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Abstract— The generalized Brain-State-in-a-Box (gBSB) to synthesize associative memories were developed.
neural network is a generalized version of the Brain-  |n this paper, an introduction to some useful properties
State-in-a-Box (BSB) neural network. The BSB net is a of the gBSB model and some applications of this model
simple nonlinear autoassociative neural network that was are presented first. In particular, the gBSB based hybrid
proposed by J. A. Anderson, J. W. Silverstein, S. A. Ritz, neural network for storing and retrieving pattern sequences
and R. S. Jones in 1977 as a memory model based onjs described. The hybrid network consists of autoassociative
neurophysiological considerations. The BSB model gets and heteroassociative parts. In the autoassociative part,
its name from the fact that the network trajectory is \yhere patterns are usually represented as vectors, a set
constrained to reside in the hypercubeH, = [-1,1]". of patterns is stored by the neural network. A distorted
The BSB model was used primarily to model effects and (noisy) version of a stored pattern is subsequently presented
mechanisms seen in psychology and cognitive science. ltto the network and the task of the neural network is
can be used as a simple pattern recognizer and alsotg retrieve (recall) the original stored pattern from the
as a pattern recognizer that employs a smooth nearness nojsy pattern. In the heteroassociative part, an arbitrary
measure and generates smooth decision boundaries. Threeset of input patterns is paired with another arbitrary set of
different generalizations of the BSB model were proposed oytput patterns. After presenting hybrid networks, neural
by Hui and Zak, Golden, and Anderson. In particular, the - associative memory that processes large scale patterns in
network considered by Hui and Zak, referred to as the an efficient way is described. Then the gBSB based hybrid
generalized Brain-State-in-a-Box (gBSB), has the property neyral network and the pattern decomposition concept are
that the network trajectory constrained to a hyperface ysed to construct a neural associative memory. Finally,
of Hy, is described by a lower-order gBSB type model. an image storage and retrieval system is constructed
This property simplifies significantly the analysis of the ysing the subsystems described above. Results of extensive

dynamical behavior of the gBSB neural network. Another  simulations are included to illustrate the operation of the
tool that makes the gBSB model suitable for ConStructing proposed image Storage and retrieval system.

associative memory is the stability criterion of the vertices
of H, . Using this criterion, a number of systematic methods



I. INTRODUCTION introduce the Brain-State-in-a-Box (BSB) neural model.
In Section Ill, we analyze useful properties of the gBSB

James A. Anderson, a pioneer in the area of artificigh ,ral network. In Section IV, we present a method

neural networks, writes in [1, page 143]: “most memory, ¢qonstryct associative memory using the gBSB neural

in humans is associative. That is, an event is linked {Q.vvork. In Section V. we offer a method for designing
another event, so that presentation of the first event 9M@Pge scale neural associative memory using overlapping
rise to the linked event.” An associative memory may b§scomposition, and show the simulation results of image
considered a rudimentary model of human memory. W, rage and retrieval. In Section VI, we propose a neural
general, a memory that can be accessed by the storageiem that can store and retrieve pattern sequences, and

address is called an address addressable memory (AAM)sent an application to the image storage and retrieval.
and a memory that can be accessed by content is callggcjusions are found in Section VII. Finally,

ibl
a content addressable memory (CAM) or an associatiygsaarch projects are listed in Section VIII. possibie
memory. When an associative memory is constructed
using a dynamical system, it is called a neural associative !l- BRAIN-STATE-IN-A-BOX (BSB) NEURAL
memory. Associative memories can be classified into two NETWORK
types: autoassociative and heteroassociative memoriesThe Brain-State-in-a-Box (BSB) neural network is
In an autoassociative memory, after prototype pattergssimple nonlinear autoassociative neural network that
are stored by a neural network, where patterns afgas proposed by J. A. Anderson, J. W. Silverstein,
usually represented as vectors, a distorted (noisy) versig. A. Ritz, and R. S. Jones in 1977 [9] as a memory
of a stored pattern is subsequently presented to thfdel based on neurophysiological considerations. The
network. The task of the neural associative memory BSB model gets its name from the fact that the network
to retrieve (recall) the original stored pattern from it$rajectory is constrained to reside in the hypercube
noisy version. Another type of associative memory is &, = [—1,1]". The BSB model was used primarily to
heteroassociative memory, where a set of input patterm@del effects and mechanisms seen in psychology and
is paired with a different set of output patterns. Operatiagbgnitive science [1]. A possible function of the BSB
of a neural associative memory is characterized by twit is to recognize a pattern from a given noisy version.
stages: storage phase, where patterns are being storedl BSB net can also be used as a pattern recognizer
the neural network, and recall phase, where memorizétht employs a smooth nearness measure and generates
patterns are being retrieved in response to a noisy patteffiooth decision boundaries [10]. The dynamics of the
being presented to the network. In this paper, we pres@®&B model and its modified models were analyzed by
in a tutorial fashion, the generalized Brain-State-in-agreenberg [11], Golden [12], [13], Grossberg [14], Hui
Box (gBSB) neural network that is suitable for construcand Zzak [15], Hakl [16], Hui, Lillo, andZak [17], Lillo
tion of associative memories, and then present dynamieal al. [18], Anderson [1], Perfetti [19], Hassoun [20],
properties of gBSB model and its applications. For otherak, Lillo, and Hui [21], Chan an@ak [22], [23], Park,
neural associative memory models see, for example, [Jho, and Park [24]. A continuous counterpart of the
(3], [4], [5], [6], [7], [8]. BSB model referred to as the linear system operating

The paper is organized as follows. In Section Il, wén a saturated mode was analyzed in Li, Michel, and



Porod [25]. We next introduce the concept of linear = pRy(R) Ty

associative memory to prepare us for a discussion of = (0D 4 p*2))(pF1) 4 4 (:2))T gy (kD)
neural associative memories. _ (v(’“) i U(k2))v(k1)Tv(k1)
A. Linear associative memory = do®),

We use a simple linear associative memory to ilyhered = v(*)T (k1) Therefore, the linear associator
lustrate the concept of associative memory. SuppOggovered the original stored pattern from the partial
that - mutally orthogonal patterns’), j = 1,2,....,7, input, that is, the linear associator is an example of the
vWTwl) = 0 for i # j, are to be stored in a memory.caM. A limitation of the above system is that when

Let V = [v() v .. »()] and let the patterns are not orthogonal to each other, it does
W zT: ()T — yyT not retrieve the stored pattern correctly. Also, when the
= v v = 5
= input vector is a noisy version of the prototype pattern,

where VT denotes the transpose &f. Consider the the linear associator above is not able to recall the

simple linear system corresponding prototype pattern.

Next, we introduce the Brain-State-in-a-Box (BSB)
y=Wz. neural network that can be used as an associative mem-

If an input presented to the system is one of the stor&ly.- The BSB net can retrieve a certain pattern when its

patterns, that isz = v*) k € {1,2,...,r}, then noisy version is presented as an input to the net.
Wl i D)o (VT oK) B. Brain-State-in-a-Box (BSB) neural network model
y=Wv = vYv v
j=1 The dynamics of the BSB neural network are de-

k k k k
= oWy WTy® = ®) scribed by the difference equation,

where ¢ = v®Ty(*) Thus, we obtained the input w(k+1) = g(z(k) + aWa(k)), 1)

attern as the output of the system. The above is an _ .
P P y with an initial conditionz(0) = xy, wherex(k) € R"
example of an autoassociative memory. . .
is the state of the BSB neural network at tifga > 0

Now, let us consider the case when the input to the . . . . .
P IS a step sizeW € R™*" is a symmetric weight matrix,

system is a portion of a stored pattern. The foIIowingndg "R" _ R" is an activation function defined as a

example is from [26]. Let . : :
standard linear saturation function,

k) _ k1 k2
o) — (k1) 4 4 (k2) L i a1

and assume thatw®!) and v*? are orthogonal (g(x)): = (sat(x))i=4z if —1<uz;<1

to each other and thatv*) is orthogonal to 10 < -1,

p ), D et () If the input of the B )
system isz = v¥1)| then Figure 1 shows sample trajectories of the BSB model

y = Wk with the weight matrix

— 3 p DTy w=| e @)
j=1 '



1go o o 0 00000000 of H, proposed in [15]—see also [20] and [26] for
further discussion of the condition. Lillo et al. [18]
proposed a systematic method to synthesize associative
memories using the gBSB neural network. This method
is presented in this paper. For further discussion of the
method to synthesize associative memories using the
gBSB neural network, we refer the reader to [24], [27],

and [28].
A. Model
‘ ‘ The gBSB neural network allows for a honsymmet-
-1 -0.5 0 0.5 1 _ _ ,
X rical weight matrix as well as to offer more control of

the volume of the basins of attraction of the equilibrium

Fig. 1. Trajectories of the BSB model with the Welghtstates. The dynamics of the gBSB neural network are

matrix (3). described by

The symmetric weight matrix of the BSB net is not z(k+1) = g((In + aW)z(k) + ab), (4)

desirable for the design of associative memory. Also, g, e, is the standard linear saturation function defined

ability to control the basins of attraction of the stable, ), I,, is ann x n identity matrix, b € R” is
’ n 1

states is another property that makes it easier to design,i-< vector. and the weight matrb¥ ¢ R™*" is

associative memory. Hui andak [15] devised a neural o necessarily symmetric, which makes it easier to

model that has the above properties, which is describﬁﬁplement associative memories when using the gBSB

in the following section. network.

I1l. GENERALIZED BRAIN-STATE-IN-A-BOX (GBSB) B, Stability

NEURAL NETWORK . . . . .
In this section, we discuss stability conditions for the

Three different generalizations of the BSB modeteural networks presented in the previous section. To
were proposed by Hui andak [15], Golden [13], proceed further, the following definitions are needed.
and Anderson [1]. In particular, the network considered Definition 1: A point x,, is an equilibrium state of the
in [15], referred to as the generalized Brain-State-in-alynamical systenx(k + 1) = T'(x(k)) if . = T(x.).

Box (gBSB), has the property that the network trajectory Definition 2: A basin of attraction of an equilibrium
constrained to a hyperface dff,, is described by a state of the systemx(k + 1) = T'(x(k)) is the set of
lower-order gBSB type model. This interesting propertpoints such that the trajectory of this system emanating
simplifies significantly the analysis of the dynamicafrom any point in the set converges to the equilibrium
behavior of the gBSB neural network. Another tool thagtatex..

makes the gBSB model suitable for constructing assbr this section, we will be concerned with the equilib-

ciative memory is the stability criterion of the verticegium states that are vertices of the hypercutig =



[—1,1]™. That is, equilibrium points that belong to theThe following theorem, from [17], gives a sufficient

set{—1,1}". condition for a vertex ofH, to be a super stable
Definition 3: An equilibrium pointx. of (k+1) = equilibrium state.

T (x(k)) is stable if for every > 0 thereis & = d(¢) > Theorem 3:Let v be a vertex of the hypercub#,,.

0 such that if||z(0) — x| < § then|xz(k) — x| < e |If

for all £ > 0, where|| - || may be any p-norm of a vector, (L(w))v; >1, i=1,---n, (5)

for example the Euclidean norf- ||2.

thenwv is a super stable equilibrium point of the gBSB

Definition 4: An equilibrium statex. is super stable neural model.

if there exists a neighborhood af,, denotedN(ze),  pygqf Becausé L(x));x; is a continuous function, there

such that for any initial state, € N(x.), the trajectory exists a neighborhood (v) aboutw such that

starting froma reachese, in a finite hnumber of steps.
(L(x));x; >1, i=1,---,n and x € N(v).

Let
L(z) = (I, 4+ aW)x + ab Therefore, for anye € N(v), we have
and let(L(x)); be thei-th component of L(x)). Let 9(L(z)) = v,
v = ['Ul vn:|T € {-1,1}", that is,v is a vertex which means that is indeed a super stable equilibrium
of the hypercubé,,. For a vertex to be an equilibrium point. O
point of the gBSB neural network, we must have The sufficiency condition for a pattern to be a super

stable equilibrium state given in the above theorem is
a main tool in the design of associative memories dis-
That is, if v; = 1, then we must havéL(v)); > 1, and cussed in this paper. The above condition referred to as
if v; = —1, we must have(L(v)); < —1. Thus, we the vertex stability criterion by Hassoun [20, page 411]
obtain the following theorem that can be found in [15]is also essential when designing gBSB based associative
Theorem 1:A vertex v of the hypercubef,, is an memories. We note that such a condition cannot be
equilibrium point of the gBSB neural network if andobtained for a sigmoidal type of activation function.
only if Using the fact thav? = 1 anda > 0, we can restate
(L(v))iv; > 1, i=1,---,n. Theorem 3 as follows [26].
Theorem 4:Let v be a vertex of the hypercubH,,.

If
Using the fact thab? = 1 anda > 0, we can restate (Wo+b)w; >0, i=1--,n, (6)

Theorem 1 as follows [26].

thenw is a super stable equilibrium point of the gBSB
Theorem 2:A vertex v of the hypercubeH,, is an Y P a P g
. . ) neural model.
equilibrium point of the gBSB neural network if and

only if IV. AsSsoOCIATIVEMEMORY DESIGNUSING GBSB

NEURAL NETWORK
(Wov+b)v; >0, i=1,--- ,n. . ) ..
In this section, we present a method of designing

associative memory using gBSB neural networks. When



the desired patterns are given, the associative memdtsoof Using the property of the pseudo-inverse 6f
should be able to store them as super stable equilibriugiven in Definition 6, we obtain

states of the neural net used to construct the associative WV = DVV'V = DV

memory. In addition, it is desirable to store the smallest

Therefore, forj = 1,...,r, we have
number of spurious states as possible. We can synthesize )=

gBSB based associative memories using the method Wo) = Dv). (8)
proposed in [18]. We now briefly describe this method::ombining (8) and (6) of Theorem 4, we obtain
For further discussion, see [26]. )
To proceed, we need the following definitions. ( i
Definition 5: A matrix D € R"*™ is said to be row - (D W b
diagonal dominantnif Y . (]) N Z i kv(]) b fu§j>
dig > Y dil, i=1,--,n. e
o >di— Y ldi| = bl
It is strongly row diagonal dominant if k=1 k#
n > 0.
dii > Y dijl, i=1,---,n. .
Py By Theorem 4 is super stable. Note that the same
Definition 6: Given V' € R"*", a matrixV' € R"™*"  argument holds for any = 1,. .., and thus the proof
is called a pseudo-inverse &f if is complete. O
1.VViv =v; The above result is easy to apply when constructing
2.Vivvi = vT; the weight matrixW . However, if the diagonal elements
3.(vvhT =vvT, of the matrix D are too large, we may store all the
4. (VvivyT =viv, vertices of the hypercubél,,, which is obviously not
Let v, ..., v(") be given vertices off, that we desirable.

wish to store as super stable equilibrium points of the The next theorem constitutes a basis for the weight
gBSB neural network. We refer to these vertices as timeatrix construction method.

prototype patterns. Then, we have the following theorem: Theorem 6:Let

Theorem 5:Let V= [1,(1) U(T')} € {—1,1}"
V=[v® ... v(*)} e {-1, 13" be the matrix of the prototype patterns, where< n.
If Suppose the prototype patterns are linearly independent
W — DVV! so that ranKV') = r. Let B = [b b} e R**"

be a matrix consisting of the column vectbrrepeated

where the matrixD satisfies r times. LetI, be then x n identity matrix and let

dy; > Z dig| + 03], i=1,---,n, (7) A € R™". Suppose thalD € R"*" is strongly row
k=1,k#i diagonal dominant, that is,
(1) (r) i n
theno'M ... v\") are super stable points of the gBSB 4 > Z |, i=1,e

neural network. k=1,k+i



If ande;'s are design parameters.
W = (DV —B)VI 4+ A(I,-VV"), (9 2. ChooseD ¢ R"*" such that

n

then all the patterna)¥),j = 1,...,r, are stored as di; > Z \d;;|, and

super stable equilibrium points of the gBSB neural 1:17;#2'

network. di < Y ldigl+1bil, i=1,2...,m,
Proof BecauseV 'V = 1I,, we have J=1#i

and A € R™*™ such that

n

)\ii<_ Z |)‘ij|_‘bi‘7 i:1a27-~-7n7
j=1,j#i

WV =DV - B,

or

() — () -
Wov?' =Dv” —b, j=1,...,r whered;; and )\;; are theij-th elements ofD and A

Therefore, respectively.

) . 3. Determine the weight matri¥¥ using the formula
(W’um + b) ‘ UEJ) =

(
— (Dvo‘))iugﬁ
; n

i + Z dikvlij)vz(j)

W =(DV - B)V' + A(I,, - VVT),

whereV = [U(l) oM e {_1’ 1}n><r_

4. Implement an associative memory that can store the

k=1,k#i
-y n i given patterns as super stable verticesHf using W
= [ ik

kT Aot andb.

> 0.

Hence, by Theorem 4, each prototype pattern is a
A

super stable equilibrium point of the gBSB neur

network. O

For further analysis of the formula for the weigh

matrix synthesis given by (9), the reader is referred

[26, pp. 539-542]. Fig. 2: Stored patterns.
The weight matrix construction algorithm is summa-
rized in the following algorithm.. We now illustrate the above algorithm with a sim-
ple example using a 25-dimensional gBSB net. We

Algorithm 4.1: Weight matrix construction construct the weight matrix to store the four pattern

algorithm vectors corresponding to the bitmaps shown in Figure 2.

The elements of the bitmaps are either 1 (white) or

1. For given prototype pattern vectors(’) .
9 P ype p < —1 (black). The pattern vectors are obtained from the

{-1,1}",j = 1,...,r, form a matrix B =

bitmaps by stacking their columns. For exampledif=
[b b - b} € R™*" where

[al a> a3 a4 as, Whel‘6ai7i =1,...,9, is the
i-th column of A, then the corresponding pattern vector

b=> ev?, >0, j=12,..r
J=1 is obtained fromA by applying the stacking operator



Initial pattern Iteration 1 Iteration 2

V. LARGE SCALE ASSOCIATIVE MEMORY DESIGN
USING OVERLAPPING DECOMPOSITION

il
o

In this section, we present a gBSB-based method

to design neural associative memories that can process

Iteration 3 Iteration 4 Iteration 5

large scale patterns. A difficulty with large scale neural

associative memory design is the quadratic growth of

2

the number of interconnections with the pattern size,

lteration & lteration 7 leration 8 which results in a heavy computational load as the
pattern size becomes large. To overcome this difficulty,

we decompose large scale patterns into small size sub-

I

I

patterns to reduce the computational overhead. However,

. the recall performance of associative memories gets
Fig. 3: Snapshots of a pattern that converges to a stored P g

. ._worse as the size of the neural associative memories
prototype pattern in the gBSB based neural associative

is reduced. To alleviate this problem, we employ the
memory.

overlapping decomposition method, which is used to

provide the neural network with the capability of error

. @5 X5 25
s : R?*? — R™ 1o get detection. We discuss the overlapping decomposition

method in some detail in the following subsection. The
ai

. weight matrix of each subnetwork is determined by (9)
s(A)=A()=| | € {-1,1}%, _ _ _ _
' independently of its neighboring subnetworks. We add
s the error detection and error correction features to our

where A(:) is the MATLAB's command for the stacking gBSB associative memory model, which successfully

operation on the matrid. The weight matrixJ¥, was reduces the number of possible misclassifications. Other

constructed using the above weight matrix constructiodneSIgn approaches that use decomposition method can

algorithm, where be found, for example, in [29], [30], [31].

A. Overlapping decomposition

v=[A() B() c() D) | N |
To improve the capabilities of error detection and error

. . . rrection an r h rn mmetricall
In Figure 3, we show snapshots of the iterations cor?p ection and to process the subpatterns symmetrically,

verging towards the letter A of the gBSB neural networ}éve propose two overlapping decompositions using a ring

L structure, suitable for vector patterns, and a toroidal
based associative memory.
) structure that is suitable for images. We describe these
The above method works well for small size patterns . )

. . two decomposition methods next. We begin by decom-
but is not suitable for large scale patterns. In the next

i i ) posing a pattern,
section, we offer a technique that can effectively process

large scale patterns. v = [vl e Up Upgr e Uk

Vp—1)k41 " Upk} € {—1,1}%",



1 n n+l 2n 2n+1 qn 1

into p subpatterns, 1
@ _ [ _ k+1
v = -1}1 Uk+1:| c { 1,1} 5 - \/ll \/12 \/1q
v@ — Vhgp1 - U2k+1} € {71,1}k+1’ m+1} coe
Voi | | Va2 Vaq
i 2m
o® = (o iess - Upk} € {—1,1}*, 2m+1
- [ J [ J [ J
Note thatv; is the overlapping element betweef!) . *e .

and v, vy, betweenv® and v®), and so on.

In this example, each subpattern except #d¢) and \/ \/ oo \/
pl p2 Pqg

v®) has two neighboring subpatterns and accordingly,  P™

has two overlapping elements. Each @f) and v(®
has only one overlapping element. Because the erfeig. 4: An example of toroidal overlapping decomposi-
detection scheme uses the overlapping elements betwéen.

neighboring subnetworks, it is less likely to detect the

errors forv(!) andv() than those for other subpattemnsmethod in Section IV independently of other subnet-
However if we assume that the decomposition of thgorks. Each subpattern is assigned to a corresponding
patternv has a ring structurep!) becomes another sypnetwork as an initial condition. Then, each subnet-
neighboring subpattern af(?), and vice versa. That is, work starts processing the initial subpattern. After adf th

o® = |:U(p—l)/c+1 Uk Ul} € {1, 1}, individual subnetworks have processed their subpatterns,
the overlapping portions between adjacent subpatterns

so thatv; is the overlapping element betweef?) and
" PPINg are checked. If the recall process is completed perfectly,

v In this decomposition, which we refer to as a , _
all the overlapping portions of the subpatterns processed

ring overlapping decomposition, all subpatterns have the )
g _ PP . g P P by the corresponding subnetworks should match. If a
same dimensions. . . .
mismatched boundary is found between two adjacent

We extend the above concept to the case when the pat-
) ~ subpatterns, we conclude that a recall error occurred
terns are represented by matrices, for example, images. ) )
_ N ‘In at least one of the two neighboring subnetworks
An example of overlapping decomposition of a matrix
during the recall process. In other words, the network has

pattern is shown in Figure 4. In Figure 4, the original .
detected a recall error. Once an error is detected, the error

pattern is decomposed so that there exist overlapping ) ) )
correction algorithm is used to correct the recall errors.

arts between neighboring subpatterns.
P g g P We next describe a procedure for the case of toroidal

B. Associative memory with error correction unit overlapping decomposition. The case of ring overlapping
Large scale vector prototype patterns are decompos#gromposition is described in [32].

into subpatterns with the ring overlapping decomposition Suppose we are processing an image. Then, every

while images are decomposed using the toroidal ovesubpattern overlaps with four neighboring subpatterns

lapping decomposition method. Then, the correspondiig the decomposition shown in Figure 4. After the

individual subnetworks are constructed employing theecall process, we check the number of mismatches
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LI Input Pattern Output Pattern | = &
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. V| | Recall Vi | Error Correction
R . Processor Algorithm
o
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[ )

Decomposed Decomposed
Input Sub—patterns Output Sub—patterns

Fig. 5: Recall procedure using gBSB-based large scale iasisecmemory with overlapping decompositions and

error correction algorithm when the patterns are in the fofrmatrices, for example, images.

of the overlapping portions for each subpattern. Weumber of mismatches. Suppose the marker is located
record the number of overlapping portions in whiclon the subnetworkV;;, and assume that the right and
mismatches occur for each subpattern. The numbertbe bottom portions ofV;; have mismatches. Note
mismatched overlapping portions is an integer from thbat the decomposed input pattern corresponding to the
set{0,1,2,3,4}. We first check if there are subpatternsubnetworky;; is denotedX ;. We denote by ;; the

with no mismatches. If such a pattern is found, theesult of the recall process—see Figure 4 and Figure 5
algorithm is initiated by locating a marker on the abovéor an explanation of this notation. The+1)-th column
subpattern and then the marker moves horizontally & X;; is replaced with the first column &, ;, and

the next subpattern in the same row until a subpattetime (r+1)-th row of X;; is replaced with the first row of
with mismatches is encountered. If all subpatterns ha¥é;; ;. That is, the algorithm replaces the mismatched

mismatches, we select a subnetwork with the minimalerlapping portions ofX;; with the corresponding



portions of its neighboring subpatter®; ;. 1, V; j_1,

Vit1,5, or V,_1 ;, which are the results of the recall
process of the corresponding subnetworks. After the
replacement, the subnetwork goes through the reca
process again and examines the number of mismatche
of the resultant subpattern. If the number of resultan
mismatched portions is smaller than the previous one
the algorithm keeps this modified result. If the number ¥
of mismatched portions is not smaller than the previous
one, the previous resul;; is kept. Then, the marker
moves horizontally to the next subnetwork. After the z=i"
marker returns to the initial subnetwork, it then moves
vertically to the next row and repeats the same procedur
for the new row. Note that the next row of theth
row of the pattern shown in Figure 4 is its first row.
The error correction stage is finished when the marke /

returns to the subnetwork that the marker initially startec' -}

from. We can repeat the error correction algorithm so
that the subpatterns can go through the error correctigfig. 6: Quantized prototype gray scale image patterns.
stage multiple times.

The main idea behind the error correction algorithm

v

is to replace the incorrectly recalled elements of the sub-

. . . o 4N
pattern with the ones from the neighboring subpatterns B g:\
and let the modified subpattern go through the recall fﬁﬂ _! = :;
. . . !
process again. If the elements from the neighboring _er’
Va

/Y |
EHEI.
E=r
wa
AL |

subpatterns are correctly recalled, it is more probable

that the current subpattern will be recalled correctly at (a) Input image

the error correction stage. The reason is that we might

have reduced the number of entries with errors and put ) f “ “ i o “ ‘\‘L {\\

the subpattern in the basin of attraction of the prototype ‘ : = ;\‘

subpattern by replacing the overlapping elements. = :IJ
gr
v

C. Storing and retrieving images

We simulated neural associative memory system de- ¢y after error correction (d) Output image

scribed above usings0 x 150 pixel gray scale images asFig. 7: An example of a gray scale image retrieval using

patterns. The pixels of original images were representﬁge gBSB-based large scale associative memory.

with 8 bits. To reduce the computational load, we carried



Fig. 8: Quantized prototype color image patterns with 12/pikel.
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(c) Result after error correction process (d) Output image

Fig. 9: Simulation result of image retrieval using the gBB#&sed large scale associative memory with color images.



out the uniform quantization so that the quantized imag#ss image, there was no erroneously reconstructed pixel
could be represented with 6 bits per pixel. The numbeut of 22500 (150 x 150) pixels, that is, no pixel in
of levels of the original image i€® = 256, and that the reconstructed image had different values from the
of the quantized image i8% = 64. The simplest way corresponding stored prototype image. More simulation
of uniform quantization would be to divide the rangeesults involving prototype patterns of Figure 6 can be
[0, 255] using 64 intervals of the same length and assigound in [33].
a binary number with 6 digits to each interval. In this We can apply the same procedure to the recall of
paper, we used a slightly different way to quantizeolor images. We tested the procedure on color images
images. Instead of dividing the range 255] into the shown in Figure 8. The pixels in the original images
intervals of the same length, we allocated the sameere represented by 24 bits (8 bits for each of the R,G,B
length to the inner intervals and we assigned half the&ymponents) before the uniform quantization preprocess-
length of them to two outermost intervals. The reasdng. The image patterns in Figure 8 are the quantized
why we used this scheme is because the processgdsions of the original images with 12 bits per pixel
images had many pixels with extreme values, i.e. 0 afd bits for each of the R,G,B components). An example
255. The quantized image patterns are shown in Figuredd.a simulation result is shown in Figure 9. The size of
images used in this simulation was0 x 200 pixels.

An example result of the image recall with the gBSEBrp,o noisy input image in Figure 9(a) was generated for
neural networks is shown in Figure 7. The input imagge simulation in such a way that each of the three R,
in Figure 7(a) is a noisy version of a stored imagg; B matrices were corrupted by zero mean additive
pattern. The noise in this image is a so called ‘saliyssian noise with standard deviation 2. Note that each
and-pepper noise’ with error probability 6f5. In other ¢ the R, G, B elements of each pixel has an integer
words, each pixel might be corrupted by a noise withyye in the rangéo, 15] in this experiment. The patterns
probability 0.5, and this noisy pixel is white or black \yare decomposed in&00 (= 15 x 20) subpatterns. The
with the same probability. The input image was quanymper of mismatched portions between subpatterns was
tized employing the same method as was used for 18§ after the recall process, and it was reduced to 0
stored image patterns. The whole image pattern Wg§ the subsequent error correction process. The final
decomposed intd00 (10 x 10) subpatterns using the gconstructed image is shown in Figure 9(d). The number
overlapping decomposition method described previously; incorrectly recalled pixels was zero and the prototype

Each subpattern went through the recall process of tnﬁage was perfectly reconstructed.
corresponding subnetwork. The result after the recall

processes of all the subnetworks is shown in Figure 7(b). VI. ASSOCIATIVE MEMORY FORPATTERN
There were 5 mismatched portions between subpatterns SEQUENCESTORAGE AND RETRIEVAL
in this example. The next stage was the error correction

process. The collection of sub-images in Figure 7(c) In this section, we describe a system that can store
is the result of error correction process. There was @#\d retrieve images using associative memory that store
mismatched portion between these subpatterns. Finafjid recall pattern sequences.

the reconstructed image is shown in Figure 7(d). In



A. Model = Vy(Vivy)'viv,
Designing continuous time neural associative memory = V,.

that can store pattern sequences has been inVGStigate‘FriQrefore,

[34], [35], [36], [37], [38], [39]. The discrete time neural

models for storage and recollection of pattern sequences

can be found in [40], [41], [42], [43], [44]. We first Thus, the system (10) generates the output patterns
propose a gBSB-based hybrid neural model that can stayg v, ..., vy for k = 1,2,...,L — 1 in a sequential

Wi, =vi41, 1=1,2,...,L—1.

and recall pattern sequences and then use this netwatknner for the initial inputz(0) = w;. Therefore,

to effectively store and retrieve images. we can store a sequence of patterns by constructing
Suppose that we wish to store a sequence of pattethe weight matrix W, using (11), and retrieve the

v1,v2,..., vy in the neural memory in the given orderwhole sequence when a noiseless stored initial pattern

Following Lee [39], we represent the sequence of pas submitted as an initial condition to the neural system

terns above as; — vy — vz — --- — vy to make the (10).

order of patterns clear. It is easy to show that a neuralin the case when there are more than one sequence of

system described by the following equation can achieyatterns to store, we can determine the matridgsand

the storage and retrieval of the pattern sequence, V5 using the same idea as above. Assume that there are

M sequences of patterns to store,

z(k+1) = Wyra(k), (20)
I € D O]
. . 1 2 Li»
where the weight matri¥;, has the form, (2) ) 2)
Uy - Uy O )
W), = VoV, (11)
M M M
where o - W ”(LM)'
Then, the matrice¥; andV 5 have the following forms,
V= V1 Vg V3 -+ VL1 (12)
[ } V, = {vgn vél) ”211)_1
and (M) (M) (M)
V2 = |: Vg V3 Vg - vy, i| . (13) v, Uy ’ULZM—1:| (15)
and
Indeed, suppose that the pattern vectors
v1,V9,V3,...,V_1 € {=1,1}" are linearly Vo= [vS) vgl) ”(Lll)
independent andn > L — 1. In other words, ,
P = oM D U%)} (16)
Vi, € {-1,1}»*E=D and rank V, = L — 1.

Then, the pseudo-inverse matrix f; is equal to the The number of patterns in each sequence may be differ-
left pseudo-inverse matrix of’; [45, page 207], that €nt from each other. Hence, > L;,i =1,2,..., M,

is, the neural system (10) might give unexpected outputs.
VI = wvTvy)vT, (14) To prevent this, we modify (15) and (16) as follows:
1 1 1 1
Note that Vi= [”g ) ’U(z R ”(Ll)—l ’U(Ll)
: : M M M M
WyVy = V2V1V1 -Ug ) v; U ”(LM)A U(LM) (17)



and transition is set to occur periodically with a peripcas
Vo — Lo o) - 4 4 specified by (20).
2 vy ' Vg L CH o .
When an initial pattern is presented to the neural

Do DD (M) L (M) )

vy Ly Vi } . (18) system (19), it acts as a gBSB neural system whenp.

) . If the initial pattern is located in the basin of attractidn o
In this case, the neural system yields the output of the

) a stored pattern, the network trajectory moves toward the
circular pattern sequence,

stored pattern akincreases whilé < p. In other words,
v o) - el {x(0), (1), 2(2),...,x(p—1)} forms a trajectory that
- Ugi) - v(;) e U(Lz) _ v?) e approaches a prototype super stable equilibrium state.
At k = p, the transition to the next pattern occurs. If
The above model works well in the case when theige (rajectory reaches the stored prototype pattern while
is no noise in the initial pattern, but it may not work, _ », the transition at: = p gives the next stored
well with a noisy initial pattern. To overcome this ”Oisepattern of the sequence exactly. In this case, noise was

problem, we propose a system whose dynamics &gminated by the network and the neural system can

described as follows: retrieve the exact stored pattern sequence dfter p

2k+1) = g{(1—c(k)(I,+aW)a(k) + ab) with p repetmon; of the sgme pattern. In other words,
if 2(p—1) =v\”, wherev!” is the first pattern in the
(k)W (k) 19) .
i-th stored pattern sequence, we obtain

c(k) = 1 k=gp=1 k>0, (20) z(p)=z(p+1)==z(p+2) =

0 if k#£jp—1,

wherek = 0,1,2,3,..., 7 =0,1,2,3,..., p is a fixed
positive integer, and initial conditiox(0) = xo, The

o=z(2p-1) :v(;),
z(2p) =x(2p+1)=x(2p+2) =

o=xz(3p—1) = 'ui(,f),
activation functiorg, the step sizey, and the bias vector

b are the same as defined in previous sections. There arel so on. Consider the case when the initial pattern
two different weight matrices¥ , andW, in (19). The does not reach the first stored pattern fox: p, that is,
weight matrixW , is for autoassociation. The synthesisc(p—1) # v@. Then,xz(p) # u;“. In other wordsgx(p)

of the weight matrixd , and the construction of the biasis still noisy. But, ifx(p) is in the basin of attraction of
vector b follow the algorithm described in Section IV.vgi), the trajectory approacheéi) ask increases while
The weight matrixW, is for heteroassociation. That is,p < k < 2p because now the neural system works as an
the transition from one pattern to another is achieved laytoassociative system for this period. If the trajectory
W . The design ofW,, follows the method described reaches a prototype pattevéi), the pattern sequence can
above in this section. The role of the functietk) in be retrieved without noise. In summaryaifk) is noisy,
(19) is to regulate the timing of pattern transitions. Whethe noise elimination process by the autoassociative part
c(k) = 0, the proposed model acts as a gBSB neuraf the system and the transition to the next pattern by
network, which is an autoassociative neural system, attte heteroassociative part will continue alternately lunti
whenc(k) = 1, it works as a heteroassociative one. Theoise is eliminated.



We can modify the above system to speed up thpattern Sequence 1 @ H

retrieval process. There exigt— 1 redundant patterns

in every p output patterns after the pattern sequence Pattern Sequence 2 E

reaches one of the prototype pattern. We can modify

the function ¢(k) in (20) to eliminate the redundant Pattern Sequence 3 @ E H

patterns from the output sequence. Onggé) reaches
<=
the prototype pattern, the autoassociative iterationk wil Pattern Sequence 4

not change it again and the heteroassociative part alone
Fig. 10: Prototype pattern sequences for Example 6.1.

can retrieve the pattern sequence successfully in the

AAAHEEB
We summarize the above consideration in the followin
BBCCCCDE

Algorithm 6.1: Algorithm to eliminate redundant

autoassociative iterations in pattern sequence recall F G H A_ B 1 D E

1. Set flag = 0.
o FGHABCDE
3. while flag =0

3.1 If k+#jp—1,sete(k) =0.1f k=jp—1, set
c(k) = 1.

3.2. Calculate

subsequent iterations. This can be done by set{ihyy=

1 and fixing it afterz(k) reaches the prototype pattern.

Fig. 11: Snapshots of the pattern sequence recall in
Example 6.1: the proposed hybrid neural model with a
noisy initial pattern.

zk+1) = g{(1—ck)((I,+aW,)x(k)+ ab)
+e(k)W px(k)}. B. Storing and retrieving images
3.3. If x(k+1) =a(k), setflag = 1. In this section, we describe a gBSB-based neural
3.4. Setk=k+ 1. system that can store and retrieve images using the neural
4. Setc(k) =1 and calculate system described in Section VI-A and the concept of
image decomposition. Suppose we hae images to
zk+1) = g{(1—ck)((I,+aW,)x(k)+ ab) . ) .
store in the neural memory. First, each prototype image
+e(k)Wra(k)}

that we wish to store is decomposed into equal-sized sub-
. . i (1) () () L

for the subsequent iterations. images,s; ’, 8y ..., Wherezl_ 1,2,..., M. Then,

we represent each sub-imag{%” as a binary vector

v"). Treating the binary vectors!” v{” ... »!") as
Example 6.1 The example of pattern sequence retrieva pattern sequence(f) — vg) — e = v(Li), we

using the above algorithm is shown in Figures 10 and 1donstruct a neural associative memory as proposed in



Section VI-A. until £ = 19 (Figure 12 (d)), the heteroassociative recall

ccurred atc = 20 (Figure 12 (e)). The third sub-image
When a noisy image is presented to the network, ?t (Fig ©) g

converged to the prototype sub-image:at 25 with the
is first decomposed intd equal-sized sub-images and g P yP g

autoassociative recall (Figure 12 . Th was
they are converted into binary vectors. Then, they form a (Fig ®) erlk)

set asc(k) = 1 so that the redundant autoassociative
sequence of vectors to be processed by the neural system

. . iteirations are not performed in the subsequent recall
and enter into the stage of the pattern sequence retrieval.

o . - rP\rocess. Fronk = 26, the recall process was performed
The autoassociative iterations are eliminated at sorme

. - with only heteroassociative steps and it stopped at
point and only heteroassociative steps are necessary

. 72. The reconstructed image is shown in Figure 12 (I).
thereafter. Note that the pattern sequence retrieval is

. . . Note that the recall of the last sub-image was done at
carried out in reverse order of sequence formation. Once

. . k = 70 (Figure 12 (j)) but the recall process continued
a complete pattern sequence is retrieved, the patterns

. . L to complete the recall of the first and the second sub-
included in the sequence are converted back into images.

. . . . . images, which was not completed during the previous
Finally, we combine those sub-images to obtain the orlglr—n g P g P
é)nass (Figure 12 (b), Figure 12 (d)). It continuedkte=

72 to complete the recall (Figure 12 (k), Figure 12 (I)).
We present the snapshots of the simulation result perfect recall occurred and we successfully reconstructed

Figure 12. The size of image used in this experiment {fe prototype image.

nal image with the same size as before its decompositi

160 x 120 and each pixel was represented by a binary VIl CONCLUSIONS

number of 8 bits to give gray level rande, 255). The

. . . In this paper, we first reviewed some properties of
image was decomposed into 48 sub-images where each pap prop

. . ) the gBSB neural model that make this network suitable
sub-image is &0 x 20 gray scale image. Those 48

. for using it in constructing associative memories. We
sub-images form a pattern sequence. Then, the neural

(F'mployed the gBSB networks as building blocks in two
system proposed above was constructed to store the

. . ) different types of associative memory structures that can
prototype images. In this experiment, we added zero

. . . . tore and retrieve images. Both networks use pattern
mean Gaussian noise with standard deviation 30 to tﬁe 9 P

. . . decomposition. By using pattern decomposition, we were
value of each pixel of the prototype image to get an input

. . . . N able to reduce the computational load for processing im-
image. The input image is shown in Figure 12 (a). This

. . . _ﬁqges. In the first network, an error correction feature was
image was decomposed into 48 sub-images and the ini-

: . . aﬁided to the system to enhance the recall performance of
age reconstruction started with the autoassociativelreca

. . the neural memory. In the second system, the concept of
of the fist sub-image. The numbgrwas set top = 10. 4 4 P

N . ) ttern sequence storage and retrieval was used. Because
As we can see in Figure 12 (b), the first sub-image df%fi d ¢

. . __the autoassociative iteration step can be eliminated after
not converge to the corresponding prototype sub-image

. . some number of iterations, this method further reduces
by & = 9. Because we sei = 10, the heteroassociative

. N the computation load.
step occurred at = 10, which is shown in Figure 12 (c). P
Then, autoassociative iterations were carried out in the VIII. FURTHER RESEARCH
second sub-image. Because the second sub-image ditlVe are investigating the problem of identification of

not converge to the corresponding prototype sub-imatfge parameters of an autoregressive (AR) time series



G) k=70 k) k=71 () &= 72 (output)

Fig. 12: Snapshots of the recall process of the proposedahsystem. (Input image is a noisy version of the
prototype image corrupted by the Gaussian noise.)



model using the gBSB net. The parameters of the model
are determined so that the sum of square errors between

the values of the estimated terms and the actual term?lia

minimized. This method is based on the fact that each

trajectory of the gBSB neural model progresses to the

local minimizer of the energy function of the neural nef!!l

The gBSB neural net is designed so that the energy,

function of the network is the same as the error function

that is to be minimized. In this particular procedure, the

. , . [13
energy function of the neural network is convex, Whlch ]

implies that any local minimizer found by the gBSB

algorithm must actually be a global minimizer. Using14]

the above preliminary results, we are developing an

algorithm for estimating the time series parameters. Tr['lg]

algorithm can then be employed to analyze myoelectric
signals. This method of analyzing myoelectric signals
can then, in turn, be applied to the control of muIti£16]

degree of freedom arm prostheses.
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