �����	�

Contrasting with the use of covariance plasticity for information storage� we shall
investigate its e�ect as a mechanism of regulation� in a simple network of excitatory
and inhibitory neurons� Synaptic modi�cation will result in changes�quantitative or
qualitative�in the activity that reverberates in the network� and these changes will in
turn cause further modi�cation of the weights� thereby creating a regulation loop between
activity and connectivity� Studying this loop independently from any input and output� we
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