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Hebbian learning, the development of neural circuits based on
correlated activity, relies on two critical mechanisms. The best
known of these is activity-dependent synaptic modification along
the lines proposed by Hebb1. Equally important is a mechanism
that forces different synapses to compete with one another so
that when some synapses to a given postsynaptic neuron are
strengthened, others are weakened2,3. For example, correlation-
based rules of synaptic modification can provide a reasonable
account of many aspects of development in visual cortex, but
only when they are combined with constraints introduced to
ensure competition4. Although Hebbian synaptic modification
has received support from experiments on long-term potentia-
tion and depression5, much less is known about the mechanisms
that generate competition between synapses.

At first, it might seem that any mechanism that imposes com-
petition among synapses must involve a global intracellular sig-
nal that reflects the state of many synapses. The constraints used
in many models of Hebbian learning6, although not biophysi-
cally realistic, are based on this idea. Typically these constraints
limit the sum of synaptic strengths received by a cell, or the mean
activity of the cell. Competition can also arise locally if the
processes that modify synaptic strengths equilibrate at a preset
level of total synaptic innervation or postsynaptic activity. This
can be achieved through static mechanisms such as thresholds
and negative input correlations6, dynamic mechanisms involv-
ing non-Hebbian synaptic growth or decay terms such as synap-
tic scaling7–9, or shifts in the synaptic modification rule itself as in
the sliding threshold of the BCM model10. Here we explore an
entirely different mechanism suggested by experimental results
on the effect of spike timing on long-term synaptic modifica-
tion11–20, in which different synapses compete for control of the
timing of postsynaptic action potentials. We show that the depen-

dence of synaptic modification on spike timing provides a mech-
anism that can lead to competitive Hebbian learning without
requiring global intracellular signaling, or preset activity or
synaptic efficacy levels.

Experimental evidence from several different preparations11–20

suggests that both the sign and degree of synaptic modification
arising from repeated pairing of pre- and postsynaptic action
potentials depend on their relative timing. In neocortical slices14,
hippocampal slice17 and cell18 cultures, and tadpole tectum in
vivo19, long-term strengthening of synapses occurs if presynaptic
action potentials precede postsynaptic firing by no more than
about 50 ms. Presynaptic action potentials that follow postsy-
naptic spikes produce long-term weakening of synapses. The
largest changes in synaptic efficacy occur when the time differ-
ence between pre- and postsynaptic action potentials is small,
and there is a sharp transition from strengthening to weakening
as this time difference passes through zero. We call this form of
synaptic modification spike-timing-dependent plasticity (STDP).

Synaptic modification by STDP-like rules has been studied in
models of temporal pattern recognition21, temporal sequence
learning22–24, coincidence detection25,26, navigation27–29 and direc-
tion selectivity30,31 (N.J. Buchs, J. Reutimann & W. Senn, Soc. Neu-
rosci. Abstr. 25, 2259, 1999). We focus instead on the competitive
and stabilizing properties of STDP. The competitive nature of
STDP has been noted19,25, but not studied in detail. Stability of
an STDP-like rule in combination with non-Hebbian plasticity
has been studied in a linear, stochastically spiking neuron model32,
but we find qualitatively new behavior when the intrinsic non-
linearity of the spike-generation mechanism is taken into account.
We find that STDP alone can lead to stable distributions of synap-
tic conductances, subject only to a limit on the strengths of indi-
vidual synapses. The synaptic conductance distributions produced
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by STDP force the postsynaptic neuron into a balanced, irregu-
larly firing regime33–42 in which it is sensitive to the timing of the
presynaptic action potentials it receives. Such sensitivity leads to
competition among inputs for the control of postsynaptic spike
timing. This allows STDP to selectively strengthen synapses of
inputs with relatively shorter latencies or stronger mutual corre-
lations, while weakening the remaining synapses.

RESULTS
The modeling studies we present are based on a spike-timing-
dependent synaptic plasticity rule in which a function F(∆t)
determines the amount of synaptic modification arising from a
single pair of pre- and postsynaptic spikes separated by a time
∆t. The function (Fig. 1)

A+ exp(∆t/τ+) if ∆t < 0
F(∆t) =   { –A- exp(–∆t/τ-) if ∆t ≥ 0

provides a reasonable approximation of the dependence of synap-
tic modification on spike timing observed experimentally. The
parameters τ+ and τ- determine the ranges of pre-to-postsynap-
tic interspike intervals over which synaptic strengthening and
weakening occur. A+ and A-, which are both positive, determine
the maximum amounts of synaptic modification, which occur
when ∆t is close to zero.

Experimental results suggest a value for τ+ in the range of tens of
milliseconds and, in the examples we present, we use τ+ = 20 ms.
Data from some preparations indicate that the temporal window
for synaptic weakening is roughly the same as that for synaptic
strengthening14,18,19, whereas other results reveal a larger window
for synaptic weakening17,20. We have run simulations under both
conditions. For the results we report here, we do not see a signif-
icant difference between the two cases, and we use τ- = τ+ = 20
ms throughout.

We determine the parameters A+ and A- by dividing the total
modification measured experimentally for multiple spike pairs
by the number of pairs. This assumes that the effects of individ-
ual spike pairs sum linearly (see Discussion). In our simulations,
A+ = 0.005, except in Fig. 2f, where A+ = 0.02. To set the value of
A-, we make the important assumption that synaptic weakening
through STDP is, overall, a slightly larger effect than synaptic
strengthening26. Specifically, stable competitive synaptic modi-

fication requires the integral of the function F to be negative,
which ensures that uncorrelated pre- and postsynaptic spikes
produce an overall weakening of synapses. A negative integral of
F requires A-τ- > A+τ+. The data are mixed on this issue. The
results that report similar time scales for synaptic strengthening
and weakening14,18,19 indicate rough equality between the two
effects and, in some cases, even suggest a slight dominance of
strengthening over weakening. The data showing a longer tem-
poral window for synaptic weakening17,20 support the dominance
of synaptic weakening over strengthening by STDP. In our sim-
ulations, we use A-/A+ = 1.05, except for Fig. 2d, where A-/A+

varies.
In the model we study, g–a denotes the peak synaptic conduc-

tance (the synaptic conductance immediately after an isolated
presynaptic spike) due to an excitatory synapse labeled by the
integer a (with a = 1,2,...,N). This conductance must always be
positive, and is not allowed to exceed a maximum value g–max. A
pre- and postsynaptic spike pair separated by a time interval ∆t
modifies the peak synaptic conductance by an amount g–maxF(∆t).
The value A+ = 0.005 thus corresponds to a change of 0.5% of
the maximum synaptic strength per spike pair. If this modifica-
tion rule would push the peak synaptic conductance beyond the
allowed range 0 ≤ g–a ≤ g–max, g

–
a is set to the appropriate limiting

value. A scheme for implementing this modification rule is pre-
sented in Methods.

We examine how STDP acts on the excitatory synapses dri-
ving an integrate-and-fire model neuron with N = 1000 excitatory
and 200 inhibitory synapses (Methods). The excitatory synaps-
es are activated by various types of spike trains: uncorrelated spike
trains generated by independent Poisson processes at various
rates, bursts of action potentials with different latencies, and par-
tially correlated spike trains. The model neuron also receives
inhibitory input consisting of Poisson spike trains with a fixed
rate of 10 Hz. In the simulations, excitatory synapses are modified
based on their pre- and postsynaptic spike timing, whereas
inhibitory synapses are held fixed.

Balanced excitation
To function properly, a neuron must establish and maintain an
appropriate level of excitation so that it can respond to its inputs
by firing action potentials at reasonable rates. Response variabil-
ity also provides a constraint on the synaptic inputs to a neuron.
The responses of an integrate-and-fire model receiving many
independent presynaptic inputs can be considerably less variable
than responses observed in vivo33. Correlations of input spike
timing, such as synchronization, can contribute to increased vari-
ability34. However, many authors have noted that a high degree
of variability can also arise if the excitatory inputs to a neuron
are balanced relative to the inhibitory synaptic and membrane
currents35–41. The critical condition is that the mean input to the
neuron should only be sufficient to raise the membrane potential
to a point below, or slightly above, the threshold for action poten-
tial generation, so that spike times are determined primarily by
positive fluctuations in the total level of input. As we will show,
STDP provides a mechanism by which this balance can be estab-
lished and maintained over a wide range of input firing rates42.
This results in a state in which presynaptic action potentials can
control the timing of postsynaptic spikes, and competition among
synapses can arise.

To study the equilibrium distribution of synaptic strengths aris-
ing from STDP, we initially set the peak conductances of all exci-
tatory synapses of the model neuron to g–max, which produces a
high firing rate. All the excitatory synapses to the model neuron
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Fig. 1. The STDP modification function. The change of the peak con-
ductance at a synapse due to a single pre- and postsynaptic action
potential pair is F(∆t) times the maximum value g–max with ∆t the time of
the presynaptic spike minus the time of the postsynaptic spike. In this
figure, F is expressed as a percentage.
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received independent Poisson spike train inputs with the same
average rate. After a period of adjustment, a steady-state condition
was achieved in which the firing rate of the postsynaptic neuron
and the distribution of peak synaptic conductances remained con-
stant. Although all the peak synaptic conductances started with
the same value, there is no stable equilibrium state with a uniform
distribution. Instead, most of the peak synaptic conductances are
pushed toward the limiting values of zero or g–max(Fig. 2a and 2b).
For low input rates, more synapses approach the upper limit 
(Fig. 2a), and for high input rates, more are pushed toward zero
(Fig. 2b). This has the effect of keeping the total synaptic input to
the neuron roughly constant, independent of the presynaptic firing
rates. The split between strong and weak synapses is also affected by
the values of g–max (fewer strong synapses develop for larger g–max)
and A-/A+. The initial distribution of synaptic strengths has no
effect on the final steady-state distribution as long as the postsy-
naptic neuron is initially firing action potentials.

STDP has a strong regulatory effect on the steady-state fir-
ing rate of the postsynaptic neuron, which, for the equilibrium
distribution of synaptic strengths, increases by only about 1 Hz
for each 5 Hz increase in the input firing rate (Fig. 2c). In con-
trast, if the peak synaptic conductances are held fixed in this
model, the firing rate increase is over 100 Hz for a 5 Hz increase
in the input firing rates. Synaptic changes due to STDP take time

to develop, so STDP only regulates the long-term average firing
rate, and the neuron remains highly sensitive to transient
changes of input firing rates.

The coefficient of variation (CV) of the postsynaptic spike
train, which is the standard deviation of the interspike intervals
divided by their mean, is fairly large and remarkably indepen-
dent of the input firing rate (Fig. 2c) when the distribution of
synaptic strengths due to STDP has equilibrated. This suggests
that STDP regulates the variability of the postsynaptic response.
The high degree of firing variability is primarily due to an over-
all balance between inhibitory and excitatory conductances in
the model. A reasonable measure of this balance is the ratio of
total inhibitory to excitatory currents when the membrane poten-
tial is at the action-potential threshold. STDP adjusts this ratio
to be slightly greater than one over the entire range of presynap-
tic firing rates considered (Fig. 2d). This indicates a balanced
condition in which, on average, inhibitory effects are slightly
dominant at threshold.

An additional contribution to firing variability comes from
the reduction in the number of strong synapses for high input
rates. Figure 2d shows the number of strong synapses (those with
g– ≥ 0.8g–max) for different presynaptic firing rates. For the value
of g–max we used, roughly half the synapses are strong for a 10 Hz
presynaptic rate. The number of strong synapses drops to 10%

when the presynaptic rates are set to 40 Hz. In all
cases, the balance between inhibition and excita-
tion is the dominant source of variability, but the
reduction in the number of strong inputs also con-
tributes when the presynaptic firing rates are high.

Both the firing rate and the coefficient of vari-
ation of the postsynaptic neuron depend on the
ratio A-/A+ (Fig. 2e). If this ratio is slightly larger
than one, the firing rate of the postsynaptic neuron
is maintained in a reasonable range, and the CV is
close to one, indicating an irregular postsynaptic
spike train.

Synaptic conductances tend to be pushed close
to the upper and lower limits of their allowed range
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Fig. 2. Balanced excitation and irregular firing produced
by STDP. (a) Histogram of the fraction of synapses taking
different peak conductance values ranging from zero to
g–max. For an input rate of 10 Hz, the peak synaptic conduc-
tances tend to the limiting values, but more are near g–max
than near zero. (b) Same as (a), but for an input rate of 40
Hz. Now more peak conductances are near zero than
near g–max. (c) The postsynaptic firing rate and CV (stan-
dard deviation divided by the mean) of the postsynaptic
interspike intervals for different input firing rates. (d) The
ratio of total inhibitory to excitatory currents that would
flow if the membrane potential were clamped at threshold,
and the percentage of strong synapses (g– ≥ 0.8g–max) for dif-
ferent presynaptic firing rates. The leak conductance is
included as a contributor to the inhibitory current in this
ratio because it acts to hyperpolarize the neuron. (e) The
postsynaptic firing rate and CV of the postsynaptic inter-
spike intervals for input firing rates of 10 Hz but different
values of A-/A+, the ratio of the amplitudes of maximal
synaptic weakening and strengthening. (f) Same as (a), but
with g–max 2.33 times larger and the synaptic modification
per spike pair four times larger (g–max = 0.035,  A+ = 0.020,
A- = 0.021). The larger value of g–max forces more synapses
to lower conductance values, whereas the higher modifi-
cation rate fills in the distribution.

a b

c d

e f
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by the STDP modification rule we are using (Fig. 2a and 2b).
This results in a bimodal distribution. A more continuous dis-
tribution arises if the degree of synaptic modification per spike
pair is increased. In an example in which the equilibrium distri-
bution of synaptic conductances is roughly exponential except
for a small excess near g– = g–max (Fig. 2f), the model maintains the
basic features of STDP, regulation of the postsynaptic firing rate
and CV, but the synaptic conductance distribution more closely
matches the experimentally observed distribution of spontaneous
synaptic (mini) potentials43, which provides one estimate of the
distribution of synaptic strengths.

The reason that STDP achieves a balanced state can be under-
stood from basic response characteristics of a neuron integrat-
ing many inputs. Such a neuron can operate in two different
modes with distinct spike-train statistics and input–output cor-
relations38,39,42. When excitation is strong, as at the beginning of
our simulations, so that the mean input to the neuron would
bring it well above threshold if action potentials were blocked,
the neuron operates in an input-averaging or regular-firing mode.
The postsynaptic action potential sequences produced in this
mode are significantly more regular than the presynaptic spike
trains that evoke them. The interspike intervals of the postsy-
naptic response depend on the total synaptic input, but the
absolute timing of individual postsynaptic
action potentials is fairly insensitive to
presynaptic spike times. As a result, there
are roughly equal numbers of presynaptic
action potentials before and after each
postsynaptic spike39,42 (Fig. 3a). As we have
noted, the area under the synaptic weak-
ening portion of the STDP curve (Fig. 1)

is greater than the area under the strengthening part. Initially in
our simulations, there is an overall weakening of the excitatory
synapses because the small excess of presynaptic spikes occur-
ring before postsynaptic action potentials is not large enough to
overcome the excess of synaptic weakening imposed by the STDP
rule (Fig. 3a).

As the excitatory synapses are weakened by STDP, the post-
synaptic neuron enters a balanced mode of operation in which
it generates a more irregular sequence of action potentials that
are more tightly correlated with the presynaptic spikes that evoke
them. The total synaptic input in the balanced mode is, on aver-
age, near or below threshold, so the postsynaptic neuron fires
irregularly, primarily in response to statistical fluctuations in the
total input. Because action potentials occur preferentially after a
random fluctuation, there tend to be more excitatory presynap-
tic spikes before than after a postsynaptic response38,39,42

(Fig. 3b). The STDP rule achieves a steady-state distribution of
peak synaptic conductances when the excess of presynaptic action
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Fig. 4. Reduction of latency by STDP. (a) The
initial peak synaptic conductances as a function
of the relative latency of their synaptic inputs. 
(b) The initial postsynaptic response to a barrage
of excitatory input with burst onset for each
synapse occurring at the time of its relative
latency. (c) The steady-state peak synaptic con-
ductances plotted as a function of the relative
latency of the synaptic input. Short-latency
synapses have been strengthened, and long-
latency synapses have been weakened. (d) The
response of the postsynaptic neuron to the same
input barrage as in (b), but after STDP has modi-
fied the peak synaptic conductances as in (c).

a b

c d

Fig. 3. Correlation between pre- and postsynaptic action potentials
before and after STDP. The solid curves indicate the relative probability
of any presynaptic spike occurring at time tpre when a postsynaptic spike
occurs at time tpost. A correlation of one is the value due solely to chance
occurrences of such pairs. The dashed curves show the STDP modifica-
tion function from Fig. 1. The time-integral of the product of the synaptic
modification curve and the correlation function determines whether, on
average, synapses are strengthened or weakened. (a) At the beginning of
our simulations, when all the peak synaptic conductances are set to their
maximal value, there is only a small excess of presynaptic spikes before a
postsynaptic action potential. (b) At the end of the simulations, when
STDP has established a steady-state distribution of conductances, there
is a larger excess of presynaptic spikes before a postsynaptic action
potential. In the steady state, this excess compensates for the asymmetry
in the STDP modification curve, that is, for the fact that A-/A+ > 1.

a

b

© 2000 Nature America Inc. • http://neurosci.nature.com
©

 2
00

0 
N

at
u

re
 A

m
er

ic
a 

In
c.

 •
 h

tt
p

:/
/n

eu
ro

sc
i.n

at
u

re
.c

o
m



nature neuroscience  •  volume 3  no 9  •  september 2000 923

potentials before postsynaptic firing compensates for the asym-
metry in areas under the positive and negative portions of the
STDP modification curve42 (Fig. 3b). If the total excitatory drive
were weaker than that provided by this distribution, stronger
fluctuations of the total input would be required to cause post-
synaptic spikes. This would create an even greater excess of presyn
aptic action potentials before postsynaptic firing, which would
cause an increase in synaptic strengths, driving the system back to
the steady-state distribution. STDP thus modifies excitatory
synaptic strengths until there is a sufficiently, but not excessively,
high probability of a presynaptic action potential occurring before
a postsynaptic spike. This causes the neuronal response to be sen-
sitive to the timing of input fluctuations.

Latency reduction
For uncorrelated stochastic presynaptic spike trains, chance deter-
mines whether a given synapse will ultimately become weak or
strong through STDP. When the presynaptic inputs are correlat-
ed in various ways, the fate of individual synapses is controlled
in a more systematic manner. STDP strengthens synapses that
fire before a postsynaptic spike and weakens those that fire later.
Suppose, for example, that a stimulus causes a barrage of presy-
naptic inputs to fire with varying latencies, and that these laten-
cies extend over a period longer than that required to evoke
postsynaptic spiking. In this case, STDP will strengthen shorter-

latency excitatory inputs while weakening those with
longer latencies. The ultimate effect of this synaptic
modification is to make the postsynaptic neuron
respond more quickly.

To illustrate this latency reduction, we considered
a model neuron receiving inputs that are silent except
for isolated events represented by bursts of spikes
with a Poisson distribution at 100 Hz for 20 ms. Dif-
ferent synapses are not activated precisely synchro-
nously during these events. Instead, each synapse is
assigned a relative latency chosen randomly from a
Gaussian distribution with a mean of zero and a stan-
dard deviation of 15 ms. The burst of action poten-
tials at a given synapse occurs at a time given by the
sum of its relative latency and the absolute latency
associated with the event.

Initially, all the synapses were set to the same
strength of 0.2g–max (Fig. 4a). This produces a response
in the postsynaptic cell that begins shortly after the
time marked zero, which indicates the mean input
latency, and lasts for about 25 ms (Fig. 4b). The input
events are then repeated periodically until the STDP
rule has established a fixed distribution of peak
synaptic conductances. STDP strengthens short-
latency inputs to the maximum allowed level, g–max,
and weakens synapses with longer latencies to zero
(Fig. 4c). This produces a quicker response in the
postsynaptic neuron, which fires almost 20 ms earli-
er than it did originally (Fig. 4d).

Correlation-based Hebbian modification
Factors that enhance the ability of a given synapse to
rapidly evoke a postsynaptic response lead to its
strengthening through STDP. Correlating different
synaptic inputs so they are more likely to arrive
together in a cluster is an effective way of increasing
their ability to evoke postsynaptic action potentials.
By cooperatively generating action potentials, such a

cluster of synapses can grow stronger, while weakening other
synapses that are not part of the cluster. To study this effect, we
generated input spike trains at rates that were correlated across
synapses (see Methods) and examined the effect of STDP.

Presynaptic firing rates were generated to have a correlation
function that decayed exponentially with a time constant τc and
varied in amplitude across the population of synapses (see Meth-
ods). Specifically, the correlation between two cells a and b is cacb

with ca and cb, which we call correlation parameters, varying from
zero to 0.2 uniformly across the 1000 excitatory synapses. When
the correlations decay rapidly (τc = 20 ms, Fig. 5a), more-corre-
lated synapses become stronger, and less-correlated synapses
weaken (compare Fig. 5a and 5b). This trend disappears for larg-
er correlation times (τc = 200 ms, Fig. 5b). To be strengthened, a
group of inputs must fire together long enough to generate a
postsynaptic action potential, but must then stop firing so they
are not subsequently weakened. As a result, correlations have a
large effect when the correlation time constant is approximately
equal to the time constants τ+ and τ- that govern the time scales
for STDP32.

Although the degree of strengthening produced by STDP is
sensitive to correlations, it is not strongly affected by other prop-
erties of the presynaptic spike trains. When input firing rates are
time independent and uncorrelated but vary uniformly across
the population of synapses, there is little tendency for synapses
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Fig. 5. Effects of input correlation, firing rate or variability on steady-state peak synaptic
conductances. Each input parameter is divided into 20 bins. The histograms show the aver-
age peak synaptic conductances for all inputs within a given bin. These values are the results
of averaging bimodal distributions of synaptic strengths within each bin. (a) The synaptic
inputs have correlation parameters ca ranging from zero to 0.2 (ca = 0.2(a – 1)/(N – 1)) and
have been binned on this basis. The degree of correlation between any two inputs is deter-
mined by the product of their correlation parameters. The correlation time constant is 
20 ms. The degree of correlation of a synapse has a strong effect on its peak conductance.
(b) Same as (a), but with a correlation time constant of 200 ms. No effect of correlation
on synaptic strength is observed. (c) The synaptic inputs have different firing rates ra rang-
ing from 10 to 40 Hz (ra = 10 + 30(a – 1)/(N – 1) Hz), and this range has been binned. No
strong effect of rate on synaptic strength is observed. (d) The synaptic inputs have distrib-
utions of input firing rates with different standard deviations (labeled input variability)
ranging from 0 to 0.5 in units of the mean rate (σa = 0.5(a – 1)/(N – 1)). No effect of vari-
ability on synaptic strength is observed. In this example, τc = 20 ms, as in (a).

a b

c d
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firing at either faster or slower rates to be preferentially strength-
ened or weakened by STDP (Fig. 5c). Higher firing rates increase
the speed at which synaptic modification occurs, but they do not
otherwise affect the final equilibrium distribution of maximal
synaptic conductance values produced by STDP.

The steady-state peak synaptic conductances are also insen-
sitive to the degree of variability of the presynaptic input. When
we arranged the input firing rates to have a standard deviation
that varied uniformly across the inputs, we found no tendency
for synapses with either more or less variable firing rates to be
preferentially strengthened or weakened by STDP (Fig. 5d).

The basic result of these studies is that STDP is insensitive to
the average rate or degree of variability of a given synaptic input. It
is, however, strongly affected by correlations between different
inputs, provided that they decay rapidly enough as a function of
time. Synapses with strong, rapidly decaying temporal correlations
are strengthened as a cluster and suppress other synapses that are
uncorrelated or have temporal correlations that last over longer
time periods. STDP thus shows the basic feature of Hebbian learn-
ing, the strengthening of correlated groups of synapses, while dis-
playing the desirable features of firing-rate independence and
stability and a novel dependence on correlation decay time.

DISCUSSION
Although Hebbian synaptic plasticity is a powerful concept, it suf-
fers from a number of problems. First, synapses are modified
whenever correlated pre- and postsynaptic activity occurs. Such
correlated activity can occur purely by chance, rather than reflect-
ing a causal relationship that should be learned. To correct for this,
neural network models often use a covariance rather than corre-
lation-based synaptic modification rule44. However, such a rule
cannot, in general, achieve competition between synapses6. This
brings up a second problem of purely Hebbian modification; it is
not competitive, so constraints must be added to obtain interesting
results. STDP seems to solve both of these problems. Accidental,
non-causal coincidences weaken synapses if, as we have assumed,
the integral of the synaptic modification function is negative. Com-
petition arises in a new way, not due to a global signaling or growth
factor, or to an artificially imposed balance of nonspecific synaptic
decay and growth terms, but rather through competition for con-
trol of the timing of postsynaptic action potentials. Inputs that
consistently are best at predicting a postsynaptic response become
the strongest inputs to the neuron. Causality is a key element of
STDP. As Hebb suggested1, synapses are only strengthened if their
presynaptic action potentials precede, and thus could have con-
tributed to, the firing of the postsynaptic neuron.

STDP automatically leads to a balanced, irregular firing state
in which pre- and postsynaptic spike times are causally correlat-
ed. This result depends crucially on the nonlinearity of the spike-
generation process. In a model in which the probability of spiking
depends linearly on membrane voltage32, the correlation between
pre- and postsynaptic firing does not change shape with overall
changes in synaptic efficacy, as it does in Fig. 3. Nonlinear effects,
which make causal input–output correlations grow relative to
acausal correlations as overall synaptic efficacy decreases, are cru-
cial for producing the stabilizing and competitive effects of STDP
that we have discussed. STPD regulates both the rate and the
coefficient of variation of postsynaptic firing over a wide range
of input rates. This represents a homeostatic regulatory function
of STDP, which is surprising given that, like the Hebb rule, it is
destabilizing at individual synapses.

STDP can differentially strengthen the shortest-latency inputs
evoked by a stimulus. There is some experimental evidence sug-

gesting that the resulting reduction of latency in the postsynaptic
response occurs in vivo. A phenomenon analogous to the reduc-
tion of latency discussed here predicts that, when a rat moves
through a particular region of space, place cells active for that
region should fire earlier after the rat has repeatedly traversed
the area23,27. This effect has been observed experimentally29,45.

A key assumption in our model is that synaptic weakening by
STDP dominates over synaptic strengthening. This is critical for
stability. If this assumption is not true, the results we have report-
ed might nevertheless arise from a combination of STDP and
homosynaptic long-term depression (weakening of presynaptic
inputs that fire in the absence of a postsynaptic spike5). As long as
STDP strengthens causally effective inputs, while STDP and/or
other forms of long-term plasticity more strongly weaken causal-
ly ineffective inputs, the basic results found here should apply.

Our model of STDP involves two additional assumptions. We
assumed that the effects of spike pairs sum linearly. At least one
contradictory effect has been reported, a dependence of synaptic
strengthening on pairing frequency, including a threshold effect
and frequency-dependent saturation14. Our model does not incor-
porate this finding, but we maintain presynaptic rates above the
reported threshold frequency for synaptic strengthening14. We
also assumed that we could ignore delays of several minutes
between pairing of pre- and postsynaptic spikes and the resultant
induction of synaptic modification that are suggested by experi-
ments14. If the effect is merely a delay, this has no impact on our
results. If, on the other hand, the process acts as a low-pass filter on
the temporal dynamics of weight change (averaging the effects of
STDP over a long period of time and changing weights accord-
ing to this average), this could have a more significant impact. We
have re-run our simulations assuming such a low-pass filtering
effect. We observed no changes in our results except for the case of
Fig. 2f, in which individual spike pairings caused larger changes
than in the other examples. In this case, the impact of these larg-
er changes is damped by the long-term averaging.

STDP may modify the short-term synaptic plasticity proper-
ties of a synapse as well as its efficacy, an effect that has been called
synaptic redistribution46. We have run simulations in which we
coupled the strengthening and weakening of synapses through
STDP to the degree of depression exhibited by the synapse, in a
manner consistent with synaptic redistribution. Although this
does not change the results we report, it does reveal an interest-
ing interplay between STDP and short-term plasticity. The most
effective way to strengthen a synapse under STDP is to have it
release transmitter before a postsynaptic spike and then stop
releasing so that it does not get weakened by subsequent releases
occurring after postsynaptic activity. A high degree of synaptic
depression, which is a feature of strong synapses in the redistri-
bution scheme46, assures this. STDP that acts to modify release
probability and change the degree of synaptic depression is thus
an extremely effective and competitive mechanism for driving
individual synapses to strong or weak limits.

STDP, although it makes an important contribution to com-
petition, probably cannot be the sole source of plasticity in Heb-
bian learning situations. Like any other Hebbian modification
rule, STDP cannot strengthen synapses without postsynaptic fir-
ing. If, for some reason, the excitatory synapses to a neuron are
too weak to make it fire, STDP cannot rescue them. A non-Heb-
bian mechanism, such as synaptic scaling7–9, may serve this func-
tion instead. In the model of STDP we use, two sets of inputs that
fire at times separated by more than about 100 ms generate STDP
independently and thus do not compete. Experiments suggest
that competition can nevertheless occur under these conditions47.

articles

© 2000 Nature America Inc. • http://neurosci.nature.com
©

 2
00

0 
N

at
u

re
 A

m
er

ic
a 

In
c.

 •
 h

tt
p

:/
/n

eu
ro

sc
i.n

at
u

re
.c

o
m



nature neuroscience  •  volume 3  no 9  •  september 2000 925

Such a result could arise if the STDP temporal window for synap-
tic weakening has a long enough tail, or if STDP is supplement-
ed by sufficiently strong heterosynaptic long-term depression48

or competition induced by synaptic scaling7–9.
The size of the temporal windows over which synaptic

strengthening and weakening occur is critical in determining the
effects of STDP. It would seem highly advantageous for window
sizes to be different in various brain regions, to be modified dur-
ing stages of development, and perhaps to be dynamically
adjustable over shorter time scales as well. This would allow STDP
to stay compatible with relevant input correlations. STDP seems
to depend on NMDA receptors14–19, and NMDA receptor sub-
unit substitution might provide a mechanism for adjusting its
time course. For example, the developmental transition from a
predominance of NR2B to NR2A subunits leads to a faster decay
time of NMDA-receptor-mediated currents49. This might be asso-
ciated with a reduction in the width of the STDP window50. STDP
also depends on postsynaptic back-propagating action poten-
tials14,15, and modification of their waveforms might also change
the timing requirements for synaptic plasticity. Finally, the results
we report are sensitive to the ratio of the areas under the strength-
ening and weakening parts of the STDP curve (Fig. 1) and would
be more robust if this ratio were under the dynamic control of
the average postsynaptic firing rate. It will be interesting to see if
future experiments reveal evidence of developmental or activi-
ty-dependent meta-plasticity in either the amplitudes or decay
times of STDP modification curves.

METHODS
The membrane potential of the integrate-and-fire model neuron we
use is determined by

τm
dV–
dt 

= Vrest – V + gex (t)(Eex – V) + gin (t)(Ein – V)

with τm = 20 ms, Vrest = –70 mV, Eex = 0 mV, and Ein = –70 mV. In addi-
tion, when the membrane potential reaches a threshold value of –54 mV,
the neuron fires an action potential, and the membrane potential is
reset to –60 mV (parameters take from ref. 37). The synaptic conduc-
tances, gin and gex, and their related peak conductances (see below) are
measured in units of the leakage conductance of the neuron and are
thus dimensionless.

On arrival of a presynaptic action potential at excitatory synapse a,
gex(t)→gex(t) + g–a, and when an action potential arrives at an inhibitory
synapse, gin(t)→gin(t) + g–in, where g–a and g–in are the peak synaptic con-
ductances. Otherwise, both excitatory and inhibitory synaptic conduc-
tances decay exponentially,

τex
dgex–
dt

= –gex and   τin
dgin–
dt

= –gin.

We have taken τex = τin = 5 ms, g–in = 0.05, and 0 ≤ g–a ≤ g–max with 
g–max = 0.015 (except for Fig. 4, where g–max = 0.02 and Fig. 2d, where
g–max = 0.035). For a 100 MΩ input resistance, g–max = 0.015 corresponds
to a peak synaptic conductance of 150 pS.

Synaptic modification is generated in the model through N + 1 func-
tions, M(t) and Pa(t), for a = 1,2,...,N. These decay exponentially,

τ-
dM
–
dt

= –M and   τ+
dPa–
dt

= –Pa.

Every time the postsynaptic neuron fires an action potential, M(t) is
decremented by an amount A-, and every time synapse a receives an
action potential, Pa(t) is incremented by an amount A+. M(t) is used to
decrease synaptic strength. If synapse a receives a presynaptic action
potential at time t, its maximal conductance parameter is modified
according to g–a→g–a + M(t)g–max. If this makes g–a < 0, g–a is set to zero.  Pa(t)
is used to increase the strength of synapse a. If the postsynaptic neuron

fires an action potential at time t, g–a is modified according to  g–a→g–a +
Pa(t)g–max. If this makes g–a > g–max, g

–
a is set to g–max. These modifications are

made after the jump in conductance described in the previous paragraph,
but changing this order does not modify our results.

The presynaptic firing rates in Fig. 5a and 5b have the correlation
function 〈ra(t)rb(t′)〉 = r–2 + r–2(σ2δab + (1 – δab)cacb)exp(– t–t′ /τc),
where the angle brackets represent an average over the ensemble of rates, 
r– = 10 Hz, and σ = 0.5. To generate such rates, we chose intervals of time
from an exponential distribution with mean interval τc. For every inter-
val, we generated N + 1 random numbers, y and xa for a = 1,2,...,N, from
Gaussian distributions with zero mean and standard deviation one and
σa respectively, where σa

2 = σ2 – ca
2. At the start of each interval, the fir-

ing rate for synapse a was set to ra =  r–(1 + xa + cay), and it was held at
this value until the start of the next interval. The correlation function for
Fig. 5d is 〈ra(t)rb(t′)〉 = r–2 + r–2σa

2δabexp(– t–t′ /τc), and the rates were
computed using a similar procedure but with ca = 0 and a variable σa.

To ensure that our results do not depend on initial conditions, we
ran multiple trials of the simulations starting from different ran-
domly generated sets of initial synaptic weights. There were no
detectable changes. After convergence, the variability in CV and out-
put rate between trials was indistinguishable from that observed in
measurements within a trial. There is always a small degree of vari-
ability over time after a simulation has converged because statistics
are gathered over a finite time, inputs are stochastic, and individual
synapses continually change their values, although their overall dis-
tribution does not change significantly. We consider the synaptic dis-
tributions to have converged when the output firing rate stops
changing in a systematic manner. This occurs in about 100 seconds of
simulated time. Stability has been checked in some simulations for as
long as 100 hours of simulated time, and we have never seen apprecia-
ble changes in output rate or CV once convergence is reached. To be
assured of convergence, all presented data were collected only after
1000 seconds of simulated time.
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