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1 Introduction

Information-theoretic methods have been widely
used in neuroscience, in the broad effort to ana-
lyze and understand the fundamental information-
processing tasks performed by the brain. In these
studies, the entropy has been adopted as the main
measure for quantifying the amount of information
transmitted between neurons, via the spike trains
they generate. One of the first and most important
goals is to identify appropriate methods that can be
used to quantify the amount of information that gets
communicated by spike trains, or, in other words, to
estimate the entropy of spike trains recorded from
live animals.

So far, the most commonly used entropy-
estimation technique has been the so-called “plug-
in” (or maximum-likelihood) estimator and its var-
ious modifications. This method consists of essen-
tially calculating the empirical frequencies of all
words of a fixed length in the data, and then esti-
mating the “true” entropy of the underlying signal as
the entropy of this empirical distribution; see, e.g.,
[10][5][12][6][9]. For computational reasons, the
plug-in estimator cannot go beyond word lengths of
about 10 or 20, and hence it does not take into ac-
count the potential longer time dependencies in the
signal.

Here we examine the performance of entropy es-

timators based on two data compression algorithms,
the Lempel-Ziv algorithm (LZ) and the Context Tree
Weighting method (CTW). Specifically, we consider
two LZ-based entropy estimators and one based
on the CTW. The first LZ-based method has been
widely and very successfully used in many appli-
cations, and the other one is a new estimator with
some novel and more desirable statistical properties.
The CTW-based estimator is based in the work of
Willems et al [13][14][15] and it has also been con-
sidered in [1][3].

2 Results

We demonstrate that the LZ- and CTW-based es-
timators naturally incorporate dependencies in the
data at much larger time scales than the plug-in, and
that they are consistent (in the statistical sense) for a
wide class of data types generated from distributions
that may posses arbitrarily long memory.

The Lempel-Ziv algorithm [17][18] is a universal
data compression scheme that achieves the (optimal)
entropy lower bound when applied to data generated
by anystationary ergodic process. As the conditions
of stationarity and ergodicity are very weak (and in
some sense minimal), they appear well-suited for
neural data, as we have noa priori bound on the
length of the memory in the data, and in fact the very
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length of this memory is one of the objects we intend
to study.

The main gist in the workings of the Lempel-Ziv
algorithm was revealed by Wyner and Ziv in [16],
where they studied the connection between the en-
tropy of a process and the longest match-lengths
along a process realization. Roughly speaking, the
match-lengths measure the length of the longest
string starting in a fixed position in the data which
re-appears in a given window somewhere else in the
same data. Intuitively, the longer the match-lengths,
the more regularity there is in the data, and hence
the smaller the entropy (and the more efficient the
compression). Partly motivated by this connection,
a number of entropy estimators have been proposed
since then and have been applied to many different
kinds of data; for examples see [8][2] and the refer-
ences therein. Here we use two entropy estimators
based on match-lengths, one described in [2], and a
new one. We study their theoretical properties, we
apply them to neuronal data, and we present a sys-
tematic simulation study of their statistical proper-
ties.

The CTW [13][14][15] is another universal com-
pression algorithm for tree sources, which has the
additional advantage that it also gives as its out-
put a statistical distribution for the data it com-
presses. Like the Lempel-Ziv algorithm, the CTW
also achieves the entropy lower bound, and in spe-
cial cases it is shown to achieve the best possible
redundancy rate as determined in [7]. In particular,
its redundancy can be bounded aboveuniformlyover
all data sequences of arbitrary length, which means
that the same thing can be said for the bias of the re-
sulting entropy estimation algorithm. This is clearly
very valuable information to have when this algo-
rithm is used in practice. Here we study an entropy
estimator based on the CTW, implemented in a man-
ner similar to that described in [3].

To compare the performance of various meth-
ods, we apply these entropy estimators on simu-
lated data, generated from homogeneous Poisson
processes, Markov chains of various orders, hidden
Markov models (HMMs), and renewal and Markov-
renewal processes. For most of these models, the
true entropy rate can be calculated in closed form.
Our analysis shows that, whereas for short-memory

processes the plug-in is as good as any other method,
for processes with longer memory the plug-in is
much worse than the both the LZ estimators and
the CTW, because of undersampling problem. In
fact, the CTW estimator is uniformly better than the
other estimators, for both short and relatively long
memory processes. Its fast convergence rate outper-
forms the LZ-based estimators, and its ability to al-
low for longer memory makes it more accurate than
the plug-in.

3 Experimental Results

We next apply these methods to neural data. Our
data come from two multi-electrode arrays im-
planted on a monkey’s primary motor cortex (MI)
and dorsal premotor cortex (PMd). The arrays si-
multaneously recorded neural activity from 29 dif-
ferent neurons. A Plexon acquisition system was
used to collect the neural signal, and the units were
spike-sorted using Plexon’s Offline Sorter. The mon-
key was not engaged in any task when the data were
collected, and the size of the data is approximately
an hour. A detailed description of recording tech-
niques is given in [4].

Our results on neural data show that the CTW
gives somewhat lower estimates than the plug-in, de-
spite the fact that the the bias of the plug-in estima-
tor is negative whereas that of the CTW is positive.
This suggests that the CTW estimates are more reli-
able, and it strongly indicates that the CTW’s smaller
values come from the fact that itdoes indeed find
longer-term dependencies in the data. Using the two
LZ-based estimators we find that one gives results
systematically higher and one systematically lower
that those of the plug-in.

As mentioned above, from the CTW algorithm
we can also obtain an explicit statistical model for
the data. In this study we looked extensively at the
resulting “maximum a posteriori probability tree”
models, as described in [11], which give the best
(in a certain sense) tree models that can be fit to the
data at hand. From the results we clearly see that
the spike-train data exhibit long-range dependencies
(much longer that the 10- or 20-millisecond win-
dow captured by most earlier studies). We also find
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that perhaps the most relevant modeling “parame-
ter” for estimating the entropy of these spike trains
is the inter-spike-interval (ISI) distribution. This of-
fers another possible explanation for why the plug-
in method and its variants may not produce satis-
factory results. Furthermore, a detailed analysis of
how the entropy estimates behave as the tree depth
allowed in the CTW varies, suggests that it is natu-
ral to think that spike trains have, generally speak-
ing, slowly varying firing rates, and that the firing
rate is strongly related with the Fano factor, which
describes the variability of the spike trains.

4 Conclusions

Overall, we find that the CTW is a significantly bet-
ter estimator that either the plug-in-based or the LZ-
based methods, and also that it is a more appropri-
ate one for neuronal data. Its convergence rate is
fast, and it exhibits a strong ability to model long-
memory statistical properties in the data. Moreover,
it offers an actual probabilistic model for the data,
which can be used to read off important statistical
properties of spike trains that go well beyond the en-
tropy estimation task.
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