
COVARIANCES AND RELATED NOTIONS 

 

I. Covariance between two r.v.'s 

Remember that the variance of a r.v. X  is: 

var(X ) = E[(X – µ X)2] = E[(X – µ X) × (X – µ X)] = E[X 2] – µ X2. 

Now the covariance of two r.v.'s X and Y (defined on a common probability space Ω) is: 

cov(X, Y ) = E[(X – µ X) × (Y – µ Y)]. 

So we see that: 

var(X ) = cov(X, X ). 

If the two r.v.'s X and Y are independent, then cov(X, Y ) = 0. Thus, computing the 
covariance of X and Y  provides a partial answer to the question: are X and Y  
independent? This is only a partial answer, because cov(X, Y ) = 0 does not imply that X 
and Y are independent. 

It is easy to see that: 

cov(X, Y ) = E[X × Y ] – µ X ×µ Y. 

Thus, the covariance is the mean of the product minus the product of the means. Instead 
of the covariance, one sometimes uses the correlation, which is simply the mean of the 
product: 

corr(X, Y ) = E[X × Y ]. 

 

II. Cross-correlation between two time series 

Consider now two time series X (t) and Y(t). A time series is a random variable that is a 
function of time t, t = 1, 2,… 

Here we assume that X (t) and Y(t) are spike trains, and therefore X (t) and Y(t) ∈{0, 1}. 

The cross-correlation between X (t) and Y(t), a function of the time variable τ, is defined 
as: 



crosscorrX, Y (τ ) = corr(X(t), Y(t+τ)) = E[X(t) × Y(t+τ)]. 

The variable τ  should be understood as a time lag: for a given time lag τ, crosscorrX, Y (τ ) 
is large if a spike in Y often occurs at time t + τ whenever a spike in X occurred at time t. 

Note that the definition of the cross-correlation assumes that E[X(t) × Y(t+τ)] does not 
depend on t. This property is called stationarity. 

It is easy to see that, up to a normalization constant, crosscorrX, Y (τ ) is the conditional 
probability that the second neuron will fire at time τ, given that the first neuron fired at 
time 0.  

 

III. Autocorrelation of a time series 

The autocorrelation of a single spike train X (t), also a function of time τ, is defined as: 

autocorrX (τ ) = corr(X(t), X(t+τ)) = E[X(t) × X(t+τ)]. 

We see that the autocorrelation of spike train X (t) is the cross-correlation of X (t) with 
itself: autocorrX (τ ) = crosscorrX, X (τ ). Thus, autocorrX (τ ) is large if, in X (t), a spike at 
a given time t is often followed by a spike at time t+τ. Note that if the neuron has a 
refractory period, say of 5 ms, then, for any τ  less than 5ms, autocorrX (τ ) will be small, 
or even 0. 

 

IV Correlograms 

To each of the above notions, there corresponds a formula that allows one to estimate the 
quantity from a sample. Thus, given a sampled spike train x(t), t = 1,2,…, the sample 
autocorrelation, or autocorrelation histogram, or autocorrelogram of the spike train, is: 
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where N is the length of the recording period. Remembering that x(t) is a spike train, 
hence x(t)∈{0, 1}, we can write: 
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where Ti runs over all spike times. 



Practically, to compute the autocorrelogram for lags τ  in a given interval [–τmax, τ max], 
one adds up with each other all the segments of spike train extracted from the intervals 
[Ti –τmax, Ti +τ max]. This operation is illustrated below:  

 

 

In this sum, Ti runs over all the spike times in the record. This will often result in some 
extracted segments overlapping with each other, such as, for instance, the segments 
around T9 and T10 in the above sketch (the segment around T9 is not shown). This is not a 
problem. 

However, notice that if some Ti (for instance T1 or T2 in the above sketch) is very near the 
beginning or the end of the record, the extracted segment may not fall entirely within the 
recording period, and this would cause a problem. Therefore, one should use only 
"legitimate" Ti's, i.e., spike times Ti such that the interval [Ti –τmax, Ti +τ max] is entirely 
within the recording period [1, N]. 



The cross-correlogram between a spike train x(t) and a spike train y(t) is computed in 
exactly the same way, except that now the Ti's come from one spike train x(t), whereas 
the spike-train segments are extracted from another spike train y(t). This is sketched out 
below: 

 



V. Examples of autocorrelograms and crosscorrelograms in the neuroscience 
literature 

 

A: Autocorrelograms for two neurons in right and left 
hemispheres of areas V1 of the cat. B: Crosscorrelograms for 
same two neurons. (From Engel, König, Singer (1991) Direct 
physiological evidence for scene segmentation by temporal 
coding, PNAS 88:9136-9140) 

 

 



 

Raster plots and histograms (post-stimulus-time histograms, 
or PSTH's) of response of MT neuron to patterns of moving 
random dots. The three panels (top to bottom) show the 
responses to stimuli of increasing "coherence." (From Bair 
and Koch (2006) Temporal coherence of spike trains in 
extrastriate cortex of the behaving macaque monkey, Neural 
Computation, 8:1185-1202.) 

 

Note that a post-stimulus-time histogram, or PSTH, for a given neuron's response to a 
given stimulus is the cross-correlogram of two time series: the spike train and the time 
series that marks the stimulus onset times. 

 

 


