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Abstract— We present a Switching Kalman Filter Model
(SKFM) for the real-time inference of hand kinematics from
a population of motor cortical neurons. First we model the
probability of the firing rates of the population at a particular
time instant as a Gaussian mixture where the mean of each
Gaussian is some linear function of the hand kinematics. This
mixture contains a “hidden state”, or weight, that assigns a
probability to each linear, Gaussian, term in the mixture. We
then model the evolution of this hidden state over time as a
Markov chain. The Expectation-Maximization (EM) algorithm
is used to fit this mixture model to training data that consists of
measured hand kinematics (position, velocity, acceleration) and
the firing rates of 42 units recorded with a chronically implanted
multi-electrode array. Decoding of neural data from a separate
test set is achieved using the Switching Kalman Filter (SKF)
algorithm. Quantitative results show that the SKFM outperforms
the traditional linear Gaussian model in the decoding of hand
movement. These results suggest that the SKFM provides a real-
time decoding algorithm that may be appropriate for neural
prosthesis applications.

I. I NTRODUCTION

Recent research on neural prostheses has explored a variety
of neural decoding methods that convert neural activity into
a voluntary control signal [2], [6], [7], [8]. Recently, we
proposed a control-theoretic Kalman filter model [9], in which
hand movement is encoded by a population of cells with
a linear Gaussian model and is decoded using the Kalman
filter algorithm. Our results suggest that this simple Kalman
filter model enables accurate and efficient decoding of contin-
uous hand motion. The method is based on an approximate
generative model of neural firing. In particular, it assumes
that the observed firing rates are a linear function of hand
kinematics (position, velocity, and acceleration) and that they
are corrupted by Gaussian noise. This generative model is
only a rough approximation and we seek to systematically
extend the linear Gaussian model to non-linear and/or non-
Gaussian models and evaluate their performance with respect
to neural decoding. Unfortunately, these non-linear models are
difficult to learn from training data and the associated decoding
methods are computationally expensive [1].
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In this paper, we exploit a mixture of linear Gaussian models
that provides a general probabilistic model relating neural
activity to hand kinematics. The key insight is that, while
such a model is more general than the simple linear Gaussian
model, it admits an efficient, real-time, decoding algorithm.
This mixture model is called a Switching Kalman Filter Model
(SKFM) [4] and the parameters of the model can be learned
from training data using the Expectation-Maximization (EM)
algorithm. Decoding is achieved using the Switching Kalman
Filter algorithm [4] which has computational efficiency sim-
ilar to the Kalman Filter and provides real-time decoding.
Quantitative results show that the SKFM outperforms the
Kalman filter in the decoding of hand movement for the neural
data recorded from an implanted microelectrode array. The
method satisfies the goals of accurate decoding and real-time
performance which are both necessary for direct neural control
tasks [6].

II. DATA ACQUISITION AND PROCESSING

Task: Simultaneous recordings are acquired from an array
consisting of100 microelectrodes chronically implanted in the
arm area of primary motor cortex (MI) of a Macaque monkey.
The monkey views a computer monitor while gripping a two-
link manipulandum that controls the 2D motion of a cursor
on the monitor [6]. We use the experimental paradigm of [6],
in which a target dot appears in a random location on the
monitor and the task requires moving a feedback dot with the
manipulandum so that it hits the target. When the target is
hit, it randomly jumps to a new location. Note that the hand
motions in this task are more “general” and natural than those
in the more common “center-out” tasks [7].

Data: The trajectory of the hand and the neural activity
of 42 cells are recorded simultaneously. In particular, we
compute the position, velocity, and acceleration of the hand
every 70ms. Neural data is recorded using a commercial
Plexon system, units are isolated manually, and spikes are
detected on-line using manually set thresholds. This “sorting”
is approximate and the measured activity may include the
activity of multiple cells. The activity of each unit is summed
within non-overlapping70ms time bins.

Pre-processing:Before fitting our model we apply a square-
root transform to the firing data as suggested in [3]. The mean
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Fig. 1. Graphical model representation for SKFM: It is a mixture of State-
space model and Hidden Markov model. Both states and switching labels are
assumed Markov over time, and given states and labels, the observation is a
linear Gaussian model.

firing rate for each unit is then subtracted to obtain zero-mean
data.

In the work that follows we fit a Gaussian mixture model
to the data in which each component of the model has a full
covariance matrix (i.e.42 × 42). Given the large number of
units, correlations between their firing activity, and a limited
amount of training data, fitting multiple covariance matrices
can be computationally unstable. To deal with this, we reduce
the dimensionality of the input firing rates using Principal
Component Analysis (PCA). Here we project the firing rates
onto a 39 dimensional subspace which results in a loss of less
than 1% of the information. For simplicity, we still refer to
these 39 principal components as “cells”. This approach could
be applied to larger populations to significantly compress the
firing data making it feasible to fit full covariance matrices
with limited training data.

III. M ETHODS

In the Switching Kalman Filter Model, the hand movement
(position, velocity and acceleration) is modeled as the system
stateand the neural firing rate is modeled as theobservation
(measurement). Let thestateof the hand at the current instant
in time bext = [x, y, vx, vy, ax, ay]Tt ∈ <6, which represents
x-position, y-position, x-velocity, y-velocity, x-acceleration,
and y-acceleration at timet∆t where ∆t = 70ms in our
experiments. The observationsyt ∈ <K which here represent
a K × 1 vector containing the firing rates at timet for K
observed neurons within70ms.

Figure 1 shows the SKFM framework, where the joint
probability distribution over states ({xt}), observations ({yt})
and switching variables ({St}) is

p({xt, yt, St}) =

[p(S1)

T∏
t=2

p(St|St−1)][p(x1)

T∏
t=2

p(xt|xt−1)][

T∏
t=1

p(yt|xt, St)].

Conditioned on the hidden switching state, the probability of
observing the firing rate vector is given by

p(yt|xt) =
N∑

j=1

p(St = j)p(yt|xt, St = j), (1)

in which
p(yt|xt, St = j) = N (Hjxt,Qj), (2)

wherej = 1, 2, · · · , N, t = 1, 2, · · · , T . T is the total number
of time steps in the trial andN is the number of different linear
models in our mixture.N (Hjxt,Qj) denotes a Gaussian
distribution with meanHjxt whereHj ∈ <K×6 is a matrix
that linearly relates the hand state to the neural firing. The
noise covariance matrix isQj ∈ <K×K .

We assume the hidden statesS1, S2, · · · , ST form a first
order Markov chain as illustrated in Figure 1; that is,

p(St = j) =
N∑

i=1

p(St = j|St−1 = i)p(St−1 = i), (3)

where we denote

cij = p(St = j|St−1 = i), 1 ≤ i, j ≤ N. (4)

We represent these state transition probabilities as atransition
matrix C = {cij}.

The kinematic state is also assumed to form a Markov chain
represented by the system model:

p(xt|xt−1) = N (Axt−1,W), (5)

where A ∈ <6×6 is the coefficient matrix and the noise
covariance matrix isW ∈ <6×6.

Encoding

In practice, we need to estimate all the parameters
A,W,H1:N ,Q1:N , C from training data, in which both hand
kinematics{xt} and firing rates{yt} are known, but the
switching labels{St} are hidden. Therefore, we estimate all
the parameters by maximizing likelihoodp({xt, yt}):

argmaxA,W,H1:N ,Q1:N ,Cp({xt, yt})
= argmaxA,W,H1:N ,Q1:N ,Cp({xt})p({yt}|{xt})
= argmaxA,W p({xt})argmaxH1:N ,Q1:N ,Cp({yt}|{xt})

Using the linear Gaussian property ofp({xt}), we have

argmaxA,W p({xt}) =

argminA,W

T∑
t=2

[log(detW) + (xt −Axt−1)
T W−1(xt −Axt−1)].

The above minimization has a closed form solution:

A =

T∑
t=2

xtxT
t−1

(
T∑

t=2

xt−1xT
t−1

)−1

,

W =
1

T − 1

(
T∑

t=2

xtxT
t − A

T∑
t=2

xt−1xT
t

)
.

The other termp({yt}|{xt}) =
∑

{St} p({yt, St}|{xt})
contains hidden variables{St}. While no closed form solution
exists, the EM algorithm offers an effective way to estimate all
the parameters. Denoteθ = (H1:N ,Q1:N , C) andp(·| · · ·) =
p(·|{xt, yt}; θk), we updateθk to θk+1 as

argmaxθEp({St}|···) log p({yt, St}|{xt}; θ).
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The detail of the maximization process can be found in [4].
We only show the updating result here:

cij =

T∑
t=2

p(St = j, St−1 = i| · · ·)/
T∑

t=2

p(St−1 = i| · · ·),

Hj = [

T∑
t=1

p(St = j| · · ·)ytxT
t ][

T∑
t=1

p(St = j| · · ·)xtxT
t ]−1,

Qj =

T∑
t=1

[p(St = j| · · ·)(ytyT
t − HjxtyT

t )]/

T∑
t=1

p(St = j| · · ·).

wherei, j = 1, · · · , N and the conditional probabilities ofSt,
St−1 can be calculated using standard Dynamic Programming
techniques.

Experimentally we find that approximately 3.5 minutes of
training data suffices for accurate reconstruction (this is similar
to the result for fixed linear filters reported in [6]). Training
the model takes approximately 1 minute on a Pentium III 866.

Decoding (Estimation)

Given the probabilistic encoding model defined above, we
turn to the problem of decoding; that is, reconstructing hand
motion from the firing rates of the cells. Letx1:t denote
x1, · · · , xt, and the same fory1:t and S1:t. We seek thea
posteriori mean x̂t = E(xt| y1:t) that minimizes the mean
square error E((xt − x̂t)2| y1:t). We achieve this using the
efficient Switching Kalman Filter algorithm which is briefly
described here (see [4] for details).

Under the SKFM framework, the posterior distribution of
the state is also a mixture of Gaussians, but the mixture
number grows exponentially with time, i.e. assume initial
p(x1| y1) is a mixture ofN Gaussians (one for each value
of S1), thenp(xt| y1:t) is a mixture ofN t Gaussians (one for
each sequence ofS1, · · · , St). The Switching Kalman Filter
(SKF) algorithm [4] approximates theseN t Gaussians with a
mixture ofN Gaussians at each time stept. The fixed number
N over time is maintained by “collapsing”N Gaussians into
one using moment matching, which can be shown to be the
optimal approximation under the criterion of minimization of
relative entropy between the Gaussians.

We need the following notation:

xj
t = E[xt| y1:t, St = j],

Vj
t = Cov[xt| y1:t, St = j],

xij
t = E[xt| y1:t, St = j, St−1 = i],

Vij
t = Cov[xt| y1:t, St = j, St−1 = i],

wj
t = p(St = j| y1:t),

wij
t = p(St = j, St−1 = i| y1:t),

gij
t = p(St−1 = i| y1:t, St = j),
lijt = p(yt| y1:t−1, St = j, St−1 = i).

The decoding algorithm that follows shows how the posterior
distribution p(xt| y1:t) is approximated by a mixture ofN
Gaussians

∑
j wj

tN (xj
t ,V

j
t ) for each time stept:

TABLE I

RECONSTRUCTIONACCURACY USINGKALMAN FILTER AND SKF

Method Corr-Coef(x, y) MSE (cm2)
Kalman (0.82, 0.93) 5.87
SKF (0.84, 0.93) 5.39

From time stept − 1 to t:

[xij
t ,Vij

t , lijt ] = filter (xi
t−1,V

i
t−1, yt, Hj ,Qj ,A,W)

wij
t = lijt cijw

i
t−1/

∑
ij

lijt cijw
i
t−1

wj
t =

∑
i

wij
t

gij
t = wij

t /wj
t

[xj
t ,V

j
t ] = collapse({xij

t , Vij
t , gij

t }i)

where we use the standard Kalman Filter subroutinefilter
(shown in the appendix). Assume at timet − 1, the poste-
rior distributionp(xt−1| y1:t−1) is a mixture ofN Gaussians
(which is true at first time step), thenfilter propagates them
to time t to have a mixture ofN2 Gaussians (one for each
array of (St−1, St)), i.e.

p(xt| y1:t) =
∑

j

wj
t p(xt| y1:t, St = j) =

∑
ij

wij
t N (xij

t ,Vij
t ).

For eachj ∈ {1, · · · , N}, p(xt| y1:t, St = j) =
∑

i
gij

t N (xij
t ,Vij

t )

is a mixture ofN Gaussians. The subroutinecollapse (also
shown in the appendix) approximates this mixture by one
Gaussian by matching the mean and covariance, which pro-
duces a mixture withN components at time stept. Therefore,
the posterior distributionp(xt| y1:t) ≈

∑
j wj

tN (xj
t ,V

j
t ), and

the final state estimation̂xt and its error covariancêVt are as
follows:

x̂t =
∑

j

wj
t xj

t ,

V̂t =
∑

j

wj
t (V

j
t + (xj

t − x̂t)(x
j
t − x̂t)T ).

At the beginning of the test trial we let the predicted initial
condition equal the average state in training data, then the SKF
algorithm is applied over time. Table I shows that, the SKF
gives a more accurate reconstruction than the Kalman Filter
(which uses a single linear Gaussian model).

Figure 2 shows the SKF reconstruction of the first 20
seconds of test data (distinct from the training data) for
each component of the state variable (position, velocity and
acceleration inx and y). We see that the reconstructed tra-
jectories are smooth and visually similar to the true ones (i.e.
high Correlation Coefficient). We also observe that the SKF
produces a more accurate reconstruction in terms of the Mean
Square Error (MSE).

For the SKF, the posterior distribution of the state is
assumed to be a mixture of Gaussians and the uncertainty
can be estimated by the error covariance. The 95% confidence
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Fig. 2. Reconstruction of each component of the system state variable: true
hand motion (dashed (red)) and reconstruction using the SKF (solid (blue)).
20seconds from a 1minute test sequence are shown.
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Fig. 3. Confidence estimation for thex andy−position: The first row shows
the true (dashed (red)), reconstructed trajectories (solid (blue)) and their 95%
confidence range (dashdot (cyan)). The second row is the normalized version
by subtracting the corresponding reconstruction, which shows more clearly
the confidence intervals.

interval is shown for bothx and y-position in Figure 3. We
see that most of time the true positions are within of them,
which shows the validity of the confidence.

IV. CONCLUSIONS

Based on previous Kalman filter work, we proposed a
natural non-linear extension which is more appropriate for
the neural control of 2D cursor motion. The new approach
is focused on the observation model, which can be efficiently
learned by the EM algorithm using a few minutes of training
data and provides real-time estimates of hand position every
70ms given the firing rates of 42 cells in primary motor cortex.
The estimated trajectories are more accurate than the standard
linear Kalman filter results for this data set. The SKFM has
many of the desirable properties of the Kalman filter (e.g.
linear Gaussian models (when conditioned on the switching
state), full covariance model, efficient encoding and decoding),
while being more versatile and accurate. It can deal with

violations (to some extent) of both the assumption of linearity
and Gaussian noise.

Finally, our future work will evaluate its performance for on-
line neural control of cursor motion and compare with Kalman
filter and other linear regression methods. Additionally, we are
exploring alternative measurement noise models, non-linear
system models, adaptive learning techniques, and non-linear
particle filter decoding methods.
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APPENDIX

The subroutinefilter is the standard Kalman filter:

[x̃, Ṽ, l] = filter(x,V, y,H,Q,A,W)
xm = Ax,

Vm = A′VA′ + W,

S = HVmH′ + Q,

K = VmH′S−1,

l = N (y − Hxm; 0,S),
x̃ = xm + K(y − Hxm),

Ṽ = (I − KH)Vm.

The subroutinecollapseapproximates mixture of Gaussians
as one Gaussian by matching the mean and covariance:

[x,V] = collapse({x̃i, Ṽi, gi}i)

x =
∑

i

gix̃i

V =
∑

i

gi(Ṽi + (x̃i − x)(x̃i − x)T )
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