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Abstract – Neocortical connectivity displays striking regulari-

ties that self-organize via epigenetic interactions with activity. We 

construe this self-structuration as a process of spatiotemporal 

pattern formation in a simple neural network model. Starting 

from random connections, ordered “synfire-chain” structures and 

wave-like correlations emerge simultaneously and reinforce each 

other through cooperation, while the global stability of the net-

work is maintained by competition. Out of broad diffuse contacts 

and low stochastic firing, select synapses are strengthened and 

spike correlations increase. We suggest that the concurrent 

growth of multiple chains defines a mesoscopic scale of neural 

organization, and view the ontogenetic development of the nerv-

ous system as a “self-made tapestry” of synfire patterns, which 

could provide the basis for compositionality and learning. 

 

Index Terms – Synfire Chains, Self-Organization, Hebbian 

Learning, Spatiotemporal Patterns, Correlations, Compositionality. 

I. INTRODUCTION 

A. The Self-Structuration of Neocortex into Synfire Chains 

The connectivity of neocortex displays striking regulari-

ties that account for its functional specialization. Synaptic con-

tacts self-organize during pre- and post-natal development via 

epigenetic factors involving interactions between extrinsic and 

intrinsic sources of neural activity. Fundamentally, the growth 

of neocortex is guided by ongoing bioelectrical activity and 

competitive interactions. We propose here a neural network 

that models this self-structuration as a process of spatiotempo-

ral pattern formation. We show the spontaneous and simulta-

neous emergence of ordered chains of synaptic connectivity 

together with a wave-like propagation of neuronal activity. 

This is based on two mechanisms: (a) Hebbian learning, one of 

the major principles underlying the development and tuning of 

the nervous system, and (b) the sensitivity of cortical neurons 

to nearly synchronous inputs amongst afferent connections. 

Synaptic contacts are rewarded by successful transmission 

events, as exemplified in spike-timing dependent plasticity 

(STDP). This work describes how a neural network may be-

come spontaneously structured as a result of these principles, 

which are given a straightforward mathematical form. 

The order emerging from our model assumes the shape of 

simple linear structures called “synfire chains” [1]. They con-

sist of a sequence of synchronous groups P0→P1→P2→..., 

feed-forward connections and waves of activity (Fig. 1a). It is 

postulated that synfire chains could explain the preservation of 

accurately synchronized action potentials even in the presence 

of noise [2], as observed for example in the macaque MT area 

[ 3 ] and other recordings containing statistically significant 

delayed correlations in slices of mouse visual cortex [4]. These 

reproducible regimes of network dynamics can be construed in 

a generic way as “spatiotemporal patterns” of neural activity 

[5] or temporal modules dubbed “cortical songs” [6]. They 

correspond to specific constellations of spikes in raster views. 

 

Fig. 1 Schema of a synfire chain. The geometry of the network has been un-

folded along a temporal axis to make the linear structure appear clearly. 

In our proposal, the main feature of synfire structuration 

resides in the fact that some synaptic connections are selected 

and reinforced to the detriment of others. An initially disor-

dered network characterized by broad and diffuse connectivity 

and background stochastic activity undergoes a process of 

“focusing of innervation”. Contacts that cooperate to sustain 

successful transmission events are rewarded, while activity 

evolves into a spatiotemporal regime characterized by high 

correlations among spike timings. The focusing expresses it-

self as the growth of a “long” but “narrow” structure. We shall 

see that, in a true self-organized fashion, connections and cor-

relations reinforce each other through heterosynaptic coopera-

tion, while the network’s stability is maintained through a con-

straint of heterosynaptic competition. 

B. Temporal Binding with Delays and Without Oscillations 

This work also addresses the issue of an appropriate for-

mat of neural representation from a theoretical viewpoint. Our 

proposal is that the nervous system uses a higher-order tempo-

ral code 〈xi(t) xj(t − τij) xk(t − τik) ...〉, instead of average firing 

rates 〈xi(t)〉, to represent mental entities. The idea that accurate 

temporal relationships between neuronal firings may be used 

by the brain to express relationships has been formulated most 

notably by von der Malsburg [7]. Considerable interest in this 

approach has arisen in recent years, partly as a result of ex-

perimental data and theoretical studies suggesting synchroni-

zation of periodic firing as a mechanism for feature linking 

[8]. However, while using temporal synchrony for dynamical 

binding has become widely accepted [9], the oscillatory for-

mulation is still debated. Moreover, phase locking is nearly 

always reported with phase zero. The representational power 

of the mechanism then appears to be rather limited. This study 

provides an alternative to the oscillatory-activity version of 

temporal coding. Specifically, we assume that entities to be 

bound (local features in a primary sensory cortex, lexical items 
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in a language area, etc.) are represented by the activation of 

synfire chains, whose mutual binding is the counterpart to the 

phase locking of oscillators. One may say that the oscillator 

has been “unfolded” in space, so that a purely temporal pattern 

has now become a spatiotemporal one. Thus, we offer a simple 

explanation for the possible growth of synfire patterns and, 

second, suggest that these patterns may play an important role 

in the neural implementation of compositional cognitive func-

tions. In our framework, accurate temporal relationships be-

tween the firing of neurons is used to express dynamical bind-

ing, based on synfire chains rather than oscillators. 

C. Mesoscopic Scale and Compositionality 

In this context, we postulate that synfire patterns might 

constitute the elementary components or “building blocks” at 

the microlevel of the mind’s symbolic abilities, in particular 

the faculty of compositionality [10]—the assembling of ele-

mentary features into complex representations. Compositional-

ity is fundamental to all cognitive functions. For example, the 

operative objects of perception and language can be described 

as symbols endowed with an internal structure, which allows 

them to assemble in multiple combinatorial ways and create a 

virtually infinite hierarchy of composite concepts. As dis-

cussed in the previous section, synfire structures precisely 

have the required properties to implement these constituents. 

Therefore, the theoretical claim carried by our model is that 

compositionality can arise from the gradual ontogenetic devel-

opment of the nervous system during the early stages of synap-

togenesis. In this, we join Chomsky’s conception that the in-

nate predisposition for the faculty of language (as opposed to 

any specific language) might involve a “growth” and matura-

tion of the nervous system similar to a limb or an organ. 

The present study was also motivated in response to clas-

sical criticisms stemming from the AI community against the 

lack of structured representations and symbolic support in 

connectionism. In neurally inspired systems, entities are em-

bodied in the network’s nodes and activated in an association-

istic way. Conversely, logical systems define symbols that can 

be composed in a generative way, but do not possess a “micro-

structure” suited for perception or learning tasks. In our view, 

the missing link between these two levels is an intermediate or 

mesoscopic level of description, at a finer granularity than 

macroscopic symbols but higher structural complexity than 

microscopic neuronal activities. Here, neural groups such as 

synfire chains do not literally represent entities but rather pro-

vide the bricks for their construction. Metaphorically, it could 

be said that synfire structures are akin to “protein molecules”, 

more complex than “atoms” (neurons) but more elementary 

than “cells” (cognitive representations). Our developmental 

model describes the creation of such a mesoscopic level by 

“crystallization” of the network into synfire modules. On this 

level, the modules interact and assemble to create wave syn-

chronization via temporal binding (Fig. 8). Similarly to the 

vast majority of natural systems—physical, chemical, biologi-

cal or social—we suggest that neocortex is a “self-made tapes-

try” pattern formation system [11], whose motifs combine dy-

namically to provide the basis for cognition and learning. 

In the remainder of this article, Part II introduces a simple 

network model of the self-organized growth of synfire chains. 

Part III briefly analyzes the conditions of stability of the net-

work in the random state and synfire-chain state, while Part IV 

describes in detail the iterative growth of a chain by accretion 

and consolidation of synchronous groups. Typical numerical 

results are presented in Part V, followed by a discussion of this 

work and future developments in Part VI. 

II. A SIMPLE NETWORK MODEL 

We consider a network of N excitatory neurons with bi-

nary values xi representing spikes on the ms time scale. Synap-

tic weights wij vary by small increments on the same time scale 

as xi. Time is discrete, in steps of roughly 1 ms, and connec-

tions have fixed transmission delays τij. At each time t, the 

state of the network consists of action potentials 

x(t) = {xi(t)}i=1...N  and synaptic weights w(t) = {wij(t)}i,j=1...N. 

This state evolves according to three laws: (a) neuronal activa-

tion, (b) synaptic plasticity and (c) intersynaptic competition. 

Neurons obey a simple linear-nonlinear Poisson (LNP) 

dynamics, equivalent to the McCulloch & Pitts mean rate 

model transposed to the 1-ms timescale. The probability of 

activation of neuron j is given by P[xj(t) = 1] = σT(Vj(t) − θj), 
where Vj(t) = ∑i wij(t) xi(t − τij) is the membrane potential of j 

at time t, θj its firing threshold and σT(v) = 1 / (1 + exp(−v/T)), 

a sigmoidal step function. “Temperature” T controls the slope 

of the logistic function σT, i.e., the amount of noise in the sys-

tem. The variation of connection weights depends on the fine 

temporal correlation between pre- and postsynaptic neurons. It 

is given by wij(t) = wij(t − 1) + bij(t), with bij(t) = +α for each 

j ≠ i such that xi(t − τij) = xj(t) = 1, and bij(t) = −β if xi(t − τij) ≠ 
xj(t), where α and β are small positive numbers, typically of 

the order of .1 and .01, respectively. Thus, the effective rate of 

synaptic modification is much slower than that of the neuronal 

dynamics. The α-term is a schematic model of synaptic poten-

tiation whereas the β-term represents synaptic depression. Pre-

synaptic neurons must cooperate to increase the likelihood of 

successful transmission and receive synaptic reward. This fast 

synaptic plasticity is a form of Hebbian learning on the 1-ms 

time scale, and can also be viewed as a simplification of 

STDP, replacing the exponential curves with fixed increments. 

The first two rules create a positive feedback in the net-

work, whereby correlations and connections reinforce each 

other. To counterbalance this effect and prevent epilepsy, we 

introduce a third mechanism in the form of competition among 

synapses. We might want to impose that all outgoing (“effer-

ent”) and incoming (“afferent”) weight sums be conserved at 

all times: ∑j’ wij’(t) = ∑i’ wi’j(t) = s0. Under such a constraint, 

the evolution of synaptic connections is better described as a 

redistribution rather than a creation of new contacts. For ease 

of calculation, we make this constraint a cost function H(w) = 

γ ∑i[si
out

(w(t)) − s0]
2
 + γ ∑j[sj

in
(w(t)) − s0]

2
, where si

out
(w(t)) = 

∑j’ wij’(t), sj
in

(w(t)) = ∑i’ wi’j(t) and γ is of the order of .005. 

The synaptic rule becomes wij(t) = wij(t − 1) + bij(t) + cij(t), 

with cij(t) = −(∂H / ∂wij)(w(t − 1) + b(t)). Finally, weights are 
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clipped to stay inside [0, 1]. In summary, the network is driven 

by two forces: a positive feedback in the form of cooperation 

between activity and connectivity, and a corrective negative 

feedback in the form of competition among connections. 

III. PRELIMINARY ANALYSIS OF ACTIVITY AND CONNECTIVITY 

In this part and the next, we briefly analyze the behavior 

of the above model under simplified conditions, setting all 

delays τij to a constant τ0. Part V will also demonstrate synfire 

chain formation with nonuniform delays and inhibitory neu-

rons in a diluted graph. Our first goal is tuning the network to 

a random activity mode with low average firing rate. Connec-

tivity is broad and diffuse, with wij ≈ w0 = s0 / N, for example, 

N = 100, s0 = 10, w0 = .1. Turning off the synaptic dynamics 

(α = β = γ = 0), we look at the total activity in the network 

n(t) = Σj xj(t) and its expectation over several trials 〈n(t)〉. De-

noting by n* the average of 〈n(t)〉 over time, our goal is to ob-

tain 0 < n* << N to prepare conditions favorable to synfire 

growth. The neuronal activation dynamics yields 〈n(t)〉 = 

∑j P[xj(t) = 1] = ∑j σT(Vj(t) − θj) and 〈Vj(t)〉 = w0 〈n(t − τ0)〉. 

With Vj(t) ≈ 〈Vj(t)〉 and θj ≈ θ0, we obtain mean field approxi-

mation 〈n(t)〉 ≈ NσT(w0〈n(t − τ0)〉 − θ0) ≡ ζ(〈n(t − τ0)〉), where ζ 

is an offset and rescaled version of σT, based on N, w0 and θ0. 

Thus, the average firing rate is a fixed point n* = ζ(n*). A 

quick graphical analysis reveals the existence of 1, 2 or 3 such 

points depending on the position of the sigmoid’s center 

Ω = (θ0 / w0, N / 2) and its slope at that point ζ’Ω = Nw0 / 4T 

(Fig. 2). Placing Ω to the left of the diagonal, it means that ζ’Ω 

must be steeper than the line from 0 to Ω to create two stable 

points, n1* near 0 and n3* near N. These conditions are 

xΩ < yΩ ⇔ θ0 < s0 / 2 and ζ’Ω > xΩ / yΩ ⇔ T < θ0 / 2. Compli-

ant parameters as in Fig. 2 ensure a quick convergence to a 

stable low activity rate from a silent network n(0) = 0. 

 

Fig. 2 Graphical study of mean activity in a random diffuse network. Parame-

ters are N = 100, w0 = .1 and θ0 = 3. Left: four sigmoids ζ with different 

values of T. For T ≤ .8, there are 3 fixed points: n1* (near 0, stable), n2* (near 

θ0 / w0, unstable) and n3* (near N, stable). Right: we are interested in n1*, 

which is quickly reached from 0 (n1* ≈ 3.5 for T = .8, or n1* ≈ .25 for T = .5). 

The same parameters allowing stable random activity in 

an unstructured network must also allow the stable propaga-

tion of a wave in a synfire chain. Before analyzing the creation 

of a synfire chain in the next sections, we examine how an 

existing chain can be maintained. Synfire group Pk-1 contacts 

Pk through strong efferent links w+, while links from and to the 

rest of the network have near-zero value w- (Fig. 1). Due to the 

sum rule, if the chain’s width nc (number of neurons in a 

group) is smaller than s0, then w+ = 1 and w- > 0. Otherwise, if 

nc ≥ s0, then w+ = s0 / nc ≤ 1 and w- = 0. We shall see that only 

the latter case is stable, as pools keep growing until connec-

tions from and to the rest of the network are depleted. Let 

mk(t) be the number of active neurons in Pk at t and 〈mk(t)〉 its 

expectation. Since Pk receives input only from Pk-1, 〈mk(t)〉 ≈ 

ncσT(w+〈mk-1(t − τ0)〉 − θ0). Factoring in w+ = s0 / nc and 

w0 = s0 / N, we obtain the same recursive relation from group 

to group as in the random network: λ〈mk(t)〉 ≈ ζ(λ〈mk-1(t − τ0)〉, 

under a rescaling factor λ ≡ N / nc. Thus, the same graphical 

analysis of Fig. 2 applies in a nc × nc square. However, for 

stable propagation to exist on the chain without dying out or 

exploding, two opposite conditions must be fulfilled: if Pk-1 is 

active at t − τ0, then Pk must be active at t, and if Pk-1 is inac-

tive at t − τ0, then Pk must remain inactive at t. Thus, mk(t) 

must always stay close to mk-1(t − τ0), whether it is near nc or 

near 0. This is why we need both stable fixed points n1* and 

n3*. The numerical values proposed in Fig. 2 satisfy both ini-

tial and final conditions. In this domain of parameters, the 

critical number of active P0 neurons necessary and sufficient to 

reliably trigger a wave on the rest of the chain is given by n2*. 

This number is of course close to λxΩ = θ0 / w+. 

Under these conditions, we switch on synaptic dynamics 

and calculate the effect of activity on weight variation. Since 

∆w(t) depends on w(t − 1) only via the efferent and afferent 

sums, which remain approximately constant, our calculation 

will be valid under any network structure, whether random or 

organized. We assume β = 0 to simplify the formulas. Denot-

ing by P’ and P the pools that fired at time t − τ0 and t, and by 

n’ and n their size, the combination of Hebbian and sum rules 

yields ∆wij(t) = +α(1 − 2γ(n + n’)) for i ∈ P’ and j ∈ P; −2αγn 

for j ∉ P; −2αγn’ for i ∉ P’; and 0 for all other connections. 

Therefore, to maintain a positive reward for the P’→P connec-

tions, the corrective competitive term 2γ(n + n’) must remain 

small compared to 1. We adopt γ ≈ 1 / 2N in the remainder of 

this study. Fig. 3 shows ∆w(t) as a bundle of reinforced links 

within the network and as a matrix. At the level of one connec-

tion, the competition term cij is of the order of n / N and small 

compared to the Hebbian term bij, of the order of 1. At the 

level of connection sums, ∑j cij and ∑j bij are both of the order 

of n, so c approximately counterbalances the effect of b. 

The variation ∆w(t) represents the basic element of the 

network’s self-structuration process. Alternatively denoting 

this matrix by z[P’→P] and the set of active neurons P(t), the 

synaptic dynamics reads w(t) = w(t − 1) + z[P(t − τ0)→P(t)]. 

Matrix z is a template that applies at every time step and under 

any degree of order in the network. Under uniform delays, z is 

nonzero only at instants multiple of τ0. Thus, the global state 

of connection results from the iterated application of z: 

w(kτ0) = w(0) + ∑l = 0...k-1 z[P(lτ0)→P((l + 1)τ0)], showing that 

connectivity “deposits” or “builds up” in the wake of activity. 

Since, conversely, activity also tends to follow the path laid 

out by connectivity, the self-structuration of the network meta-

phorically resembles a “river” digging its own bed. The fate of 

w clearly depends on where the groups P(t) pop up and two 

main cases can occur: (a) random activity perpetuating de-
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struction, (b) ordered propagation fostering construction. If 

activity persists in the random regime, the z templates overlap 

inconsistently and cancel each other, therefore no structure can 

emerge. If on the contrary activity takes the form of a regular 

and reproducible wave, then z consistently accumulates be-

tween the same pools Pk and creates strong Pk→Pk+1 connec-

tions: a chain can emerge and sustain itself by guiding the very 

wave that reinforces it. Both disorder and chain order are sta-

ble equilibria under the dual activity/connectivity dynamics. 
 

 

Fig. 3 Variation of network weights caused by activity.  In this illustration, P’ 

contains three neurons i1...i3, which were active at t−τ0 and P contains four 

neurons j1...j3, active at t. Connections from P’ to P are reinforced while 

connections from P’ to the outside, or from the outside to P, are weakened 

and the rest of the network does not change. Example of numerical values: 

with N = 100, n’ = 3, n = 4, α = .1, β = 0 and γ = 1/2N = .005, the four varia-

tions are +.093, −.004, −.003 and 0. (a) Network view of ∆w(t). (b) Matrix 

view of ∆w(t), in which reflexive contacts were prevented. 

IV. PRINCIPLES OF NETWORK SELF-ORGANIZATION 

After preparing the appropriate parametric conditions, we 

now examine the growth of a synfire chain. We also introduce 

a new singularity into the network—a special “seed” group of 

n0 neurons, noted Q. These seed neurons tend to fire synchro-

nously at a low average frequency, typically once every 10 or 

20 τ0, although not necessarily regularly. Through its repeated 

activation, Q will become the root of a new synfire chain. 

A. First iterations 

This section takes a closer look at the first steps of a 

chain’s growth and shows how Q’s pulses create a gradual 

differentiation in the landscape of activation probabilities. The 

chain will develop by aggregating new pools of synchronous 

neurons recursively. We set N = 100, n0 = 10, w0 = .1, θ0 = 3, 

T = .5, α = .1, s0 = 10. At first, potentials are near 0 and activa-

tion probabilities are uniformly low: σT(−θ0) ≈ n1*/ N = .25%. 

When Q fires for the first time at t0, it raises all activation 

probabilities to σT(w0n0 − θ0) = 1.8%. Consequently, an aver-

age of 2 neurons, noted P1, fire at t0 + τ0 and the weights im-

mediately vary by z[Q→P1]. Then, P1 is typically too small to 

activate more neurons at t0 + 2τ0, but the main effect is that 

Q→P1 weights have increased by about α = .1 (neglecting the 

competition term), so their value is now w0 + α = .2. There-

fore, when Q fires again at t1, the landscape is not uniform 

anymore: neurons in P1 now have a likelihood of activation 

σT((w0 + α)n0 − θ0) = 12%, whereas other neurons are still at 

σT(w0n0 − θ0) = 1.8%. The single increase of +α already re-

shaped the probability landscape because neurons in Q fired 

again in synchrony. However, it is still unlikely that the neu-

rons in P1 will fire again, despite their slight advantage. 

Rather, another 2 neurons from the rest of the network will be 

activated and P1 now contains about 4 neurons. For a few 

more Q pulses, P1 will continue growing and collecting neu-

rons from the network, all characterized by a slightly increased 

likelihood of 12% of firing after the next Q pulse. Then, inevi-

tably one or more neurons from P1 will fire a second time after 

Q. This differentiates them further from the other neurons, as 

their connections from Q increase to w0 + 2α = .3 (in reality, a 

little less because of competition) and their next probability of 

firing jumps to σT((w0 + 2α)n0 − θ0) = 50%. The probability 

landscape is now partitioned into three groups: neurons in P1 

that fired after Q twice, once, or never, and respectively have 

50%, 12% or 1.8% chance of firing again after Q. 

B. Creation of the First Synchronous Pool 

Neurons therefore differentiate on the basis of how many 

times they fired after Q. The fate of each neuron depends on 

its current degree of correlation with the seed group, i.e., the 

number of past 1→1 events. This is the core of the positive 

feedback loop: correlations increase connections, which en-

courage correlations. Once j is at 50%, it is very likely to be 

activated a 4
th

 time by Q and reach σT((w0 + 3α)n0 − θ0) = 

88% soon. From this point on, j becomes a permanent member 

of P1: Q→j connections reach the maximum w+ = s0 / n0 and j 

is systematically triggered by Q, which maintains these con-

nections. The Q→j connection pattern is extremely robust. 

Negligible in the beginning, competition becomes predominant 

in the later phase of P1’s formation. In the first phase, undif-

ferentiated neurons become candidates to P1’s membership by 

firing once after Q. Then, in a second phase, these candidates 

compete to be recruited. Due to the sum rule, Q’s efferent 

connections cannot afford to sustain all candidates, so neurons 

that fire again earlier “pull” synaptic contacts towards them, to 

the detriment of undecided neurons. Every time j is activated 

by Q, it earns a credit of connections, which it can gradually 

lose again if remains inactive too long, due to the gains made 

by other neurons. Each candidate is at a bifurcation point: a 

few timely post-Q activations propel its afferent weights up-

wards, whereas silence slowly takes them down. In sum, the 

aggregation of pool P1 is “evolutionary”: it first expands by 

diversification (driven by T) then shrinks and rounds up a final 

set of n1 winners through selection (driven by s0). To be able 

to durably recruit the first pool P1, the seed group Q must con-

tain a “critical mass” of at least θ0 neurons. If n0 ≤ s0, Q→ j 

weights grow to 1, and n1 = s0. If n0 > s0, the weights reach 

w+ = s0 / n0, and n1 = n0. Therefore, n1 = max(n0, s0). 

C. Recursive Aggregation of a Synfire Chain 

Clearly, the same process from Q to P1 repeats itself with 

P1 playing the role of the seed and recruiting a new group P2. 

The growth of synfire chain Q→P1→P2→ ... is recursive and 

akin to the growth by accretion of a crystal. The latter also 

usually requires the presence of a singularity, acting as a seed. 

This accretion process is also not strictly iterative. The full 

period of P1’s development covers several of Q’s firing events 

t0, t1,..., tq (typically about 100), as neurons are recruited at 
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different times and connections grow unequally on a first-

come-first-served basis. Thus, P1 does not wait for completion 

to start recruiting P2: as soon as P1 reaches critical mass θ0, it 

is able to activate in turn new neurons downstream. The re-

cruitment period of Q→P1 therefore greatly overlaps that of 

P1→P2, and so on. A growing chain typically lengthens before 

it widens, which gives it an aspect of a beveled head at the end 

of a mature trunk (Fig. 4). Several generations of immature 

groups along the growing tip of the chain compete to recruit 

neurons from the rest of the network. By recursive reasoning, 

Pk-1 is always created before Pk, hence is larger and will be 

completed first. In the recruitment competition, older groups 

upstream maintain their advantage over younger groups down-

stream by instilling larger potentials into candidate neurons. 
 

 

Fig. 4 Typical beveled profile of a growing synfire chain. The elongated ovals 

schematize synchronous pools in formation (height proportional to number of 

neurons) and the edges, strong Pk-1→Pk connections. A wave is currently 

propagating from P3 to P4. A mature “trunk” of constant width (here includ-

ing P2) ends in a “searching head” of decreasing width, due to largely over-

lapping periods of pool development. Immature efferent links (dashed lines) 

from unfinished pools compete to recruit new neurons from the network. 

The activation of the seed group is an intrinsic inhomoge-

neity of the network. It is likely that at early stages of devel-

opment some neurons send out stronger connections than oth-

ers (black node in Fig. 4), providing adequate seeds for the 

process described here. This process is the intrinsic formation 

of connectivity structure under the influence of essentially 

endogenous bioelectrical activity. Finally, if several such seed 

groups coexist in the network and fire in an uncorrelated fash-

ion, then several chains may simultaneously grow in the net-

work (Fig. 8). These chains can interact, bind and support 

compositionality, as discussed in Part VI. 

 

   

 

Fig. 5 A growing synfire chain in a network of 100 neurons. Parameters are 

n0 = 10, w0 = .1, θ0 = 3, T = .5, α = .1, s0 = 10. The firing period of the seed 

neuron is about 20. Top: four snapshots of the network’s total activity follow-

ing seed activations sampled at different times. Bottom: five other snapshots, 

superimposed in this view, revealing the growing profile of the chain (respec-

tively at seed activations #10, 30, 50, 100 and 200). 

V. NUMERICAL RESULTS 

We conducted numerical simulations under the simplified 

assumptions of Parts III and IV, i.e., uniform delays and com-

plete graph. Fig. 5 shows a full chain in development and 

Fig. 6 details the evolution of its connection values during the 

recruitment process (explanation in captions). The network 

also self-organizes under a more sophisticated model involv-

ing nonuniform transmission delays τij and inhibition in a di-

luted graph (Fig. 7). The resulting structures are sequences of 

synchronous pools similar to synfire chains, elsewhere called 

“synfire braids” [5] or “polychronous groups” [12], in which 

longer delays connect nonconsecutive pools. A detailed in-

spection of the network (not shown) confirms that the strong-

est weights from group Pk to group Pk+n have indeed delay nτ0. 

VI. DISCUSSION AND FUTURE WORK 

We describe a process of self-organization characterized 

by the growth of a synfire chain from a seed group in a homo-

geneous network. Although we chose a specific set of equa-

tions and parameters for the neural activation and synaptic 

plasticity laws, it is readily seen that the principles underlying 

the model—the interplay of coincidence detection and synap-

tic reinforcement—are quite general, thus the described behav- 
 

 

 

 

Fig. 6 Evolution of Q’s outgoing connections during the recruitment process 

of the first pool P1. Top (slice in space): snapshot of the landscape of weight 

values going from Q to the network, at the 15th seed activation (horizontal 

axis: neurons from 1 to 100). The neurons triggered by Q early on pull the 

connection weights towards them and diminish the chances of others to be 

recruited. From uniformly flat landscape at.1, 10 peaks appear, while the floor 

level drops to 0. Bottom (slice in time): fate of two specific sets of connec-

tions, Q→55 and Q→79 (horizontal axis: temporal sequence of seed activa-

tions). The discrete increments of α = .1 caused by the neuron’s activation are 

separated by periods of silence where the connections slowly decrease again 

because of competition. 

 

 

Fig. 7 Growth of a synfire braid in a network with delays and inhibition. 

There are 200 excitatory (E) and 40 inhibitory (I) neurons. Only the E→E 

synapses are plastic and their delays integer multiples of τ0 in [1, 6]. E→I and 

I→E links form a fixed diluted graph (10%): they have constant values (≈ 1 

and −5) and uniform delays τ0. Four snapshots of the network’s total activity 

following seed activations sampled at different times. Thick line: excitatory 

activity revealing an irregular synfire braid’s profile. Thin line: inhibitory 

activity showing a delayed echo of the wave propagation. Inhibitory neurons 

are not a direct part of the chain but modulate its width in a quasi-oscillatory 

way: excitation increases inhibition, which in turn decreases excitation, etc. 
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ior should be largely independent of these choices. Neocortical 

structuration is a robust self-organization process, which is 

highlighted by the simplicity of our model—binary neurons, 

fixed weight increments and uniform graphs. Following the 

initial presentation of this work [13] (mentioned in [5]), the 

spontaneous formation of time-locked neuronal groups has 

also been demonstrated in a few other proposals based on 

more biologically detailed assumptions [14, 15, 12]. The latter 

in particular [12] is closely related to our work; using very 

similar principles but a rather different mathematical formula-

tion, it provides an elegant demonstration of the self-organized 

growth of a large number of “polychronous groups” in an ini-

tially unstructured network. These spatiotemporal patterns are, 

essentially, short and thin synfire braids—one might say 

“braidlets.” The braidlets described in [12] appear to be of a 

somewhat transient nature, compared to the longer, wider, and 

more persistent synfire structures that we observe. Synfire 

chain growth has also been reported in an “asynchronous regu-

lar” regime of activity characterized by intrinsic time shifts 

[16]; there, however, links develop mostly as a consequence 

of, and help stabilize, preexisting correlations. 

Cortical connectivity exhibits a considerable amount of 

feedback. Via Hebbian plasticity, this creates a mutual rein-

forcement of excitatory activity and connectivity. Two differ-

ent types of mechanisms may act to keep this situation under 

control. Our model incorporates one of them—competition 

between growing fibers converging onto, and emanating from 

a single neuron. This is a type of “reinforcement under con-

straints”, which imposes a choice between all possible coher-

ent patterns of connections and correlations. Here, this choice 

is largely random; it results from the stochastic or “thermody-

namic” activation of neurons. Another mechanism is inhibi-

tion, which directly controls the global activity level in the 

network in an accurate way and on a faster time scale than 

synaptic competition. Much interest has recently been devoted 

to the study of “balanced networks”, where the mean inhibi-

tory input to a neuron cancels the mean excitatory input. In 

particular, it was suggested [17] that the propagation of a syn-

chronous wave on the background of asynchronous activity 

can be achieved in a synfire chain containing inhibitory 

“shadow” pools to the excitatory ones, similarly to our Fig. 7. 

At the core of perception and language is the capacity for 

handling composite entities never experienced before. Infinite 

productivity can arise, fundamentally, from combinatorics in a 

space of neural activity patterns. In the introduction, we out-

lined a possible use of synfire chains—or braids—as a sub-

strate for compositional cognitive functions. This proposal [5] 

is based on the ability of such spatio-temporal patterns to bind 

with each other whenever synaptic interactions induce them to 

do so (Fig. 8). Synfire-chain binding is comparable to locking 

the phases of oscillators. We posit that weak excitatory synap-

tic interactions induce coupling between chains/braids, in the 

sense that it stabilizes the timing relationships across the 

chains. Such connections do not actually activate chains, but 

only ensure synchronization between already active chains. 

Compositionality in a system of synfire patterns has been re-

cently examined in a model that included global inhibition 

[ 18 ]. It was proposed that inhibitory neurons help select 

among alternative wave couplings and prevent spurious syn-

chronization. Another study [19] showed that synfire-type syn-

chrony can also be controlled by balanced background synap-

tic input on each neuron: such input, if large enough, substan-

tially increases the membrane conductance, hence makes syn-

chronization more difficult to achieve. 
 

 

Fig. 8 Idealized sketch of a “self-made tapestry” of synfire chains. Multiple 

chains such as the one shown in Fig. 4 simultaneously develop from inde-

pendent seed groups (a, b), then synchronize and bind (c). The wavy pointed 

rectangles represent growing synfire chains or braids in a rearranged view 

(not showing the fact that chains may also overlap and share neurons). The 

black stripes illustrate the current position of the waves of activation and the 

curvy arrows in (c) symbolize weak coupling connections between chains. 
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