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How random is the discharge pattern of cortical neurons? 
We examined recordings from primary visual cortex (Vl; 
Knierim and Van Essen, 1992) and extrastriate cortex (MT; 
Newsome et al., 1989a) of awake, behaving macaque mon- 
key and compared them to analytical predictions. For non- 
bursting cells firing at sustained rates up to 300 Hz, we 
evaluated two indices of firing variability: the ratio of the 
variance to the mean for the number of action potentials 
evoked by a constant stimulus, and the rate-normalized co- 
efficient of variation (C,) of the interspike interval distribu- 
tion. Firing in virtually all Vl and MT neurons was nearly 
consistent with a completely random process (e.g., C, = 1). 

We tried to model this high variability by small, indepen- 
dent, and random EPSPs converging onto a leaky integrate- 
and-fire neuron (Knight, 1972). Both this and related models 
predicted very low firing variability (C, < 1) for realistic 
EPSP depolarizations and membrane time constants. We 
also simulated a biophysically very detailed compartmental 
model of an anatomically reconstructed and physiologically 
characterized layer V cat pyramidal cell (Douglas et al., 1991) 
with passive dendrites and active soma. If  independent, ex- 
citatory synaptic input fired the model cell at the high rates 
observed in monkey, the C, and the variability in the number 
of spikes were both very low, in agreement with the inte- 
grate-and-fire models but in strong disagreement with the 
majority of our monkey data. The simulated cell only pro- 
duced highly variable firing when Hodgkin-Huxley-like cur- 
rents (I,.,, and very strong 6.) were placed on distal dendrites. 
Now the simulated neuron acted more as a millisecond-res- 
olution detector of dendritic spike coincidences than as a 
temporal integrator. We argue that neurons that act as tem- 
poral integrators over many synaptic inputs must fire very 
regularly. Only in the presence of either fast and strong den- 
dritic nonlinearities or strong synchronization among indi- 
vidual synaptic events will the degree of predicted variability 
approach that of real cortical neurons. 
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When a typical neuron is injected with sufficient current, it fires 
a regular stream of action potentials. But cortical cells in viva 
usually fire irregularly in response to a sensory stimulus. What 
are the cause and function of that irregularity? 

Because only the mean firing frequency is reproducible under 
identical stimulus conditions, while the fine time structure of 
the irregularities is not, it is widely assumed that information 
is only carried in the average spike frequency; the fine time 
structure is usually assumed to be irreproducible “noise.” Some 
electrophysiologists have focused on the idea that the dynamics 
of the neuronal response may carry significant information 
(Aertsen et al., 1989; Abeles, 1990; McClurkin et al., 199 1). We 
do not directly address that issue here. Rather, we measure the 
degree of firing irregularity in cortical cells in the behaving mon- 
key and investigate the possible neuronal sources of the high 
degree of observed variability. 

The irregularity of action potential discharge has been ana- 
lyzed using the mathematics of stochastic point processes and 
their intrinsic variability (Perkel et al., 1967; Stein, 1967a,b; 
Lansky and Smith, 1989; for a recent overview, see Tuckwell, 
1989, and references therein). The firing variability of thalamic 
and cortical spike trains has been studied experimentally (Poggio 
and Viemstein, 1964; Noda and Adey, 1970; Bums and Webb, 
1976). These and similar studies measured neuronal variabil- 
ity-usually in the form of interspike interval (HI) distribu- 
tions-and characterized that variability using various phenom- 
enological statistical distributions (e.g., hyperbolic normal, 
gamma distribution, etc.). They did not relate the firing vari- 
ability to the quantitative biophysics of the cells. 

One exception is the study by Calvin and Stevens (1968). On 
the basis of intracellular recordings of cat lumbrosacral moto- 
neurons, they constructed a simple model ofthe spike generation 
mechanism. They combined the measured properties of syn- 
aptic noise with their model to account for the observed small 
IS1 variability (with an associated coefficient of variability, C,. 
= 0.05-0.1). They concluded that in the majority of neurons 
they recorded from, synaptic noise was by itself sufficient to 
explain the observed variability, without invoking any addi- 
tional intrinsic noise sources. 

Our study uses the same starting point, measuring ISI his- 
tograms and their associated coefficients of variation in the case 
of extracellular recorded units in primary visual cortex (Vl) and 
middle temporal visual area (area VS or MT) of the awake 
behaving monkey. Unlike the lumbrosacral motoneurons, the 
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neocortical units have a very high degree of irregularity, with 
C, ranging between 0.5 and 1 .O. We attempt to understand the 
origin ofthese values by two different theoretical methods: mod- 
ified integrate-and-fire models, and simulations ofdetailed com- 
partmental models of cortical pyramidal cells. Our analysis re- 
veals a strong contradiction between the large observed interspike 
variability at high firing rates and the much smaller values pre- 
dicted by well-accepted analytical and biophysical single-cell 
models. This contradiction does not exist for high variability at 
low firing rates, which is consistent with the models of Wilbur 
and Rinzel (1983) and Bugmann (1990). 

The manuscript is organized in four parts: data, analytical 
models, compartmental models, and discussion. A brief report 
of this work has appeared previously (Softky and Koch, 1992). 

Electrophysiological Data 

We used data from two different laboratories. In both cases, 
extracellular spike trains were recorded from cells in visual cor- 
tex of awake adult macaques. Our primary interest was neither 
in the nature of the stimuli used nor in the cells’ selective re- 
sponses to these stimuli, but only in the statistical properties of 
neuronal firing. 

The first set of data (“Vl” data) came from an investigation 
ofthe influence of the nonclassical receptive field (RF) on single- 
unit activity in the primary visual cortex of two alert and be- 
having macaque monkeys (A4ucuca fascicufaris; Knierim and 
Van Essen, 1992). Data were only accepted for trials during 
which the monkey fixated or performed a fixation-related task. 
The cells were stimulated by a variety of flashed bars of various 
orientation in the center of the classical RF, and in some cases 
additionally stimulated by either parallel or perpendicular ori- 
ented bars outside the classical RF (Knierim and Van Essen, 
1992). We used 1184 single, well-isolated spike trains of 1 set 
duration recorded from 16 cells at a temporal resolution of 1 
msec. Only one of these cells showed any bursting activity (as 
defined below), and was rejected. 

The second set of data (referred to in the following simply as 
“MT” data) was recorded during an investigation into the re- 
lationship between motion discrimination and the behavior of 
single units in area MT (or V5), a region of extrastriate visual 
cortex concerned with motion processing (M. muhtta; New- 
some et al., 1989b; Britten et al., 1992). In brief, three monkeys 
were trained to report the direction of motion of a random dot 
display in which a fixed fraction of dots (the amount of “motion 
coherency”) moved coherently in one direction while the re- 
mainder moved randomly in all directions (Newsome and Pare, 
1988). The amount of motion coherency, as well as the direction 
of motion, was varied across trials. During a single trial, the 
monkeys, whose heads were restrained, had to fixate a cross. If 
fixation was broken-as monitored by a search coil-the trial 
was terminated. 

Standard electrophysiological procedures were used to iden- 
tify and record single MT units in three alert and behaving 
monkeys (Mikami et al., 1986). The two-threshold window dis- 
criminator produced pulses corresponding to single action po- 
tentials whose time of arrival was recorded with 1 msec reso- 
lution. Care was taken to record only single-unit activity. 
Altogether, the activity from 409 neurons was recorded, each 
trial usually being 2 set long. Figure 1 shows a sample spike 
train, poststimulus time histogram (PSTH), and ISI histogram 
from a typical MT recording. 

For our analysis, we used a subset of these trials. We rejected 
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Figure 1. Firing statistics of neurons in areas VI and MT. A and B, 
Sample spike trains from one of the fastest-firing nonbursting neurons 
recorded in each area. C and D, PSTHs from the same neuron. E and 
F, ISI histograms from the same neuron. These neurons are “typical” 
in that their firing times seem nearly random at all observed firing rates. 

all spike trains that contained any dominant ISIS characteristic 
of “bursting” behavior. A “bursting” neuron frequently fires a 
pair of action potentials within a short time (< l-3 msec), a 
situation characterized by a sharp peak in that range on the IS1 
histogram. More specifically, we rejected any neuron whose IS1 
histogram (see below) contained more than twice as many counts 
in the 2 msec bin as in the 5 msec bin. These criteria yielded a 
subset of 233 nonbursting neurons. 

In general, we did not find any significant difference between 
the degree of variability of V 1 or MT neurons. Therefore, except 
when otherwise explicitly noted, we will lump these two sets of 
experimental data together. 

Analysis Method 
Parameters and normalization procedure 
The spikes following the stimulus onset arrived at times It,}. 
Thus, the interspike interval (ISI) is 

At, = t,,, - t,. (1) 

We will analyze histograms of these ISIS through two of their 
parameters. One is the mean of the histogram (the average in- 
terspike time hi): 

(2) 

where S, is the number of spikes in the train. The other parame- 
ter is the standard deviation about that mean, which is 

(3) 
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Figure 2. Firing variability analyzed by multiple ISI histograms. The 
firing rate of a cell depended on both stimulus efficacy and poststimulus 
time. ISI histograms were made from such data by segregating ISIS 
according to the approximate instantaneous rate r(t), according to the 
following steps. A, r(t) (Hz) was calculated for any particular cell from 
the PSTH for all the responses of that cell to stimulation. B, The in- 
stantaneous rate R,(f) for train j was computed by multiplying r(t) by 
the ratio of the total number of spikes S, of that train to the cell’s average 
number of spikes S,,,. Here, S,,, = 83 and S, = 13 I. Each IS1 was placed 
into I of IO IS1 histograms, so that each histogram represented a roughly 
constant firing rate: histogram 0 was slowest, and histogram 9 was 
fastest. C-E, Three of the IO histograms for the VI cell of Figure I are 
shown here (spikes between 50 msec and 100 msec are not shown here, 
but were included in our analysis.) These IS1 distributions are typical 
of cortical cells described elsewhere: a virtual absence of ISIS below 2 
msec indicates the refractory period and the absence of “bursting” be- 
havior, and the distribution is very wide relative to its mean. Each 
histogram’s shape parameter C,. contributed one point in Figures 3, 9, 
and 13. 

These two values together yield a measure of the variability of 
the spike train, the dimensionless coefficient of variation, which 
describes the relative width of the IS1 histogram: 

c, = +i. (4) 

For a very regular spike train (“pacemaker”), the ISI histogram 
will have a very narrow peak and C’,. - 0. In the case of a 
random spike train (a Poisson process or shot noise), the At, are 
exponentially distributed and C,. = I. The coefficient of varia- 
tion can be larger than one in the case of a multistate neuron 
(Wilbur and Rinzel, 1983). 

This analysis could not be applied directly to our data, because 
both VI and MT neurons “adapted,” in that their firing rates 
decreased to roughly half the initial value during the first lOO- 
300 msec, despite a constant visual stimulus. Moreover, because 
more than one stimulus was used on each cell, the number of 
spikes varied significantly between trains. We found that the 
relative contributions of transient and sustained firing varied 
only slightly for different stimuli, because the poststimulus time 
histograms (PSTHs) for different stimuli all had approximately 
the same shape. 

Because such nonstationary (variable-moment) statistics are 

difficult to analyze, the goal of the analysis was to arrive at an 
approximate estimate of C,, at a near-constant output rate with- 
out artificially broadening the IS1 histograms due to the change 
in mean firing rate. That is, we attempted to eliminate the ar- 
tificial source of variance induced by adapting rates by sepa- 
rating spikes into many histograms, each representing a roughly 
constant firing rate. Our method was to compute the approxi- 
mate instantaneous firing rate R. We then used R to segregate 
spikes into 10 different histograms. The highest R (early times 
with strong stimuli) binned corresponding spikes in the “fastest” 
histogram, the lowest R (the tail end of the weaker stimuli) put 
spikes into the “slowest” histogram, and intermediate R stored 
spikes in corresponding histograms in between. The predicted 
values of R and its resulting range were calculated separately 
for each cell, as follows. 

The major simplifying assumption was that the cell’s instan- 
taneous rate at time t during any particular experimental trial j 
depended only on the total number spikes S, in that train and 
on the cell’s average instantaneous response r(t), averaged over 
all m experimental trials for that particular cell. The instanta- 
neous response r(t) was taken directly from the PSTH of the 
cell for all m stimuli, coarse-graining t to bins 20 msec wide 
(indexed by i= 0, 20, 40 msec). Thus, if S,(i) is the number of 
spikes in train j falling in bin t then 

r(t) = r(f) = & 8 s,(f). (5) 
,-I 

The true instantaneous rate R,(t) is then assumed to be the 
product of r(t) and S,, normalized by S,,,, the average number 
of spikes in a train for that cell [i.e., S,,, = (l/m) 2;:, S,]: 

R,(t) = 5 x r(t) (6) 
.i\g 

The S, term in Equation 6 represents the efficiency of the stim- 
ulus, that is, how many spikes the cell fired over the entire 
recording interval (e.g., 2 set in the case of the MT recordings) 
in response to a particular visual stimulus, while r(t) describes 
the time course of neuronal adaptation over all stimuli used for 
that particular cell. Note that only the parameter S, was used 
in the Newsome et al. (1989a) study-for which the MT data 
analyzed here were generated-for the evaluation of neuronal 
thresholds. 

Each IS1 in any spike train for a particular cell was then placed 
into 1 of IO different histograms according to its associated R, 
value. The maximum rate R,,, (defined over all stimuli con- 
ditions for that cell) was used to define 10 equally spaced rate 
intervals from 0 to R,,, Hz, that is, (O-O. 1) R,,,,, (0. I-0.2) R,,,, 
(0.9-l .O) R,,,. Each of these IS1 histograms had a temporal 
resolution of 1 msec and a total range of 100 msec (longer ISIS 
were not necessary for this analysis of high firing rates). For 
each spike train j, both At, and R,(t,) were computed from the 
original data, following Equations 1 and 6. Then, At, was as- 
signed to the time t at the center of its IS1 [i.e., t = (f, + t,, ,)/ 
2). Finally, At, contributed one count to the appropriate IS1 bin 
in the particular histogram whose rate range included R,(t). Fig- 
ure 2 illustrates this procedure for a “typical” VI cell. Here, 
R nlax = 380 Hz and S,,, = 83 spikes in I set (83 Hz). The average 
time course r(t) and R,(t) (for the fastest-firing train) are shown 
in Figure 2, A and B. Three of the associated 10 histograms, 
into which a total of 4009 IS1 values were placed, are also 
illustrated. Note that the instantaneous rate R,(t) was only used 
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to determine into which histogram any particular value of At, 
should be placed. 

Because the histograms with highest R only contained the 
earliest spikes of the few fastest trains, they typically had far 
fewer spikes than the intermediate histograms (see Fig. 2). None- 
theless, these fast histograms usually contained enough spikes 
to be statistically significant, judging by the error bars in C,, as 
calculated below. In addition, the fastest histograms had mean 
rates typically twice as fast as the cell’s average (adapted) re- 
sponse to a strong stimulus over l-2 sec. 

The parameters At, c~,, and C,. were then calculated from each 
of the 10 histograms [without using R,(t)]. Error bars were de- 
rived from the counts in individual histogram bins by treating 
those bin counts as Gaussian random variables. For example, 
if M,, counts fall in a single bin At, then we assume the uncer- 
tainty in M,, is g.,, = fl, and we propogate errors as random 
variables to get 

and 

The resulting C, values were plotted against At (Fig. 3) for all 
but the slowest two histograms for each cell (i.e, for all histo- 
grams within which the instantaneous rate varied by no more 
than 33%). C, values from histograms with less than 10 counts 
were also excluded, so that each cell contributed eight or fewer 
points to a plot of C, . This entire normalization procedure was 
repeated for each of our 249 cells. Had C, been calculated only 
from the total ISI histogram for a single cell (i.e., without using 
the multihistogram method), equally high values would have 
resulted (C, = 0.7-l. l), but such histograms would have con- 
founded high and low firing rates and would thus have been 
difficult to interpret. 

Inaccuracy ef analysis method 

The statistics of spike trains are not precisely defined for non- 
stationary processes. But we are only concerned with the ap- 
proximate variability of the spike train, so let us suppose for 
the moment that our data represent a simplified process in which 
each ISI was generated randomly, according to some distribu- 
tion with fixed C, and variable rate. Would the analysis method 
described above reveal the true (generating) value of C,,? We 
will discuss some ofthe limitations ofthis multihistogram anal- 
ysis method, and then show a simulation that suggests that our 
method is indeed suited to our purposes. 

The above method underestimated C, for low firing rates, 
because some long ISIS were excluded from their proper his- 
tograms. Some spike trains were only 500 msec long; thus, ISIS 
longer than that duration obviously could not be counted. A 
more stringent limit was the width of the IS1 histogram from 
which C, was calculated (100 bins of 1 msec each), which trun- 
cated the tails of IS1 distributions with large At and high C, 
(e.g., At 2 25 msec). In all these cases, truncating the tail of a 
broad IS1 distribution artificially narrows the histogram, and 
reduces the estimated C, below its true value. 

In other cases, this analysis overestimated C, . This artificial 
broadening of the IS1 histogram can occur, for instance, when 
the firing rate changes during the rate-averaging period i a 
smooth variation in firing rate would be misconstrued as a high 
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Figure 3. Variability of neurons in areas V 1 and MT. C, characterizes 
the normalized width ofa histogram. The scattered points were obtained 
from ISI histograms like those in Figure 2 (only points with At 5 30 
msec are shown). Squares are reliable points (u,,/C, 5 0.1); pluses are 
less reliable C, values. The main systematic bias of the analysis method 
was to underestimate C, for large ISIS (Al 2 20 msec). The slightly 
higher firing rates of the Vl neurons resulted from the choice of such 
faster neurons for analysis; no other differences are apparent between 
the two areas. 

random variability. Although this effect obviously occurs during 
the onset of spike adaptation (in the early part of the PSTH, 
when the average rate changes most quickly), it can also occur 
at the lowest rates measured for one cell, for which a single 
histogram has a higherfractional variability than at higher rates 
(e.g., a 60-90 Hz histogram contains 33% frequency variability, 
vs. 10% for a 270-300 Hz histogram). 

A further artifact occurred at high firing rates, when the width 
of a single time bin ( 1 msec) becomes comparable to the shortest 
ISIS observed (At = 2 msec). This effect is most pronounced 
when the true histogram is very narrow and steep sided, so that 
the “rounding error” (about 0.5 msec) induced by shifting each 
IS1 to a neighboring bin changes the histogram’s width signifi- 
cantly. 

In order to quantify these combined effects, we numerically 
simulated spike trains with the following characteristics: (1) each 
IS1 was generated by a gamma probability distribution with 
constant and known C,, variable mean rate, and a resolution 
of 1 msec; (2) each train was 500 msec long; (3) the mean rate 
dropped linearly to 0.33 of its starting value within 250 msec 
(modeling adaptation); (4) starting rates for different trains were 
chosen to give a range of At = 2-30 msec (comparable to the 
monkey ISIS) between the very fastest and very slowest mean 
ISIS observed. The more variable of these artificial trains looked 
just like real trains from monkey. At each c‘, , 500 simulated 
trains at different rates were analyzed together by our normal- 
ization method described above. In addition, the slowest 100 
trains were separately analyzed, to resolve better the slowest 
ISIS. 

The comparison of the C, values yielded by this analysis with 
the C,. of the random processes generating the trains (Fig. 4) 
confirms the two points outlined above: this method system- 
atically overestimates C, when both C, and At are low, and 
systematically underestimates C, when both are high. But for 
fast-firing, highly variable cells-like those observed in our anal- 
ysis-this method introduces a systematic bias that is no greater 
than a few percent. 

While our normalization method seems to account for spu- 
rious effects introduced by a variable firing rate, there remains 
the fact-not modeled by the foregoing simulation-that c’, 
itself can vary as well. In fact, this changing C, is observed in 
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Figure 4. Accuracy of the multihistogram normalization method. 
Computer-generated spike trains (having roughly the same mean firing 
rates and adaptation course as the monkey data) were randomly gen- 
erated from gamma function ISI distributions of various C, (1 .O, 0.7 1, 
0.33, 0.11) with 1 msec resolution. We analyzed these fake trains by 
the same method used for the monkey data, analyzing slow and fast 
trains separately to resolve C, at both long and short IS1 values. The 
resulting C, values (connected squares) were compared with the rate- 
independent C, value of the generating distribution (horizontal lines). 
The analysis method underestimated high C, at long IS1 values, and 
overestimated low C, at short IS1 values. But high C, values at short 
IS1 (like those observed in monkey) were not systematically biased more 
than a few percent. Thus, the drop in C, at the left of Figure 3 is real, 
but the drop at the right is an artifact of the analysis method. 

the monkey cells: lower firing rates of individual cells have a 
higher C, (see Refractory Period and Adaptation sections). 

If several processes with the same rate (and thus the same At) 
but different C, values have their ISIS binned in the same his- 
togram, the resulting histogram (e.g., a sharp peak on a broad 
base) will have the same mean z as each process separately. 
The new value of the variance about that mean is given by the 
weighted mean of the two variances of the individual histo- 
grams, so that the composite C, value will be bounded by the 
C, values of those separate processes. Because our claim in this 
article is that the C, values we observe in monkey lie outside 
a certain predicted range, the fact that those observed C, values 
may themselves only be averages of several true values still 
requires that most of the true values remain outside the range. 

As a further check that our high C, values did not result from 
peculiarities of the normalization method, we compared rate- 
normalized values with those obtained from adapted, constant- 
rate portions of MT spike trains without time-dependent nor- 
malization: the two methods gave identical C,values. We also 
found that changing the PSTH bin size from t = 20 msec to r! 
= 5 msec made no difference in the computed C,, even during 
strong adaptation. 

Variability in the interspike interval 

The approximate C, values measured and illustrated in Figure 
3 are in good agreement with reports of C, at lower firing rates 
of cortical cells (Noda and Adey, 1970; Burns and Webb, 1976): 
C” = 0.5-l. Visual inspection of the C, plots did not reveal any 
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Figure 5. Comparison of the variance in spike count for monkey and 
simulated pyramidal cells. Plots of the mean number of spikes S in a 
train for a continuous stimulus and the variance ai about that number 
indicate the firing variability over longer times; the log-log scale contains 
values from a few spikes to hundreds. Values for monkey cells are pluses, 
in agreement with those obtained for the same areas by Snowden et al. 
(1992). The diagonal line represents the prediction for a purely random 
Poisson process at constant rate (ai = S). The connectedsquares on both 
graphs are values given by the b.p. and c. simulations, and have far 
lower variability than that observed in real cells. 

systematic differences in C, between cells in MT and Vl; we 
did not pursue this question further. 

Both sets of data show an increase of C, values from the 
shortest mean ISIS measured (3 msec) up to longer ISIS (10-l 5 
msec). As discussed in the preceding section, the possible drop 
in C, at high values of the IS1 (30 msec) is most likely a mea- 
surement artifact that underestimates C, when both C, and At 
are large (Fig. 4). The drop for low values of the IS1 (high firing 
frequencies), on the other hand, is a real effect and is in agree- 
ment with standard models (see below). While most histograms 
did not have sufficient counts to justify a functional fit, C,,values 
near unity are characteristic of the exponential IS1 distributions 
of a Poisson process, the most random type of spike distribution 
possible. 

Variability in the number of spikes 

As a further test of the variability of these spike trains, we 
analyzed the number of spikes S, occurring in a train in response 
to a speczjic and constant stimulus. We plotted the variance in 
the number of action potentials per stimulus presentation (03) 
against the average number of spikes S,,, for the same non- 
bursting trains studied above. As is evident from the log-log 
plots in Figure 5, ai is scattered widely about the mean spike 
number in area Vl, and equal to or above the mean spike 
number in area MT. In the case of our large number of MT 
neurons, we found that the response variance in MT scales 
approximately as ai a S”. In the case of a pure Poisson process, 
the variance in the number of events is equal to the mean. Thus, 
their ratio should be unity, independent of firing rate. 

Analytical Models 
In this and the following sections, we will attempt to account 
for this high degree of variability using simple analytical models 
of the spiking process. 

Integrate-and-fire neuron 

A neuron is most simply modeled as a single capacitance with 
an associated membrane potential V, which can be stepwise 
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increased by pulses of constant charge, each pulse incrementing 
V by a fixed amount. When V exceeds a certain threshold volt- 
age, the model neuron produces an output spike and immedi- 
ately resets its voltage to the resting value V = 0 (for references 
to this “integrate-and-fire” model, see Tuckwell, 1989; see also 
Knight, 1972). The neuron’s “threshold” can be expressed in 
terms of the number of pulses (an integer N,, 2 1) necessary to 
bring the cell from rest to discharge. 

We further assume that these spike-like pulses arrive com- 
pletely randomly in time (Poisson distributed), with a mean rate 
of arrival R. Throughout our study, we assume that the synaptic 
input pulses are drawn from a Poisson distribution (we will 
reexamine this crucial assumption at the end of the discussion). 
This randomness assumption is consistent with superposing 
many independent but possibly non-Poisson input spike trains 
(Cinlar, 1972). This randomness is also consistent with the sto- 
chastic nature of synaptic transmission: if each synaptic site has 
a probabilityp (p < 1) oftransforming a Poisson action potential 
into an EPSC, the resulting sequence of EPSC’s will still be 
Poisson (but with a lower mean rate pR). Large numbers of 
spike trains can be superposed to produce more variability than 
a Poisson train only if the individual spikes from the various 
trains are temporally synchronized (a highly nonrandom but 
important situation, which we consider in the Network Effects 
section). 

This kind of integrating neuron gives one output pulse for 
every N,, input pulse. As a result, the ISI of the output is just 
the sum ofthe N,,, interpulse intervals between the cell’s previous 
spike and the final pulse that triggered the cell’s response. With 
Poisson-distributed pulses, the probability distribution p(At) of 
their sum-and hence the predicted shape of the output ISI 
histogram-is a gamma function of order N,, - 1 (Tuckwell, 
1989) 

p(At) a (RAt),&ih I exp(-Rat). (9) 

Integration ofthis function over At yields the mean and standard 
deviation, namely, 

m = I:- NW) dAf = & 
jzrn p(At) dAt R 

(10) 

and 

, I,+- (At - hi)*p(At) dAt N,, 
a;, = 

I,‘“p(At) dAt = F’ (11) 

which give 

1 
c, =2=x. (12) 

Thus, for this “integrate-and-fire” model of a nerve cell with 
independent synaptic input, C,. is independent of firing rate, 
since both At and gA, scale inversely with R. To apply this model 
to real cells, we suppose that an approximate threshold depo- 
larization for a pyramidal cell is 20 mV from rest to firing, and 
typical depolarizations for a single excitatory EPSP onto a py- 
ramidal cell (in rat visual cortex) are in the range of 0.05-0.5 
mV per excitatory input (reported for detectable monosynaptic 
contacts among pyramidal cells in rat cortex by Mason et al., 
1991). These admittedly crude values yield N,h 1 40 EPSPs, 
and C, 5 0.16; that is, the cell should spike rather regularly. 
The fact that Equation 12 predicts C,. < 0.5 for all threshold 
values Nth > 3 pulses (while empirically C,. > 0.5) constitutes 
the central difficulty this article sets out to explore. 
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D 

0.2 ” ! N$= 51,to = 0 
pi;= 51, tw 

0’ B 
0 10 20 30 

ZG( msec) 

Figure 6. Comparison of C,- from integrator models. Straight lines 
represent predictions of C, for a neuronal integrator that fires after 
receiving N,,, randomly timed input impulses. The curves show C, for 
such a model, modified to account for an absolute refractory period t, 
= 1 .O msec (curves computed using a different refractory period would 
have a similar shape, always crossing the At axis at to). %te that C, 5 
l/n for all models, such that C, is quite small (output spikes are 
regular) for large values of N,,,. 

Refractory period 

Real nerve cells, however, cannot fire a second action potential 
immediately after a first, since the sodium channels must de- 
activate and be repolarized before further activation. As a result, 
the cell undergoes a short “absolute refractory period,” during 
which it cannot be discharged, followed by a much longer “rel- 
ative refractory period,” during which it is difficult to discharge. 

A convenient oversimplification to this case is to modify the 
perfect integrate-and-fire model by the addition of an absolute 
refractory period t, (“dead time”) immediately after resetting, 
during which the neuron is entirely inactive and after which it 
resumes normal function. Because the same time t, is added to 
each and every IS1 At, the net effect is to shift the entire IS1 
histogram (Eq. 9) rightward by t,: 

p(At) cc [R(At - t,)]N~h+lexp[-R(At - to)], for At > t,, 

PW = 0, for At ZG t,. (13) 

This refractory period now gives the neuron a characteristic time 
scale, so we cannot expect it to have identical statistics at all 
firing rates. In particular, the value for ga, (Eq. 11) now depends 
on hi - t, rather than on hi, so that the new value of C,- does 
depend on the mean ISI: 

(14) 

The refractory period has little effect for At > t, (since in this 
case C,. = l/a), but as At + t, the output spike train becomes 
extremely regular (C, - 0), regardless of N,, (Fig. 6). In general, 
the C,. for this simple model of a refractory period is always 
less than the C,- of the standard integrate-and-fire model (Eq. 
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Figure 7. Comparison of leaky and nonleaky integrator models. &pares 
show C, for the nonleaky integrator model with absolute refractory 
penod t,, = 1.0 msec. Crooked lines show simulations of the leaky 
integrator for three different values of membrane time constant. The 
leak term has no effect on C,. for the N,h = I integrator, but raises C,. 
if N,h > 1. Only for small values of T (<At) does C, approach unity. 

12). This result is easy enough to understand: the very fastest 
the cell can fire is once every t,, when the integration period is 
much shorter than t, and contributes little variation. The sudden 
drop in C, in the fastest-firing monkey cells for very small values 
ofAf suggests that this effect-rather than N,,,-is the dominant 
influence in the regularity of those cells (see Fig. 9; we chose a 
conservative t,, = 1 .O msec for all comparisons, because a larger 
t,,, leading to an even lower value of C,, would only increase 
the gap between the predicted C,. and monkey data). 

Leaky integate-and-fire neuron 

It is well known that depolarizations do not persist forever, but 
that perturbations of membrane voltage tend to decay toward 
the resting potential (we assume V,,, = 0 for mathematical sim- 
plicity). The simplest physical model of this current “leak” is 
the inclusion of a passive membrane conductance (l/R,?,), in 
parallel with the capacitance of the perfect integrator. [This 
“leaky” or “forgetful” integrator is described in detail by Stein 
(1967a) and Knight (1972).] The “leaky integrator” has a decay 
time constant 7 = R,,,C,,,, giving a behavior between discharges 
of 

dV V -= -- dt T + pulses. 

The passive decay inherent in Equation 15 is a simplification 
of the action of active, voltage-dependent conductances in the 
membrane of the soma and proximal dendrites. However, it 
does allow us to capture the essential qualitative aspects of 
temporal decay. But despite decades of effort (Tuckwell, 1989), 
the IS1 histogram and C, for even this simple model are not 
available in closed form. Our predictions for the C,.ofthis model 

come from numerical simulation of Equation 15, using a real- 
istic value for the membrane time constant of T = 13 msec in 
the presence of random input pulses (Mason et al., 199 1). 

Qualitatively, the leak term has little effect on the C’,. at high 
firing rates (At I T), because there is not sufficient time to 
discharge the capacitance significantly through the leak before 
the threshold N,,, is reached. But at very low firing rates (At >> 
T) the output spikes are nearly random (C, = 1) because the 
neuron operates as a “coincidence detector” for occasional bursts 
of EPSPs. In this mode, the membrane potential V “forgets” 
when the last firing occurred, so that the subsequent firing time 
is virtually independent of the previous time; that is, the model 
neuron’s output nearly approximates a Poisson process. Thus, 
the neuron smoothly interpolates between a low C,- (given by 
Eq. 14) and the maximum possible C, = 1 as the output IS1 
increases. 

A plot of C,. against At for this model for various levels of 
thresholds N,,, illustrates the conflict between the predicted and 
our observed results (Fig. 7). These results show that C,. > 0.5 
only occurs for At > 10~ or N,, 5 3 (low threshold). The case 
of a small 7, such that At > 7, corresponds to the situation 
where a large membrane leak exists in the cell’s membrane. The 
conflict between theory and data is greatest for the fastest-firing 
cells (At < T = 13 msec); in that regime the leaky-integrator 
prediction is approximately given by Equation 14. A contour 
plot for C,. as a function of N,,, and 7, using a fixed output spike 
rate R = l/At = 200 Hz and absolute refractory period t, = 1 
msec, is shown in Figure 8. It is evident that in order to achieve 
high variability (i.e., C,. > 0.7) at these high rates (which are 
comparable to those in our faster cells), T has to be a fraction 
of a millisecond, or N,,, must be only 1 or 2! In fact, the model 
best fitting the monkey data is that for a neuron that performs 
no temporal integration, having N,, = 1 (Fig. 9). 

Realistic parameters and modifications 

In light of the serious discrepancy between the monkey data 
and the simple theory for random input to an integrator, we 
investigated several modifications to the theory. The modifi- 
cations, like the foregoing analysis, are only approximate. When 
possible they are given as correction coefficients to the perfect 
integrator with refractory period (Eq. 14). The resulting patch- 
work of approximations outlines the major probable influences 
of these various biophysical modifications on IS1 variability. 
We reserve the detailed equations for the appendix and outline 
here the qualitative effects. 

Variable EPSP magnitude 

Our previous model includes a crude approximation of random 
excitatory postsynaptic potentials (EPSPs) of constant ampli- 
tude and arriving randomly in time. However, the magnitude 
of EPSPs is expected to vary greatly, depending on their location 
on the dendritic tree, quanta1 fluctuations, and so on. Clearly, 
including random EPSP amplitude as an additional source of 
variability will increase the variability in the cell’s synaptic input 
and hence its firing. Recent in vitro two-electrode intracellular 
recordings in pyramidal cells in rat visual cortex have shown 
that the variation in amplitude of unitary EPSPs (from different 
synapses) is nearly equal to the average amplitude of these uni- 
tary EPSPs (0.05-0.5 mV; Mason et al., 1991). Even after in- 
corporating such variable-sized synaptic input into the perfect 
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1.0 msec 

Figure 8. Contour plot of C, for leaky integrator. Simulations of the 
leaky integrator model for discrete values of r and N,, (with refractory 
period>” = 1 .O msec) give the C, values shown when the mean output 
ISI is AI = 5 msec (corresponding to a mean firing rate of 200 Hz). The 

jagged contours result from simulating N,,, and 7 at discrete values. 
Accepted biological parameters (e.g., N,h > 10, 7 > 5 msec) predict low 
C, values (upper right region); the C, values observed in monkey would 
require either Nfh i 3 or T i 1 msec (lower left region). 

integrate-and-fire model, C,. only increases from its old value 
of- to 

c, = m (16) 

(derived in Stein, 1967a). This factor of fi is not sufficient 
to remove the discrepancy between the model and our monkey 
data. 

Finite EPSC width 

The model above assumes that EPSCs are instantaneous pulses, 
which can carry variability at arbitrarily high temporal fre- 
quencies. But even the fastest unitary synaptic currents last be- 
tween 1 and 2 msec (in the case of fast, non-NMDA, glutamergic 
synapses; Hestrin et al., 1990) blurring the total synaptic current 
and reducing its variability. Due to this smoothing effect, we 
conclude in the Appendix that C,. in a typical non-NMDA case 
would be reduced by a factor of 2 below the value predicted 
above, thus compounding the discrepancy between predicted 
and observed C, values. 

Adaptation and hyperpolarizing currents 

The simplified model above does not take hyperpolarizing cur- 
rents (such as the I,,, “spike adaptation” potassium current, 
or slow GABA,, synaptic inputs) into account. The main pre- 
dicted effect of such currents is to reduce the firing rate, by 
effectively canceling a portion of the depolarizing current. As 
the rate reduces, the mean ISI increases and allows time for 
more EPSPs to impinge on the cell before each firing. These 
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Figure 9. Comparison of macaque cortical neuron variability and leaky- 
integrator model. Scattered crosses show C, for macaque cortical neu- 
rons (C,. was pooled from Fig. 3). The lower curve shows the simulated 
leaky-integrator model with parameter values in the accepted range (N,h 
= 5 1, T = 13 msec, and t, = 1 .O msec). The middle curve shows the 
same simulation, still with to = 1.0 but 7 = 0.2 msec, a much shorter 
decay time than usually accepted for pyramical cells. The upper curve 
shows the theoretical upper bound on C, for a pure Poisson spike train 
with “dead-time” to = 1 .O msec. The observed C,. of macaque cortical 
cells lies much closer to the maximum possible than it does to the C, 
predicted by a neuron model that performs significant temporal inte- 
gration. 

extra EPSPs carry with them some added variability, so that C,. 
will increase above the predicted value as the IS1 increases. This 
effect (which is observed in the monkey cells and the compart- 
mental simulation following) is not strong enough to account 
for the discrepency between the model and the monkey data; 
in addition, it cannot change the predicted C,. for spikes during 
the early, nonadapted portion of the cell’s response. 

Compartment Models 

Even with the modifications discussed above, we had to make 
a certain number of risky simplifications. For instance, we did 
not account for the complex dynamics of cellular excitability or 
its known dendritic morphology, nor did we include a treatment 
of the effect of fast synaptic inhibition. To answer these criti- 
cisms, we studied the firing properties of a biophysically very 
detailed model of a single cortical pyramidal cell using conven- 
tional compartmental techniques. 

Biophysical modeling of a cortical pyramidal cell 

We simulated the firing properties of a layer V pyramidal cell 
(see drawing in Fig. 10) from primary visual cortex, whose de- 
tailed morphology was reconstructed following intracellular fill- 
ing with HRP during in vivo experiments in the anesthetized, 
adult cat (Douglas et al., 199 1). Its dendritic tree was described 
as a list of 186 one-dimensional cables of specified length and 
diameter, all ofwhich were assumed to be passive. The cell body 
contained seven voltage- and calcium-dependent currents; a fast, 
classical sodium current, I,, (with peak conductance per mem- 
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Table 1. Predicatability of number of spikes in simulated pyramidal 
cell 

Simulation 

“Barely plausible” 

“Conventional” 

Avg. EPSP Spikes S in 
rate a train 

47 kHz 104.6 +- 1.5 
26 kHz 66.5 f  1.5 
16 kHz 43.7 f 1.5 
8.5 kHz 23.7 f 1.3 

400 kHz 42.6 f 0.5 
232 kHz 32.1 f 0.4 
103 kHz 21.0 + 0.5 

Trains 

100 
100 
100 
248 
50 
50 
50 

The compartmental-model simulation using passive dendrites produced a very 
oredictable number of spikes for a given average EPSP rate. Shown are EPSP 
rates, the spike number S (averaged over all trains at that rate), and the number 
of trains simulated at that rate. Note that the variability in spike number is far 
smaller than the I/@ variation expected for Poisson-distributed spikes. 

brane area of 200 mS.crn-*); a slow, noninactivating sodium 
current I,,., (1 mS.cm *); an L-type calcium current, I,, (0.2 
mS.crn~~*); and four potassium currents [delayed rectifier I,, 
(120 mS.cm-2), transient IA (1 mS.cm-*), calcium-dependent 
I,,<.,, (45 mS.cmm2); and a noninactivating I, current (0.6 mS. 
cmmz)]. These currents were modeled using Hodgkin-Huxley- 
like rate constants (Bush and Douglas, 1991). This model was 
studied in detail by 0. Bemander (Bemander et al., 199 l), using 
the very efficient single neuron simulator NEURON, provided by 
Hines (1989). The somatic spiking threshold as well as the J-Z 
curve for the simulated cell matched those recorded intracel- 
lularly in viva (for more details, see Bemander et al., 1991). 

We used an effective passive specific membrane resistance of 
26,000 Q.cm2 throughout the cell. Under these conditions, the 
somatic membrane potential stabilized at -75 mV, with a spik- 
ing threshold ofabout -48 mV, a somatic passive time constant 
of 30 msec, and an input resistance of 42 MQ, corresponding 
to a good and stable intracellular recording from in vivo cat 
pyramidal cells (Douglas and Martin, 199 1). All synaptic inputs 
were modeled as transient increases in the membrane conduc- 
tance, g,,, (t) cc t exp(-t/t,,,) with g(tpeak) = g,,,, in series with 
the synaptic reversal battery E,,,. 

“Conventional” and “barely plausible” simulations 

We then ran two distinct sets of simulations to study the tem- 
poral variability of the discharge of this pyramidal cell. In one 
case (“conventional” or “c.” simulation), we used synaptic con- 
ductance amplitudes and distributions in rough agreement with 
experimental findings, while for a second set of simulations 
(“barely plausible” or “b.p.“) we pushed these parameters to 
the limits ofthe accepted ranges in order to increase the temporal 
variability. The b.p. simulation therefore reflects the outer range 
of temporal variability compatible with a passive dendritic 
membrane and independent synaptic inputs. 

Both sets of simulations included both excitatory as well as 
inhibitory synaptic input. In the “conventional” model, simu- 
lated input from a basket cell activated 30 synchronous somatic 
GABA, synaptic events (gWiL = 0.1 nS; t,,, = 5 msec; E,,, = 
- 70 mV). All 30 synapses were randomly but jointly activated 
at the average rate of 450 Hz. The maximum, saturated GABA, 
conductance at one synapse (due to several consecutive events) 
was set to 0.5 nS. These 30 basket cell synapses contributed a 
mean somatic conductance increase of 10 nS [this value is in 
the range reported by Douglas and Martin (199 l), for the total 
amount of inhibition]. 

-60 

v, nv> 

-60 

Figure IO. Somatic potential of a simulated pyramidal cell. A com- 
partmental model (with passive dendrites) of a reconstructed striate 
cortex layer V pyramidal cell (drawing) produced the somatic voltage 
traces shown upon exposure to random EPSPs and IPSPs. Left, Somatic 
voltage in the c. simulation, with t,,, = 1.5 msec, g,,, = 0.5 nS, with 
excitatory synapses distributed randomly throughout the dendritic tree. 
Right. Simulated somatic voltage in the b.p. simulation, which used 
parameters at the edge of accepted ranges to create the most variability 
possible: a fast and strong EPSP (t,,, = 0.3 msec, g,,, = 10 nS) and all 
synapses located on the apical dendrite 60 pm from the soma. Note the 
adaptation in firing frequency following onset of the “stimulus.” 

For the b.p. model, the number of these inhibitory synapses 
was kept constant, but gvat was tripled to 0.3 nS and the synaptic 
conductance saturation was eliminated (allowing consecutive 
synaptic inputs to add in time), so that the net inhibitory con- 
ductance change at the soma fluctuated around 60 nS. The rest- 
ing potential at the cell body stabilized (as before) at around 
- 72 mV. By temporarily removing all the active currents at the 
cell body, we estimated the resulting average input resistance 
and passive time constant during the inhibitory synaptic barrage 
as R, = 11 MO and T = 7 msec for the b.p. cell, and R, = 30 
MR and T = 13 msec for the c. model. Since the intracellular 
recorded values of R, and 7 for the reconstructed cell were 23 
MO and 20 msec, respectively (Bemander et al., 1991), the c. 
case study represents a realistic cortical cell simulation. As men- 
tioned above, the b.p. model will push C, toward higher values 
by decreasing the effective membrane time constant. 

Excitatory input was provided to the c. model by placing 
excitatory synapses at 20 difference locations throughout the 
basal and apical tree. The excitatory synapses were assumed to 
be voltage independent of the AMPA or non-NMDA type (Eryn 
= 0 mV; mean conductance gwak = 0.5 nS; t,,, = 1.5 msec). 
Furthermore, since individual synaptic amplitudes may vary, 
the value of gwak for each synaptic event was chosen from an 
exponential probability Z’(g) co exp(-g/g), so synaptic events 
had a high variability in amplitude, even events occurring at 
the same location. These values led to somatic EPSPs ranging 
from a mean of 0.4 mV peak potential and 4 msec rise time for 
the most proximal synapse to about 0.5 rV for the most distal 
one. These values are within the range reported in rat visual 
cortex slice pyramidal cells for unitary EPSPs evoked by stim- 
ulating a single presynaptic pyramidal cell (Mason et al., 199 l), 
and with values obtained with spike-triggered averaging of EPSPs 
in cat visual cortex (Komatsu et al., 1988). 

In order to reduce dendritic attenuation and temporal 
smoothing in the b.p. model, and thereby increase C,., all ex- 
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Figure II. Firing statistics of detailed pyramidal cell simulation. Our 
compartmental model produced the spike trains shown upon exposure 
to random EPSPs. The left column used b.p. parameters to simulate a 
more variable output; the more regular simulation at right used c. pa- 
rameters. A and B, Sample spike trains from each simulation. Cand D, 
PSTHs from the same simulations. The prominent millisecond structure 
in the PSTH (especially the first 50 msec) results from the highly regular 
simulated trains, in which early spike times are well correlated with the 
onset of stimulation. Although the simulation parameters were fairly 
conventional, the highly regular spiking they produced was not observed 
in most cortical neurons. E and F, ISI histograms from the same neuron. 
The broadness of these histograms arises from the combination of dif- 
ferent mean firing rates in one histogram, an effect eliminated in the 
multihistogram analysis of C,. 

citatory synapses were placed on the proximal apical dendrite 
only 60 clrn away from the soma. At each synapse t,,, = 0.3 
msec and gwaL = 10 nS, giving rise to a very large somatic EPSP 
(mean depolarization, 1.6 mV) within 1 msec. This simulation 
only required the simultaneous occurrence of 19 ofthese “giant” 
EPSPs on average to bring the cell from rest to the firing thresh- 
old. 

Synapse activation times were random (with a fixed proba- 
bility per unit time), with average rates chosen to yield output 
spike rates comparable to those analyzed from the monkey (40- 
200 Hz). This required total excitatory synaptic activation rates 
of 100400 kHz for the c. model and 8.5-47 kHz for the b.p. 
simulation. The integration step size used by NEURON was dt = 
0.1 msec, with random synaptic activation summed over 0.02 
msec subintervals. The simulations generated nearly 700 spike 
trains of 230 (c.) or 470 msec (b.p.) duration. In order to avoid 
any systematic biases, we analyzed these spike trains with the 
exact same normalization method outlined in the Parameters 
and NoI,malization Procedure section. Table 1 gives the values 
of the EPSP rates used as well as the number of spikes produced, 
and Figure 10 gives one example of a 200 msec excerpt of the 
somatic potential for typical c. and b.p. simulations. Figures 
1 l-l 4 show the resulting spike trains, histograms, and C,.. 

In order to test whether these low C,. results depended on the 
details of our voltage-dependent somatic currents, we intro- 
duced two modifications to the detailed kinetic schemes of the 
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Figure 12. ISI histograms of simulated spike trains. At the left are 
histograms using I .O msec bins, with data from the b.p. compartmental 
model, analyzed as described in section 2. At the right are histograms 
from the c. model (here shown as analyzed using 0. I msec bins and 20 
histograms for greater resolution). Note that both models have much 
narrower histograms than the macaque data, especially at short IS1 
values (high firing rates), reflecting the unnaturally high regularity of 
these simulated trains. 

fast sodium current responsible for the action potential in the 
b.p. simulation. One modification lowered the firing threshold 
by lowering the midpoint voltage V,,, at which the steady-state 
value of the sodium activation particle (mm) was half its max- 
imum (i.e., 0.5). When V,,, was lowered from -40 mV to -50 
mV, the firing threshold was reduced proportionately, but the 
cell’s firing variability in response to random synaptic input 
only increased slightly (as would be expected in the integrator 
model, for which a lowered value of the spike threshold gives 
rise to a lower value of N,, and hence a slightly higher C,.). 

In an alternative modification, the initial Hodgkin-Huxley- 
like currents (I,,, I,,) were kept, while all other active currents 
were blocked, so that the simulated cell’s&Z curve showed the 
steep onset of spiking typical of a Hodgkin-Huxley-like system. 
The response of this model to the same random synaptic events 
tested above only differed in an absence of adaptation; the vari- 
ability remained the same (not shown). 

Simulation results 

The very regular spike trains from these simulations led to low 
C,, values, in particular at high firing rates: for At < 5 msec (i.e., 
firing rates above 200 Hz) C,, < 0.2, rising to 0.65 (b.p.) or 0.3 
(c.) for At > 10 msec (Fig. 13). Thus, they fail to reproduce by 
a large margin our experimentally measured variability at high 
firing rates. 

One indicator of the regularity of the generated action poten- 
tial traces is that different simulated spike trains sharing a com- 
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Figure 13. Comparison of C, values from compartmental simulations 
with macaque data. Scattered p/uses are C, from areas VI and MT. All 
sets ofconnected points represent simulations with random EPSP input 
to our detailed model of a reconstructed pyramidal cell. All data shown 
were analyzed with the same method (using I .O msec bins). The upper 
sets ofsquares are from four different EPSP rates in the b.p. simulations, 
with fast EPSP duration, high g,,,, and all synapses near the soma. The 
lower sets of squares resulted from three EPSP rates in the c. model, 
with slower and smaller synapses distributed over the dendritic tree. 
The C, exhibited by this model is much lower than for the b.p. case, 
because more EPSPs (130) were needed to fire the cell, and because 
high-frequency variation in the input is attenuated by the dendritic tree 
and the slow t,,, of the synapses. Note that for ISIS less than IO msec, 
both simulations give C, values far less than those observed in monkey. 

mon average input EPSP rate (but with distinct time structures 
due to the random synaptic activation times) had virtually iden- 
tical total numbers S, of spikes. For a fixed excitatory input rate, 
S, varied by only a few percent, far less than the fi variation 
expected of a totally random point process or observed for our 
monkey data (see Table 1, Fig. 5). 

Another indicator of the extreme spiking regularity of the c. 
simulation was the presence of prominent peaks on the PSTH 
long after stimulus onset (Fig. 1 ID); the trains were so regular 
that a single spike’s occurrence could be predicted to a few 
milliseconds even I50 msec after the first spike fired! For these 
simulations of a passive-dendrite pyramidal cell, there exists a 
difference of over 1 order of magnitude between the expected 
and the measured variability. 

Comparison of compartmental and analytical model 

It has been argued that the leaky integrator is such a simplified 
model ofa real neuron-especially at high firing rates-that little 
can be learned from it. But our simulations do not support this 
view. 

While researchers usually believe that cortical neurons inte- 
grate synaptic inputs to produce output spikes, they often crit- 
icize the various models’ simplification that the number of syn- 
chronous EPSPs required to fire (NJ does not depend on firing 
rate or previous history. Such criticism is entirely justified. In 
fact, our simulation could generate values of N,, varying by more 
than a factor of 4, depending on such circumstances. For in- 
stance, the b.p. model required on average about 19 simulta- 
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Figure 14. Comparison of C, from compartmental simulations with 
integrator models. Scattered points represent the C, values of simulated 
spike trains at various average EPSP rates; curves are predictions from 
the modified perfect integrator (Eq. l7), using the appropriate values of 
Nt,,, t,a,> and initial At, and with t, = I .5 msec. C, values were calculated 
with 0. I msec bin width and 20 histograms to avoid artificially broad- 
ening the histograms. The c. model had an average EPSP rate of 400 
kHz (a) and 103 kHz (b); the b.p. model had an average EPSP rate of 
43 kHz (c) and 21 kHz (4. These models required roughly Nfh = I8 
EPSPs (b.p. model) or N,h = 130 EPSPs (c. model) to trigger the first 
spike. At high firing rates the simulations produced very regular spiking, 
because of their refractory periods, dendritic attenuation of high-fre- 
quency signals, and nonimpulse EPSPs. At lower firing rates (At > 5 
msec), those influences decreased, and the dominant effect became ad- 
aptation, as I,,, increased C, by reducing only the DC portion of the 
random EPSP input current. The reasonable fits in three of the four 
cases suggest that the modified integrator model accounts for most of 
the statistical properties of the biophysicalsimulation (but not the mon- 
key data), despite the model’s many drastic simplifications. 

neous EPSPs to fire from rest. After adaptation, a greater number 
was required. 

To what extent could a simple analytical model capture the 
firing properties of the detailed pyramidal cell simulation? We 
chose as a model the perfect integrator with refractory period, 
modified for adaptation and random-height, nonimpulse EPSPs 
(see Eqs. 14, 16, 26, 35; we multiplied all the correction terms 
without considering their impact on one another). A leak term 
was not included, since its effect could only be studied by com- 
puter simulations; furthermore, any reasonable leak term would 
be overwhelmed by the adaptation term. When combined, these 
modifications yielded the prediction 

v’ 
hs - t, x ~ 
c - t,’ (17) 

where at,, is the mean IS1 at the start (fastest part) of the spike 
train. We chose t, = 1.5 msec (the minimum value in our sim- 
ulations), and t,,, directly from the corresponding simulations. 
For the threshold N,h we used the number ofsimultaneous EPSPs 
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necessary to fire the cell from rest, although other definitions 
could have been plausibly used instead. 

Equation 17 gave a reasonable fit to three ofthe four simulated 
C, values (see Fig. 14) from the b.p. and c. models. In the poorest 
match (the fastest b.p. simulation), the variability predicted by 
Equation 17 was too high by a factor of 2; C,, values of the other 
two simulations were predicted within lo-20%. Such good fits 
are surprising, because the modified integrator model includes 
neither dendritic effects, shunting terms, nor relative refractory 
period. 

Active dendritic simulation 

The foregoing model included voltage-dependent conductances 
only at the soma, leaving the entire dendritic tree passive. In 
that case, the neuron will act as an integrator, with low firing 
variability. How could dendritic nonlinearities affect our results? 

It is known that dendrites in hippocampal and neocortical 
pyramidal cells can generate TTX-insensitive all-or-none elec- 
trical events that most likely involve calcium conductances 
(Wong et al., 1979; Jones et al., 1989; Westenbrook et al., 1990; 
Regehr and Tank, 199 1; Amitai et al., 1992; see also Huguenard 
et al., 1989). But the relatively long duration of such events (20- 
50 msec) would carry little high-frequency variability in current 
to the soma. Because there is not much detailed data available, 
we conducted an explicitly unrealistic simulation of active den- 
dritic conductances, intending only to show that they are in 
principle capable of producing high firing variability in response 
to random input. 

We reasoned that the since the soma spikes in response to 
currents from the dendrites, we must make the dendritic cur- 
rents as variable as possible. Variability in dendritic current 
relative to its mean sustained value can arise in general from 
two mechanisms: (1) fast, strong depolarizing impulses (such as 
spikes), which add both variable and sustained components to 
the dendritic current, and (2) fast repolurizing impulses, which 
remove the sustained component of current contributed by the 
spikes: fast repolarization increases the variable (AC) compo- 
nent of dendritic currents and reduces the sustained (DC) com- 
ponent. We chose strong values of I,, so that the voltage at the 
soma returned within a few milliseconds to nearly the same 
voltage it had before the dendritic spike (without this very strong 
rectifying current, the somatic depolarization persisted, decay- 
ing slowly with the cell’s passive time constant). Because the 
cell carried little lasting memory of a spiking event, the cell did 
not integrate dendritic spikes, but only fired upon the coinci- 
dence of several of them. 

We therefore simulated active Hodgkin-Huxley-like conduc- 
tances in the basal terminal branches, between their tip and 
most distal branching. We matched the mean sodium conduc- 
tance to its somatic value (gNa = 200 mS.cmm2), and used a fast 
potassium conductance twice that value (or 3.5 times the so- 
matic g,,) to accomplish the repolarization outlined above. 
Even with these very strong conductances, most neighboring 
dendritic terminal branches were decoupled, so that a spike in 
one would not necessarily fire its neighbor. In addition, most 
voltage-dependent conductances in the soma were removed, 
along with the basket cell inhibition and all apical input sim- 
ulated earlier. As a result this “bare” neuron contained only 
Hodgkin-Huxley-like mechanisms and a passive membrane with 
time constant of about 30 msec. Each basal dendritic compart- 
ment was subdivided into 20 subcompartments (1600 subcom- 
partments total) to ensure that the high-frequency dendritic fluc- 
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Figure 15. Highly variable spiking caused by simulated strong den- 
dritic nonlinearities. Our layer V pyramidal cell described above was 
endowed with only Hodgkin-Huxley-like conductances at the soma and 
on the most distal branches of the basal dendrites; no other active 
currents or synaptic inhibition were included. Dendritic spikes (thin line 
in inset) were triggered in each of the 42 active basal branches at a 
random time more than 2 msec after its previous firing, and independent 
of the other branches’ triggerings. A, The most variable somatic firing 
occurred for dendritic potassium conductances g,,, twice the strength 
of the sodium conductance, because the strong repolarization cut short 
the somatic depolarization (thick line in inset), thereby preventing tem- 
poral integration. B, Less variable firing occurred when the dendritic 
g,, was reduced to I/;,, of its above value, thereby allowing spikes’ de- 
polarization to accumulate in the cell body over time and permitting 
temporal integration of dendritic spikes. C, The control case: highly 
regular spiking occurred in dendrites with no active conductances, as 
many triggering pulses were integrated to fire the cell. D, C, values for 
the three aforementioned simulations: strong I,,, (top curve), weak I,, 
(middle curve), and passive dendrites (bottom curve). Each square rep- 
resents the C, calculated from 20 simulated trains at a constant firing 
rate. Only the case with strong dendritic g,,, yielded high output firing 
variability consistent with the monkey data. 

tuations were integrated faithfully. Apical dendrites were left 
passive and unstimulated because they consumed large com- 
putational resources while contributing little voltage to the soma. 

Each of the 42 active dendritic terminal branches was stim- 
ulated with single triggering pulses, each pulse instantly resetting 
the local membrane voltage to -40 mV and initiating a den- 
dritic spike. Each dendritic spike caused a peak somatic depo- 
larization between 2 and 9 mV. Each terminal branch was stim- 
ulated independently of the others, but the input to a single 
terminal branch was not random: we allowed for an absolute 
refractory period of 2 msec after each spike’s firing before choos- 
ing a random time at which to fire it again. This requirement 
increased the regularity of the dendritic input and limited the 
speed at which the dendritic spikes could fire, hence keeping 
the soma’s output spike rate lower than we desired. 

As a result of this bombardment by dendritic spikes (up to 
22 dendritic spikes/msec), the somatic voltage fluctuated strong- 
ly about a roughly constant -65 mV (Fig. l&4). As desired, 
there was a large variability in the somatic voltage without 
significant sustained depolarization. Each of the three dendritic 
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spike rates used produced a constant average output spike rate, area MT (W. Bair, C. Koch, W. Newsome, and K. Britten, 
so that we could analyze with a single histogram the C, values unpublished observations). The absence of a broad central peak 
of each of the 20 trains simulated at that rate (Fig. 15B). C, around the origin-associated with a process whose mean rate 
values were 0.6-0.8, significantly above those for the passive- varied slowly over time (see Fig. 7 in Perkel et al., 1967)- 
dendrite models, and in the same region as the monkey data; suggested that adjacent fast ISIS were uncorrelated, so that a 
the variance in spike number u:. reached nearly Poisson values fluctuating mean rate did not contribute to the high firing vari- 
(0.7 S). ability we observed. 

In order to isolate the relative contributions to firing vari- But in some MT cells a broad autocorrelogram peak (50-200 
ability of the dendritic sodium currents, the potassium currents, msec) did exist in the absence of any structure in the PSTH; we 
and the triggering pulses, we performed the same simulation for interpret this to mean that the firing rate fluctuated randomly. 
two related scenarios. In one scenario, we reduced I,, currents To estimate the fast-time-scale variability in that situation, we 
by a factor of 10 from their values above, leaving enough delayed computed C, from many tiny histograms of only ten adjacent 
rectification to reset the local sodium channels but not enough ISI’s each. Those C, values were widely scattered about a mean 
to repolarize the soma significantly after a dendritic spike. This 10%20% below the C,computed by the multi-histogram meth- 
simulation naturally required less frequent dendritic spiking to od (see Parameters and Normalization Procedure section), sug- 
fire the soma; when its output rate was adjusted to match that gesting that those neurons fire quite irregularly at fast as well as 
of the strong-l,, case above, it produced C, values about half slow time-scales. 
as large (0.2-0.4) suggesting that fast active rectifying currents 
in the dendrites can be an indispensable contribution to output The variability of cortical cell firing 

variability (Fig. 1 SC). We measured the degree of variability of the neuronal spike 
A small portion of the soma’s depolarization arrived not discharge in a large number of nonbursting striate and extrastri- 

through active conductances, but merely from the triggering ate cortical cells in two different but related manners. One study 
pulses that reset terminal branch voltages randomly to -40 mV. was ofthe variability in the intervals between consecutive action 
We verified that the triggering pulses by themselves contributed 
virtually no variability to the output by eliminating a// active 
dendritic currents, while keeping the triggering pulses; the cell’s 
response at the same output rates above was extrememly regular 
(C,. = 0.02-0.07; Fig. 15D). 

Discussion 

We will now briefly review the assumptions underlying our spike 
train analysis, discuss the experiment data, and then list possible 
objections to our compartmental modeling efforts. We will finish 
by describing some of the implications of our analysis. 

potentials. Its principal result is shown in Figure 3: for firing 
rates up to several hundred Hertz, the value of C,, is close to 1 
(characteristic of a random Poisson process) for both Vl and 
MT cells. 

We also measured the variability in the number of action 
potentials in a single train for both sets of data (Fig. 5). Our 
finding that the variance of cell firing increases roughly linearly 
with the mean response rate is well known for cells in cat and 
monkey primary visual cortex (Heggelund and Albus, 1978; 
Tolhurst et al., 1983; Parker and Hawken, 1985; Vogels et al., 
1989; Zohary et al., 1990) and has recently also been established 

Statistical assumption underlying our data analysis 
for cells in area MT of the alert macaque monkey (Snowden et 
al., 1992). Our results here are compatible with the known lit- 

There exists a very rich literature concerned with the statistical erature, and are also approximately consistent with a description 
analysis of spike trains using the theory of stochastic point pro- of spiking as a Poisson process (see above). 
cesses (Perkel et al., 1967; Tuckwell, 1989). Almost invariably, 
it is assumed that the spike-generating process is a stationary Analytical results 

one, so that the underlying probability distribution ofthese point In an attempt to understand the origin of the observed vari- 
events does not change with time, or depend on a “starting” ability in the neuronal discharge, we analyze the variability of 
time (Bums and Webb, 1976; Correia and Landolt, 1977; Teich the impulse activity of different integrate-and-fire models. Our 
et al., 1977; Lansky and Radil, 1987). However, the spike trains primary assumption is that these models-as well as the passive 
used in our study all occur following stimulation, and their compartmental models-spatially and temporally integrate syn- 
response is nonstationary. The most prominent such nonsta- aptic input from a large number of independent processes. Our 
tionarity is the decrease in firing rate with time (Fig. lC,D), results can be qualitatively explained by the Central Limit The- 
reflecting both adaption processes intrinsic to the cell as well as orem, which states that as the number n of incoming indepen- 
network effects. dent random variables X, goes to infinity, the random variable 

Since we were not concerned with the detailed fitting of an- defined by the mean over x,, that is, K = (l/n) Z;=, x,, has an 
alytical distribution functions to the IS1 histograms of these asymptotically normal (i.e., Gaussian) distribution, with mean 
spike trains, we tried to account for the nonstationarity inherent identical to the mean of the population X, and with SD scaling 
in the data by using the simple normalization process described as l/ii of the population’s SD. In other words, if a neuron can 
in the Parameters and Normalization Procedure section. That only be brought to fire action potentials by summing over dozens 
method calculated an approximate instantaneous firing rate from or more of independent synaptic inputs, it should fire very reg- 
the PSTH and the stimulus efficacy, and used that rate to create ularly! 
several separate, near-stationary histograms for C, analysis. This intuition is born out by an analysis of the C,, of different 

We also concluded that most of the firing variability arises at integrator models, which are summarized in the contour plot 
a fast time scale, that is, milliseconds, rather than at the slower (Fig. 8). The high C, value we observe experimentally can only 
time scale of varying average rates, that is, tens of milliseconds. be obtained by either assuming that N,h is very small, that is, 
In a different study, we had computed the autocorrelation func- that one to two inputs are sufficient to trigger the cell (Fig. 7) 
tions associated with the single-cell data derived from macaque or that the time constant r is a fraction of a millisecond, thereby 
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preventing any effective temporal integration from occurring. 
Further modifications to the leaky-integrator model (see Ap- 
pendix), such as hyperpolarizing (adapting) currents and the 
finite width and variable amplitude of EPSPs, do not change in 
any significant manner our fundamental conclusion that inte- 
grator models produce very regular output trains at high firing 
rates. 

Biophysical detailed simulations 

It can be argued that simple integrator models do not provide 
a realistic description of cortical pyramidal cells. In order to 
satisfy ourselves that a passive-dendrite neuron that integrates 
many independent EPSPs is inconsistent with the measured high 
variability, we numerically simulated the dynamical properties 
of an HRP-injected and reconstructed neocortical, layer V, py- 
ramidal cell. While the morphology and electrophysiology of 
this cell were derived from cat visual cortex, its properties are 
not likely to differ fundamentally from those in monkey visual 
cortex, the source of our variability data. We acknowledge that 
some of our monkey cells-especially the fastest-firing ones- 
may have been rapidly firing intemeurons rather than pyramidal 
cells (Agmon and Connors, 1992). But we chose a pyramidal 
(rather than intemeuron) cell model because pyramidal cells are 
far more common and larger, and hence probabiy represent the 
majority of the monkey cells recorded. 

Conceptually, we would like to distinguish these simulations 
according to whether the cell acts as an integrator or whether it 
acts as a high-fidelity temporal coincidence detector. Accord- 
ingly, for the majority of our simulations, we assumed that the 
dendritic tree contained no voltage-dependent membrane con- 
ductances (integrator mode), while in a second, more explorato- 
ry set of simulations we endowed the distal part of the basal 
dendritic tree with strong nonlinearities (coincidence mode). 

Passive dendrites: integrator mode 

If the simulated pyramidal cell was bombarded by massive 
amounts of fast, excitatory synaptic conductance inputs of the 
non-NMDA type, such that it fired at the high firing rates ob- 
served in our monkey data, then its output firing-even in the 
b.p. simulation-was much more regular than the monkey cells’ 
firing. Both the experimental and the modeling data are com- 
pared by the variability in the number of action potentials per 
trial, and by the rate-normalized C,.. Thus, in spite of the com- 
plex dynamics of the seven voltage- and time-dependent cur- 
rents at the soma, the simulated cell essentially still acted like 
an integrator, and its low variability was predicted by a modified 
integrator model (Eq. 17; Fig. 14). 

Similar to the integrate-and-fire model discussed above, high 
C, values could only be obtained if single EPSPs were very large 
(greater than 10 mV, thereby reducing N,, to 1 or 2) or if the 
passive time constant was in the submillisecond range. But these 
ranges are excluded by intracellular recordings. Evidence from 
neocortical and hippocampal slice recordings report a range of 
unitary EPSPs between 0.05 mV and 3 mV, with the majority 
of averaged EPSPs less than 0.5 mV (McNaughton et al., 198 1; 
Thompson et al., 1988; Sayer et al., 1990; Mason et al., 199 1). 
Those measurements do include the multiple boutons that single 
axons often make on individual cells. Occasionally, much larger 
EPSPs have been observed (C. Stevens, personal communica- 
tion). And recordings from the cell body of coritcal pyramidal 
cells yield values of 7 on the order of IO-20 msec in the intact 
animal (Creutzfeldt et al., 1974; Douglas et al., 199 l), and much 

larger values in slice neurons using the patch-clamp technique 
(Spruston and Johnson, 199 1). We did not simulate any voltage- 
dependent (NMDA) synaptic input, since the long decay times 
(20-50 msec; Hestrin et al., 1990) of the NMDA-associated 
conductance would dramatically reduce variability in synaptic 
currents. Modification of other cellular parameters, such as low- 
ering the threshold for initiation of action potentials or blocking 
all but the fast sodium and the delayed-rectifier potassium cur- 
rent, had very little effect on the Cv values. 

While an inherently random firing mechanism can account 
for the high variability we observe in monkey cells, some re- 
search (in other neuron types) has suggested that the spike-firing 
mechanism is inherently very reliable. Calvin and Stevens (1968) 
concluded that cat spinal motoneurons derive at least 90% of 
their already small firing-time variability from variability in 
synaptic currents. Bryant and Segundo (1976) found that various 
neurons in Aplysia gave virtually identical response patterns to 
repeated injections ofwhite-noise current. This reliability occurs 
because the types of statistical fluctuation expected from spike- 
generating mechanisms-for instance, random channel open- 
ings-have small quanta1 size, so their collective effects are 
reasonably constant over a reasonably large membrane area 
(Strassberg and DeFelice, in press). In general, only the largest 
quanta1 effects-such as EPSP arrivals-will contribute signif- 
icantly to firing variability. 

Active dendrites: coincidence mode 

We also simulated active dendritic conductances whose random 
triggering maximized the cell’s firing variability. We found it 
very difficult to “construct” a pyramidal cell that fires as irreg- 
ularly as the monkey cells. For such events to cause highly 
variably somatic firing, the dendritic spikes must be large, fast, 
and strongly repolarizing. Only under these conditions do we 
see high variability for spikes before adaptation sets in. Yet we 
do not claim that such dendritic nonlinearities exist, but only 
that they can, in principle, explain the observed variability. 

The most important characteristic of this simulation, and the 
reason why it produced such high variability of output firing, 
was that it did not perform temporal integration of dendritic 
spikes, but only coincidence detection among them. This prop- 
erty became evident in the cell’s strikingly strong response to 
slightly synchronized inputs: when dendritic spikes were reor- 
ganized to fire in simultaneous pairs (rather than singly) at the 
same average rate as before, the cell’s output firing rate increased 
by over 50%. Such coincidence detection is analogous to the 
“logic operations” postulated to take place among dendritic 
spines (Shepherd et al., 1989) and has been discussed for leaky- 
integrator models operating at much slower rates (Bugmann, 
199 1). But in such a scheme, the individual output spikes would 
represent the fundamental elements of logical computations at 
the millisecond scale, rather than mere “noise” in an average 
firing rate that is averaged out over tens to hundreds of milli- 
seconds. 

Network effects 

Of the many parameters we need to reevaluate in light of this 
discrepency, perhaps the most intriguing is the possibility that 
the individual synaptic events impinging onto a cortical neuron 
are not independent after all. In that case, the Central Limit 
Theorem would not apply any more. In particular, what if the 
EPSPs arriving from different neurons were synchronized? What 



348 Softky and Koch - Irregular Cortical Firing 

degree of synchrony could account for the firing variability of 
our cells, and where might it come from? 

Weakly synchronized EPSPs would not be sufficient. In all of 
the foregoing models (except the 7 < 1 msec case), the neuron’s 
output variability directly reflects the variability of its synaptic 
input current. Therefore, if many small EPSPs are to account 
for the observed high output variability, they must be strongly 
synchronized, so that the resulting current is just as variable as 
a current composed of individual lo-15 mV events (i.e., the 
effective N,, 5 2). Any significant number of non-synchronized 
EPSCs would create a nearly DC “background” current, which 
would reduce the variability of the net input current and hence 
of the output firing. Such synchrony might result from network 
effects such as burst synchronization (Bush and Douglas, 199 1; 
Koch and Schuster, 1992). 

For synchronized firing to explain the C, results presented 
here, a majority of the EPSPs must be coincident at the milli- 
second scale. Highly synchronized EPSPs were first proposed 
as the “reverberation” in a “cell assembly” by Hebb (1949) 
and later as “synfire chains” by Abeles (1990). As evidence, 
Abeles cites millisecond precision in repeated interspike inter- 
vals observed in various locations of monkey cortex in his lab- 
oratory (Abeles, 1982). Similarly precise ISIS are reported by 
Strehler and Lestienne (1986) for monkey visual cortex, Frostig 
et al. (1985) for cat medial frontal cortex, and Legendy and 
Salcman (1985) for cat striate cortex. But highly synchronized 
inputs would raise serious questions about the “stochastic” na- 
ture of neurons (Knight, 1972; Sejnowski, 1981; Hinton and 
Sejnowski, 1986) and the resulting justification for population 
coding and massive redundancy. 

Conclusion 

According to our current understanding of pyramidal cells, only 
a few situations could cause near-random, fast firing in these 
cells: a very strong inhibitory leak (leading to an effective mem- 
brane time constant r 5 0.2 msec); extremely strong synaptic 
events (> 10 mV depolarization per EPSP); strong and fast non- 
linear dendritic all-or-none events, with fast repolarization; or 
highly synchronized, nonrandom synaptic input. In short, either 
the cell must have extremely large, fast depolarizations, or it 
must have a very fast mechanism for repolarizing the membrane 
during“integration.” In both these cases, the high IS1 variability 
results directly from an equally high variability in the currents 
arriving at the soma. Neither case corresponds to temporal in- 
tegration over a large number of small, independent, excitatory 
synaptic events. 

The traditional view ofcortical firing variability has been that 
information is only carried in the average spike rate (frequency 
code); scatter about that rate represents random “noise,” whose 
particular structure is of no use. According to this view, a neuron 
that fires very randomly carries uncertain information, because 
of the inevitable scatter in the number of counts accumulated 
during integration-only a few distinct counting rates can be 
distinguished in a short integration time. Thus, a highly irregular 
neuron is the “worst possible” at carrying information in its 
average rate. Stein (1967b) found that such a frequency-coding 
neuron has a channel capacity decreasing roughly as log( l/C,) 
for large integration times. While such frequency coding is very 
inefficient, it is robust to perturbation of individual spike times, 
and it does not require complicated postsynaptic neurons to 
“decode” its message. Furthermore, high variability may have 
useful properties. It can help a neuron to “explore” its nearby 

synaptic vector space during unsupervised learning (Mazzoni et 
al., 1991). And it may enable neurons to implement multipli- 
cative (quadratic) computations (Srinivasan and Bernard, 1976; 
Suarez and Koch, 1989; Koch and Poggio, 1992). 

The alternative view is that each spike’s arrival time signifies 
an independent message of some sort (an asynchronous binary 
pulse code). If each message (spike) has the same probability of 
arrival, independent of the other messages, then the resulting 
spike train is Poisson (by definition), and the spike train carries 
the maximum amount of Shannon information possible for its 
fixed bandwidth and firing rate (Stein, 1967b; the less predictible 
a spike is, the more information it carries). Thus, a highly ir- 
regular neuron would be the “best possible” for carrying infor- 
mation in its individual spike times, although the nature of the 
information encoded and the ability of subsequent neurons to 
use it may be unclear. Further experimental and computational 
studies are required to determine whether cortical computations 
occur at the millisecond level. 

Appendix: Modifications to the Perfect Integrator 
Model 
EPSC width 
The integrate-and-fire neuron model assumes that EPSPs result 
from instantaneous current impulses, which carry equal Fourier 
components at all frequencies and hence produce a frequency- 
independent input to the neuron. But in fact an actual EPSC is 
not a delta function, but arises from a conductance approxi- 
mately of the form 

g,(t) a 2 ev(-%A. (18) 

As long as the membrane potential is well below the synapse’s 
reversal potential, we can approximate the synaptic current by 

I,(t) a t exp( - tl&). (19) 

The nonzero width of these EPSCs blurs a pulse train’s high- 
frequency information. We want to find the amount of that 
blurring in synaptic current at some test frequencyA the blurring 
is given by the decrease in Fourier amplitude of the blurred 
current train atfrelative to the unblurred spike-like train. 

A train of realistic current impulses is given by convolving 
the individual synaptic current I(t) with the random “comb 
function” Z,6(t - t,) of the spike-like inputs, 

I(l) = 21) 6(f - &)*I#). (20) 

The Fourier amplitude of I(t) at frequencyfis just the product 
of the separate Fourier amplitudes 7,(1,(t)) and ZFJa(t - t,)) (by 
the Fourier convolution theorem). The random comb contri- 
bution to C,. has already been determined (Eq. 12) so we only 
need to examine synaptic current smoothing by the single-event 
term F((l,(t)). That attenuation Acf) of a single EPSC relative 
to a delta function is the EPSC’s Fourier amplitude at f; nor- 
malized by its area (found by usingf = 0); 

(23) 
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At what frequency f do we wish to evaluate this attenuation? 
Suppose that some spikes occur with mean interval hs and some 
scatter 6 about that mean, so that sequential intervals are 

{At,} = (At + t), (At - t), (At + t), (At - t), . . . . (24) 

This simplified example, with variability present only at a single 
frequency, has periodicity 2hi, so that 

f = 1/2hs (25) 

(this is identical to the result from the Nyquist Sampling The- 
orem). Using this estimate 0f.f; we conclude that 

4.f) = ll[(?rt,,,/hi)* + 11, (26) 
A(f) = 0.5, (27) 

for At = 4 msec and t,,, = 1.5 msec. A(f) represents the atten- 
uation of current variability at f  reaching an integrate-and-fire 
neuron, due to synaptic blurring. If we suppose that this atten- 
uation of current roughly corresponds to the attenuation of C,. 
(see Eq. 28) then A(f) (Eq. 26) should be multiplied by the 
perfect-integrator prediction (Eq. 12). This blurring makes it 
more difficult to reconcile the observed variability with theory, 
even at low N,,,: how can a neuron produce output varations 
whose frequency is higher than that contained in a single EPSP? 

Adaptation 

The spike rate in the monkey cells decreases by about half in 
the first 100-300 msec of a train. Some of this decrease is likely 
due to a decrease in synaptic input to the cell, but a major 
contribution to this slowdown is probably due to the “spike 
adaptation” potassium currents. How will these outward cur- 
rents affect the predicted C,. values if the synaptic input remains 
unchanged? 

Because I,,,,, (considered as a single current) has a reversal 
potential much lower than the resting potential, it can be mod- 
eled (to first order) as a outward sustained current, which partly 
cancels the inward sustained portion of the EPSC while leaving 
its fluctuations unchanged. As a result, the mean IS1 will increase 
during this adaptation. We wish to approximate the influence 
of this increased IS1 on the perfect integrator with absolute 
refractory period (Refractory Period section). 

Let us assume a low variability in the perfect-integrator model 
(C, -=z I), so that the proportional variation in time C,. = u>,/ 
At to reach a fixed threshold of N,,, is roughly the same as the 
proportional variation in the relative synaptic depolarization 
d V/V,, arriving in the mean time interval At: 

(28) 

C I AHI, = ~v,,,J v,,,,,. (29) 

As the outward current increases, firing frequency decreases, 
and the mean IS1 during adaptation AtAH,, will increase above 
the IS1 at the start of the train At,,, 

At A,,P > 4,. (30) 

But by assumption the depolarization necessary to reach firing 
threshold will remain constant: 

V AHP = v,, = V,h. (31) 

How much variation in depolarization (6 VAHP) will accumulate 
during that longer ISI? The rate of random EPSCs is assumed 

to be unchanged by the addition of outward adaptation current. 
So it is clear that the expected number of EPSCs arriving in 
AL,,, will increase, in proportion to At,,,. But the variation 
about that mean will not increase linearly with interval duration, 
but rather as its square root, as occurs in accumulating any large 
number of independent events in a single time period: 

The above formula applies only during the integration period, 
and is thus only valid for the perfect integrator without refrac- 
tory period. Recognizing that the observed IS1 contains the 
refractory period t, means that the true integration time is 
hi - t,, 

~v,,,P = sv,, =A”, - f, 
a - ~0 (33) 

Combining Equations 29, 3 I, and 33 gives us an expression for 
C,. as a function of IS1 for an adapting spike train: 

(34) 

(35) 

This rough result indicates that during spike adaptation, C,. will 
rise with the square root of At, much faster than the leaky- 
integrator model suggests. Such a sharp increase in variability 
is indeed observed both in simulations (Figs. 10-14) and in the 
monkey data. But the magnitude of the rise in C,. in simulations 
is not sufficient to account for the larger discrepency between 
theoretical and observed C, , nor can it account for the high C, 
observed for early spikes, before the onset of adaptation. 
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