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The goal of these notes is to introduce the reader to methods for char-
acterizing and analyzing rare events, and for the construction and analysis
of related Monte Carlo numerical approximations. The approach to both
topics is based on weak convergence theory and relative entropy representa-
tions for exponential integrals. Some of the ideas and methods presented in
these notes �rst appeared in A Weak Convergence Approach to the Theory of
Large Deviations with Richard Ellis, which in particular has a very detailed
discussion of many of the nice properties of relative entropy we will use.
Many new topics, including in�nite dimensional problems and the analysis
of Monte Carlo, will appear in a forthcoming book with Amarjit Budhiraja
with the same title as these notes: Representations and Weak Convergence
Methods for the Analysis and Numerical Approximation of Rare Events.

These notes were prepared as part of a short course given at Diparti-
mento di Matematica, Università degli Studi di Padova, from 20-31 May,
2013. The author would like to thank the department, and in particular
Markus Fischer, for their warm hospitality.
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Lecture 1: Introduction and Examples

1 The setting and statement of a large deviation
principle

Let S denote a Polish space with Borel �-algebra B(S). Typical examples of
S in these notes will be Rd (Euclidean d-dimensional space), C

�
[0; T ] : �S

�
(the set of continuous functions mapping [0; T ] to �S) and P( �S) (the set of
probability measures on

�
�S;B( �S)

�
), where �S is itself a Polish space.

Let fXn; n 2 Ng be S-valued random variables on (
;F ; P ), with distri-
butions

�n(B) = P fXn 2 Bg ; B 2 B(S):

De�nition 1 A function I : S ! [0;1] is called a rate function if fx 2 S :
I(x) �Mg is compact for all M 2 [0;1).

De�nition 2 The sequence of random variables fXn; n 2 Ng (or equival-
ently the sequence of distributions f�n; n 2 Ng) is said to satisfy the large
deviation principle (LDP) with rate I, if I is a rate function, and if

1. for all open sets O 2 B(S)

lim inf
n!1

1

n
logP fXn 2 Og � � inf

x2O
I(x);

2. for all closed sets F 2 B(S)

lim sup
n!1

1

n
logP fXn 2 Fg � � inf

x2F
I(x):

In a very rough sense, one can think of this as saying

P fXn 2 B�(x)g � e�nI(x);

where � > 0 is small and B�(x) = fy : d(y; x) < �g, with d the metric on S.
For C 2 B(S) let I(C) = infx2C I(x). If I(C�) = I( �C) = I(C), then C is
called an I-continuity set and we have

lim
n!1

1

n
logP fXn 2 Cg = I(C):

Variational problems arise naturally in large deviation problems because
of the following elementary consequence of exponential scaling.
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Lemma 1 Let sequences fang ; fbng � [0;1] be given such that

� 1
n
log an ! u 2 [0;1]

� 1
n
log bn ! v 2 [0;1]:

Then
� 1
n
log (an + bn)! min fu; vg :

Thus if an and bn are probabilities scaling like an � e�nu and bn � e�nv,
then the decay rate of an + bn is given by the smaller of u and v.

Remark 1 The scaling parameter n 2 N is sometimes replaced by " > 0,
with n corresponding to 1=".

2 Examples

The following examples illustrate various applications. Proofs of the LDP
for some (but not all) of these models will be given. Some will also be used
in the discussion of Monte Carlo methods.

Example 1 (Multi-dimensional random walk, insurance risk) Let Zi
be independent and identically distributed (iid) with distribution � 2 P(Rd).
For x 2 Rd and n 2 N de�ne

Xn
i+1 = Xn

i +
1

n
Zi; Xn

0 = x;

and the piecewise linear interpolation

Xn(t) = Xn
i +

�
Xn
i+1 �Xn

i

�
(nt� i) ; t 2

�
i

n
;
i+ 1

n

�
:

Assume that EZi < 0 component-wise and for M 2 (0;1)d let

�n = inf ft � 0 : Xn(t)j �Mj for some j = 1; : : : ; dg :

The problem of estimating P f�n <1g arises in insurance risk, with the
correlation between di¤erent components of Zi modeling correlation between
di¤erent sectors or �rms.1

Assume the log-moment generating function satis�es

H(�)
:
= logEeh�;Zii <1 for all � 2 Rd:

1 In fact, the origins of large deviation theory can be traced to applications in insurance
though H. Cramér.
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Figure 1: Two dimensional escape set, unscaled random walk

Let L(�) be the Legendre transform of H:

L(�)
:
= sup

�2Rd
[h�; �i �H(�)] ; � 2 Rd:

Then for each T <1, fXn; n 2 Ng satis�es the LDP on C
�
[0; T ] : Rd

�
with

rate function

IT (�) =

� R T
0 L( _�(t))dt if � is absolutely continuous and �(0) = x,

1 otherwise.

Thus for a given �, the rough interpretation gives an estimate for the prob-
ability that Xn �tracks�� in the form

P

(
sup
0�t�T

jXn(t)� �(t)j � �

)
� e�nIT (�):

Although it does not follow directly from the LDP, one can use the
large deviation estimates on [0; T ] (or argue directly using weak convergence
methods) that

� 1
n
logP f�n <1g (1)

! inf fIT (�) : �(T )j �Mj for some j = 1; : : : ; d, T <1g :

The idea behind the reduction to �nite time estimates is straightforward.
One �rst shows using the upper bound alone that if the event is to occur at
all, then it must happen with overwhelming probability before some �xed
�nite time T (see, e.g., [34, Lemma 2.2, Chapter 5]). Speci�cally, one shows
that given any K <1 there is T <1 such that

lim sup
n!1

� 1
n
logP f�n 2 [T;1)g � K:

It follows that P f�n <1g and P f�n 2 [0; T ]g have the same decay for suf-
�ciently large but �nite T , and an application of the LDP to P f�n 2 [0; T ]g
gives (1).
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Remark 2 While the large deviation approximation in this and other ex-
amples is guaranteed to give the correct rate of decay, depending on the
particular application, the estimate itself may not be as accurate as one
needs. The rate of decay is often well suited to qualitative issues (e.g., con-
trol and design). If a more accurate approximation to P f�n <1g is desired
then the large deviation information is very useful in the design of Monte
Carlo schemes. This application is the subject of Lectures 8�10.

Figure 2: Dynamics of tracking loop with no noise

Example 2 (Metastability for di¤usion processes, a PLL type ex-
ample). Various algorithms in adaptive control, suboptimal �ltering, and
elsewhere are designed to reject noise and keep a parameter near a desired
operating point [44, 42, 19]. Large deviation theory gives natural measures
of the performance of these algorithms. An example is the following di¤usion
model of a phase-locked loop:

dX"
1 = �a�X"

1dt+ b
�
sin�X"

2dt+
p
"dW

�
dX"

2 = ��X"
1dt

with �X"
2 a measure of the �tracking error.�Here a and b are parameters

to be selected for the loop design, and higher order loops have a larger
dimension and more parameters to select. The �noiseless�system (" = 0) is
illustrated in Figure 2. The di¤usion model arises from a device driven by
wide bandwidth noise and high carrier frequency !
 as indicated in Figure
3, after the noise is approximated by a Brownian motion and high frequency
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terms due to the double angle formula and the multiplexer are dropped,
with X"

2 = � � �̂�.

Figure 3: Tracking loop driven by signal plus noise

Performance measures would include, e.g., P0 f� " < Tg, where � " =
inf ft � 0 : jX"

2(t)j � �g, and P0 denotes probability given X"(0) = 0. Given
� with �(0) = 0, let S� be the set of u 2 L2([0; T ] : R) such that for all
t 2 [0; T ]

�1(t) = �
Z t

0
a��1(s)ds+

Z t

0
b (sin��2(s) + u(s)) ds

�2(t) = �
Z t

0
��1(s)ds

The rate function for fX"; " 2 (0; 1)g with this initial condition is

IT (�) = inf

�Z T

0

1

2
u(t)2dt : u 2 S�

�
;

where the in�mum over the empty set is 1. (We call this the control form
of the rate function since we view u as a control and � as a controlled state.
In contrast, the rate function for the previous example was in a calculus of
variations form). It follows from the LDP that

�" logP0 f� " < Tg ! inf fIT (�) : j�2(t)j � � for some t 2 [0; T ]g :

Again, non-asymptotic approximations to P0 f� " < Tg are very useful.

Example 3 (Empirical measure large deviations and MCMC) Con-
sider an ergodic Markov chain fXi; i 2 N0g with state space S and unique
stationary distribution �. The empirical measure or normalized occupation
measure of the chain is de�ned for n 2 N by

�n(A) =
1

n

n�1X
i=0

�Xi(A); A 2 B(S)

7



where �x is the Dirac measure that puts probability 1 at x.
Under appropriate conditions, �n converges in an appropriate topology

to � with probability one (w.p.1). In fact, this property is used in many im-
portant applications in the physical and biological sciences, statistics, and
elsewhere as a method of numerically approximating �. In this setting, a
large deviation principle for f�n; n 2 Ng will give information on the likeli-
hood that �n is near an alternative �target�measure besides �. Since many
chains can have the same invariant distribution, the rate function can then
be used to compare the numerical e¢ ciency of the possible chains. Large
deviation theory for the empirical measure is also used in many other areas,
such as information theory and statistics. We will discuss this example and
such an application in Lecture 11. The large deviation theory for the em-
pirical measure of a Markov chain was originally developed in the papers
[12, 13].

Example 4 (Queueing and data loss) An area where large deviation
has been very active is in the analysis of stochastic network models, and
especially models for communication. In this example we present a simple
model that involves choosing parameters to achieve a desired loss rate.

Figure 4: A tandem queue with two service rates

The tandem queuing model is depicted in Figure 4. The second queue
has a �nite bu¤er, and data is lost when the process reaches this bu¤er.
When the second queue is small the �rst queue serves at rate �1. However,
when the second queue exceeds a threshold the �rst queue reduces its service
rate to �. The problem is to determine a threshold so that a prescribed and
very small loss rate holds.

Since the bu¤er is expected to be relatively large it is scaled by n, as
is the threshold, which is given by �n with � 2 (0; 1). The dynamics and
partition of the state space for the system as well as the state space for
the rescaled system (introduced below) are illustrated in Figure 5. The
queueing process (Q1(t); Q2(t)) is modeled as a jump Markov model with
the indicated rates. Since a queue cannot be negative, jump rates are zero
for jumps that would cause the state to leave (N0)2. The problem of interest
is to estimate quantities such as

P(1;0) fQ2 exceeds n before (Q1; Q2) reaches (0; 0)g

where P(1;0) denotes probability given (Q1(0); Q2(0)) = (1; 0).
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Figure 5: Jump rates and partition of the state space for the scaled system.

Large deviation estimates can be proved for the scaled system de�ned
by (Qn1 (t); Q

n
2 (t)) = (Q1(nt); Q2(nt))=n [21]. Expressing the quantity men-

tioned above in terms of the scaled system gives

P(1=n;0) fQn2 exceeds 1 before (Qn1 ; Qn2 ) reaches (0; 0)g :

Although this quantity involves an a priori potentially unbounded time in-
terval, one can show as with the �rst example that if the event is to occur
at all, it will happen with overwhelming probability before some �xed time
T , which allows a reduction to the �nite time LDP.

Owing to the presence of boundaries and an interface across which the
rates su¤er a discontinuity, the large deviations analysis presents a number
of di¢ culties, and this example falls into the category of large deviation
theory for processes with �discontinuous statistics�[15, 16, 45].

Example 5 (Occupancy models) Consider a large number of urns into
which a large number of tokens will be distributed according to some ran-
domized rule. A quantity of interest in this context is the empirical measure
according to the number of tokens. Thus if there are n urns and Tn tokens
to be distributed, then we are interested in the distribution of

�n(T )
:
=
�
�n0 (T );�

n
1 (T ); : : : ;�

n
J(T );�

n
J+(T )

�
;

where �nj (T ) is the fraction of urns that contain exactly j tokens, and �
n
J+(T )

is the faction that contain strictly more than J tokens, after all have been
distributed. (One can also consider the in�nite dimensional empirical meas-
ure, but to simplify we restrict to the �nite dimensional case here.)

To be speci�c, suppose that the urn chosen for a given token is selected
uniformly, and independent of the selection for all other tokens. One can
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then consider the evolution of the occupancy vector �n(i=n), where at (con-
tinuous) time i=n exactly i tokens have been placed. The placement of the
next token into the various categories indexed by j = 0; 1; : : : ; J; J+ will be
determined by the vector �n(i=n), since each urn is equally likely to receive
the next token. Let yni have the conditional distribution

P fyni = jj Fni g = �nj (i=n);

where Fni = � (�n(k=n); 0 � k � i). Since when yni = j the class of urns of
type j is reduced by 1 while the class of type j + 1 is increased by 1, the
dynamics of �n(i=n) are given by

�n((i+ 1)=n) =

�
�n(i=n) + 1

n

�
eyni +1 � eyni

�
if j 2 f0; 1; : : : ; Jg

�n(i=n) if j = J+
:

This is the same scaling as we have seen in some of the other examples,
and indeed one can prove an LDP for the piecewise linear continuous time
process de�ned by

�n(t) = �n(i=n) + [�n((i+ 1)=n)� �n(i=n)] (nt� i) ; t 2
�
i

n
;
i+ 1

n

�
:

This particular occupancy problem has a number of applications for
which a large deviations analysis is relevant. One example is to the testing
of random number generators [32], where the urns correspond to a �nite
uniform partition of [0; 1], the tokens to U [0; 1] iid random variables, and a
token is assigned to an urn if the random variable falls into the correspond-
ing subset of the partition. The distribution of �n(T ) gives a very sensitive
measure of the degree to which the variates are truly iid U [0; 1]. Another
application is to the dimensioning of optical switches in communication net-
works [47]. A last application is to the empirical distribution of the number
of lottery players who have selected the same combination (note that in
many lotteries the number of combinations and players may be on the order
of 108).

Other rules of placement that increase or decrease the likelihood that a
given urn is selected depending on its current state are of interest, and the
various schemes go by names such as Bose�Einstein, Maxwell�Boltzmann,
and Fermi�Dirac statistics [48].

Example 6 (Performance analysis in rare event Monte Carlo) Our
�nal example concerns the analysis of Monte Carlo schemes (such as im-
portance sampling) which might be used to provide approximations more
accurate than the large deviation approximation. To be concrete, we con-
sider importance sampling, and its application to the �rst example. The
standard measure of accuracy for such a scheme is the variance of a single
sample, and due to unbiasedness the minimization of variance is equivalent
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to minimization of the second moment. As we discuss in Lecture 9, this
second moment ends up being characterized as an exponential integral, and
speci�cally one of the form

E

�
1f�n<1g

n�n�1Q
i=0

e�h�ni (Xn
i );Zii+H(�ni (Xn

i ))

�
;

where �n; Xn
i ; Zi, and H are all de�ned as in the example, and �ni (�) char-

acterizes the speci�c importance sampling scheme used. As we will see in
the Lecture 10, the same weak convergence methods used to analyze the
original problem can also be used to evaluate these integrals, and thereby
allow for the design and comparison of e¢ cient Monte Carlo schemes.

In closing this lecture we should mention that these process models and
applications are just a small fraction of the classes which have been studied
and which one would like to study. Among the many possible generaliza-
tions we could mention, we limit ourselves here to observing that the large
deviation analysis of in�nite dimensional models has become very active
in recent years. Also, much more complex noise models have been stud-
ied. An elementary example in that direction would be to replace the iid
structure of Example 1 by an ergodic Markov process. The study of other
functionals besides the escape probability functionals emphasized here oc-
curs in many applications. Finally, we mention that although we have not
discussed them there are many applications in mathematical �nance, and
among other sources the reader can consult Glasserman�s book [35].
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Lecture 2: General Theory and Relative Entropy

1 General Theory

1.1 Laplace formulation

The de�nition of an LDP is phrased in terms of lower and upper bounds for
open and closed sets. However, as with weak convergence it can be simpler
in many ways to use a formulation in terms of expected values of bounded
continuous functions. In the setting of a Polish space, we have the following
result [14, Theorem 1.2.3].

Theorem 1 A sequence of random variables fYng that takes values in a
Polish space S satis�es the LDP with rate function I if and only if it satis�es
the following Laplace Principle with rate I:

� I is a rate function (i.e., the set fx : I(x) � Mg is compact for any
M <1), and

� for any bounded and continuous function F : S ! R,

lim
n!1

� 1
n
logEe�nF (Yn) = inf

x2S
[I(x) + F (x)] :

The proof of this fact is very similar to one of the standard proofs of the
Portmanteau Theorem, and involves showing how to properly approximate
such an f by combinations of indicator functions of sets, and conversely.
The following facts are easy to verify:

� rate functions are unique, and

� a rate function attains its in�mum over any closed set.

Note that it is always true that I(S) = 0, and so in particular there is
always at least one point x� where I(x�) = 0.

Large deviations gives us not only quantitative information (how likely
is the event fYn 2 Cg), but also qualitative information (given that the
unlikely event fYn 2 Cg occurred, how did it happen).

Theorem 2 Assume that C is closed and that I(C) = I(C�) < 1. Let
G = fx : I(x) = I(C)g, and G" = fx : d(x;G) < "g. If fYng satis�es the
LDP with rate I, then for any " > 0

P fYn 2 G" jYn 2 C g ! 1:
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Proof. We claim that there is � > 0 such that I(CnG")� I(C) = �. If not,
one can �nd xi 2 CnG" such that I(xi) � I(C) + 1=i. Since level sets of I
are compact, there is a subsequence xik that converges to x

� 2 CnG" with
I(x�) = I(C), which contradicts the de�nition of G". By Bayes�rule

P fYn 2 G" \ C jYn 2 C g = 1� P fYn 2 CnG" jYn 2 C g

= 1� P fYn 2 CnG"g
P fYn 2 Cg

:

Since
lim inf
n!1

1

n
logP fYn 2 Cg � �I(C�) = �I(C)

and
lim sup
n!1

1

n
logP fYn 2 CnG"g � �I(C)� �;

the result follows.

1.2 Contraction principle

Another parallel with weak convergence theory is the following analogue of
the Continuous Mapping Theorem.

Theorem 3 (Contraction Principle) Let fYn; n 2 Ng be S1-valued ran-
dom variables that satisfy the LDP with rate function I. Let G : S1 ! S2,
where S2 is another Polish space and G is continuous. Then fG(Yn); n 2 Ng
satisfy the LDP with rate function

J(y) = inf fI(x) : G(x) = yg :

Proof. There are only two items to prove. The �rst is that fy 2 S2 : J(y) �
Kg is compact. However, this is automatic, since this set is just the forward
image of the compact set fx 2 S1 : I(x) � Kg under the continuous function
G. The second is that for any bounded and continuous function F : S2 ! R,

lim
n!1

� 1
n
logEe�nF (G(Yn)) = inf

y2S2
[F (y) + J(y)] :

This is also easy, since

lim
n!1

� 1
n
logEe�nF (G(Yn)) = inf

x2S1
[F (G(x)) + I(x)]

= inf
y2S2

inf
x2S1:G(x)=y

[F (G(x)) + I(x)]

= inf
y2S2

[F (y) + J(y)] :
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2 Relative Entropy

2.1 De�nition and elementary properties

A key ingredient in the weak convergence approach to analyzing large de-
viations is the famous relative entropy function. Let S be a Polish space,
and consider probability measures � and � an S. We de�ne R (� k� ), the
relative entropy of � given �, byZ

S

�
d�

d�

�
log

�
d�

d�

�
d� =

Z
S
log

�
d�

d�

�
d�

if � � �, and set R (� k� ) = 1 otherwise. In the de�nition the convention
0 log 0 = 0 is used. Since x log x is bounded from below for x � 0, the �rst
integral is always well de�ned if � � �. Relative entropy places a central
role in information theory, statistical mechanics, and other disciplines, and
is a well studied quantity. The second item in the following lemma follows
from the Donsker-Varadhan formula for relative entropy. Let Cb(S) denote
the bounded and continuous functions from S to R. Then for any pair
�; � 2 P(S),

R(� k� ) = sup
g2Cb(S)

�Z
S
gd�� log

Z
S
egd�

�
:

For a proof see [14, Section C.2].

Lemma 4 (Elementary Properties of Relative Entropy)

� R (� k� ) � 0, and R (� k� ) = 0 if and only if � = �.

� R (� k� ) is a convex function and lower semicontinuous function of
(�; �) 2 P(S)2.

Proof. In proving the �rst item we can assume R(� k� ) < 1. In this case
d�=d� is well de�ned. We use that s log s � s� 1 with equality if and only
if s = 1. Thus

R(� k� ) =
Z
S

d�

d�

�
log

d�

d�

�
d� �

Z
S

�
d�

d�
� 1
�
d� = 0;

and equality holds only when d�=d� = 1, which requires � = �.

2.2 Variational formula � a representation for exponential
integrals

Large deviation theory, as phrased in terms of a Laplace principle, amounts
to calculating the asymptotics of certain scaled exponential integrals, and
expresses the asymptotics in terms of a variational problem. Hence it should
come as no surprise that a variational representation for exponential integ-
rals would be useful in large deviation analysis.
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Lemma 5 (Representation for exponential integrals) Given any
bounded and measurable f : S ! R,

� log
Z
S
e�fd� = inf

�2P(S)

�Z
S
fd�+R (� k� )

�
:

Proof. It su¢ ces to prove that

� log
Z
S
e�fd� = inf

�Z
S
fd�+R(� k� ) : R(� k� ) <1

�
:

One can formally guess by a Lagrange multiplier argument that the minim-
izer should be given by

d��

d�
(x) = e�f(x) � 1R

S e
�fd�

:

Since under R(� k� ) < 1 � is absolutely continuous with respect to �,
and since � is absolutely continuous with respect to ��, it follows that � is
absolutely continuous with respect to ��. Using the de�nition of relative
entropy twice, we writeZ

S
fd�+R(� k� ) =

Z
S
fd�+

Z
S
log

�
d�

d�

�
d�

=

Z
S
fd�+

Z
S
log

�
d�

d��

�
d�+

Z
S
log

�
d��

d�

�
d�

= � log
Z
S
e�fd� +R(� k�� ):

Now use that R(� k�� ) � 0 with equality only when � = ��. This not only
proves the formula, but incidentally identi�es the minimizer.

Remark 1 The assumption that f is bounded can be weakened. For ex-
ample, it holds if f is uniformly bounded from below, which allows one to
represent probabilities, i.e., � log �(A). Under additional properties of �,
such as a �nite moment generating function when S = Rd, one can extend
to f that grow no faster than linearly. This will be useful later in the notes.

2.3 Chain rule

To make the representation for exponential integrals useful, one needs to
decompose relative entropy for complex measures into relative entropies with
respect to more basic units. The chain rule does exactly that, and will be
used frequently. For a proof, see [14, Theorem B.2.1].

Lemma 6 (Chain rule) Suppose that S is of product form, S = S1 � S2,
where both S1 and S2 are Polish. If (�; �) 2 P(S)2, and if each distribution is

15



factored into its marginal distribution on S1 times a conditional distribution
on S2 given S1:

�(dx1 � dx2) = [�]1(dx1)[�]2j1(dx2 jx1 );

�(dx1 � dx2) = [�]1(dx1)[�]2j1(dx2 jx1 );

then

R (� k� ) = R ([�]1 k[�]1 ) +
Z
S1

R
�
[�]

2j1(� jx1 )



[�]2j1(� jx1 )� [�]1(dx1):

2.4 Control representations for structured measures

Owing to the role it plays in the representations, we will refer to the measure
appearing in the second position in relative entropy, i.e., � in R (� k� ), as
the �base�measure. When the base measure is structured, such as when �
is a product measure or a Markov measure, a more useful, control-theoretic
representation can be found in terms of component measures that make up
�.

Here is an example. Suppose that the random variables (X1; X2) have
joint distribution � and ( �X1; �X2) have distribution �, on some probability
space (
;F ; P ). Further suppose that the � measure corresponds to inde-
pendent random variables, so that [�]

2j1(� jx1 ) = [�]2(�) for some probability
measure [�]2 . If f : S1 � S2 ! R is bounded and measurable, then

� logEe�f(X1;X2) = inf
�2P(S)

E

"
f( �X1; �X2) +

2X
i=1

R (��i k[�]i )
#
;

where ��1(�) = [�]1(�) and ��2(�) = [�]1;2(�
�� �X1 ). Note that ��2 is a random

measure, and that the integration with respect to [�]1 in the chain rule is
accounted for by the expectation operator E.

There is an obvious extension to any �nite collection of independent
random variables, which we state now as a lemma.

Lemma 7 Let fXi; i 2 Ng be iid S-valued random variables with distribution
�. Let n 2 N. If f : Sn ! R is bounded and measurable, then

� logEe�f(X1;:::;Xn) = inf E
"
f( �X1; : : : ; �Xn) +

nX
i=1

R (��ni k� )
#
;

where the in�mum is over all collections of random probability measures
f��ni ; i 2 f1; : : : ; ngg that satisfy

1. ��ni is measurable with respect to the �-algebra generated by �X1; : : : ; �Xi�1,
and
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2. the conditional distribution of �Xi, given �X1; : : : ; �Xi�1, is ��ni .

We consider
�
�Xj ; j = 1; : : : ; n

	
to be a controlled version of the original

sequence fXj ; j = 1; : : : ; ng, with the control ��nj selecting the (conditional)
distribution of �Xj . With the appropriate large deviation scaling, the repres-
entation becomes

� 1
n
logEe�nf(X1;:::;Xn) = inf

f��ni g
E

"
f( �X1; : : : ; �Xn) +

1

n

nX
i=1

R (��ni k� )
#
:

Notational convention. Throughout these notes, we will use overbars to
indicate the controlled analogue of any uncontrolled process.

The chain rule can be used in a similar fashion to immediately construct
convenient representations for virtually any discrete time problem, and we
do so for various classes of noise models later in the notes. In general,
each of the �driving noises�needed to construct the system is replaced by a
controlled analogue, where the control can in principle depend on all other
previously de�ned controlled noises, and a relative entropy cost is paid for
the di¤erent between the (perhaps conditional) distribution used to create
the controlled noise and the distribution used to construct the original noise.

3 An overview of the weak convergence approach

Before getting into particular examples, we pause to comment on the main
ideas that appear in every application of the representations to prove large
deviation properties. With an appropriate scaling parameter (e.g., n), the
prelimit Laplace quantity takes the form

� 1
n
log

Z
Sn

e�nF (G
n(x))�n(dx);

and we need to prove convergence to

inf
y2S

[F (y) + I(y)] ;

where Gn : Sn ! S (here Sn is a Polish space indexed by n). Thus we prove

inf
�2P(Sn)

�Z
Sn

F (Gn(x))�(dx) +R (� k�n )
�
! inf

y2S
[F (y) + I(y)] :

The �high level�relative entropy R (� k�n ) should �rst be rewritten as dic-
tated by the structure of the problem. Suppose for an optimizing sequence
�n that Gn(x) (under �n) converges in some sense to a point y. Then the
total relative entropy cost R (�n k�n ) must converge to I(y), and this will
identify the rate function.
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In practice the proof is split into upper and lower bounds that are not
symmetric, and analogous to what is sometimes called �-convergence. The
lower bound

lim inf
n!1

inf
�2P(Sn)

�Z
Sn

F (Gn(x))�(dx) +R (� k�n )
�
� inf

y2S
[F (y) + I(y)]

gets to assume thatR (� k�n ) is uniformly bounded (since otherwise bounded-
ness of F would imply the left side tends to in�nity). This bound is then
used to prove some kind of tightness of the controls and controlled processes
(the de�nition of tightness is recalled below), and the key issue will be to
relate the weak limits of the controls and controlled processes. Because of
the direction of the inequality and convexity properties (e.g., convexity of
relative entropy), things like lower semicontinuity, Jensen�s inequality and
Fatou�s Lemma are useful.

The argument for the upper bound

lim sup
n!1

inf
�2P(Sn)

�Z
Sn

F (Gn(x))�(dx) +R (� k�n )
�
� inf

y2S
[F (y) + I(y)]

generally starts with a near minimizer for the right hand side. One must
show how to adapt this near minimizer to design a control for the prelimit
controlled processes for which one can show convergence of controlled pro-
cesses and costs, and in particular the convergence of the relative entropy
cost to the rate function. While this might appear easier in that one is not
dealing with a sequence of more-or-less arbitrary controls subject to a relat-
ive entropy bound, one also does not have Fatou, Jensen, etc., to help out.
Thus it can happen that more involved constructions are needed to make
the convergence go through.

4 Tightness and tightness functions

We end this lecture by stating some results that will be helpful in establishing
tightness of controls and controlled processes. Let A be an index set and let
f�a; a 2 Ag � P(S), where S is a Polish space. Recall that the collection
f�a; a 2 Ag is said to be tight if for all " > 0 there is compact K" � S
such that inf f�a(K") : a 2 Ag � 1 � ". If random variables fXa; a 2 Ag
have the distributions f�a; a 2 Ag, we say fXa; a 2 Ag is tight if and only
if f�a; a 2 Ag is tight. According to Prohorov�s Theorem, f�a; a 2 Ag is
precompact in the topology of weak convergence if and only if it is tight.

The notion of a tightness function will be useful. A measurable function
g : S ! [0;1] is called a tightness function if it has precompact level sets:
for everyM 2 [0;1) the set fx 2 S : g(x) �Mg has compact closure. Thus
rate functions are tightness functions. We have the following elementary
result.
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Lemma 8 A collection f�a; a 2 Ag � P(S) is tight if and only if there is a
tightness function g such that supa2A

R
S g(x)�a(dx) <1.

Proof. The �(�direction follows directly from Chebyshev�s inequality. To
argue the �)�direction, let K" satisfy the requirement in the de�nition of
tightness for f�a; a 2 Ag, and let Kc

" denote the complement. Then

g(x) =
1X
i=1

1Kc
2�i
(x)

serves as a tightness function with the desired properties.

The next result shows that tightness functions have a useful �bootstrap�
property.

Lemma 9 Let g be a tightness function on S. De�ne G : P(S)! [0;1] by

G(�) =

Z
S
g(x)�(dx):

Then

� for each M < 1 the set f� 2 P(S) : G(�) �Mg is tight (and hence
precompact), and

� G is a tightness function on P(S).

Proof. The claims follow directly from Prohorov�s Theorem and the preced-
ing lemma.

Lemma 10 Let f�a; a 2 Ag be random variables taking values in P(S) (i.e.,
random probability measures), and let �a = E�a. Then f�a; a 2 Ag is tight
if and only if f�a; a 2 Ag is tight. In other words, a collection of random
probability measures are tight (as random variables!) if their �means� are
tight as deterministic probability measures.

Proof. Let �a denote the distribution of �a on P(S) and let " > 0 be given.
Assuming that the random measures f�a; a 2 Ag are tight, there is a com-
pact set K � P(S) such that �a(Kc) � ". Since K is compact, there is
K1 � P(S) such that � 2 K implies �(Kc

1) � ". Therefore

�a(K
c
1) =

Z
P(S)

�(Kc
1)�a(d�)

=

Z
K
�(Kc

1)�a(d�) +

Z
Kc

�(Kc
1)�a(d�)

� 2":
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Thus f�a; a 2 Ag is tight.
To prove the �(�direction, it su¢ ces to �nd a tightness function �G :

P(S)! [0;1] such that

sup
a2A

E �G(�a) <1:

Since f�a; a 2 Ag is tight we know there is a tightness function �g : S ! [0;1]
such that

sup
a2A

Z
S
�g(x)�a(dx) <1:

Letting �G(�) =
R
S �g(x)�(dx), we observe that by construction E

R
S �g(x)�a(dx) =R

S �g(x)�a(dx), and therefore

sup
a2A

E �G(�a) = sup
a2A

E

Z
S
�g(x)�a(dx) = sup

a2A

Z
S
�g(x)�a(dx) <1:

By the previous lemma �G is a tightness function on P(S), which completes
the proof.
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Lecture 3: Canonical Problem I �Sanov�s
Theorem

In this lecture we prove Sanov�s Theorem, one of the basic results of
the theory, and show how under additional assumptions Cramér�s Theorem
follows. This might seem strange, since in many ways Cramér�s Theorem
appears simpler. The proofs for more complicated models that appear later
in the notes will use many of the same arguments.

1 Sanov�s Theorem

First we recall the statement of the Glivenko-Cantelli Lemma.

Lemma 1 (Glivenko-Cantelli) Let fXi; i 2 Ng be iid S-valued random
variables with distribution 
, and let Ln be the empirical measure of the �rst
n variables:

Ln(dx)
:
=
1

n

nX
i=1

�Xi(dx):

Then w.p.1, Ln converges in the weak topology to 
.

The proof is a special case of the arguments we will use for Sanov�s
Theorem, and in particular follows from Lemmas 4 and 5. Sanov�s Theorem
itself is the large deviation re�nement of this LLN result.

Lemma 2 For each 
 2 P(S) R(�k
) has compact level sets.

Proof. Let f�n; n 2 Ng be any sequence in P(S) satisfying supn2NR(�nk
) �
M < 1. It follows from the variational formula for exponential integrals
(see Lecture 2) that for bounded measurable  mapping S into R and n 2 N,Z

S
 d�n � log

Z
S
e d
 � R(�nk
) �M:

Let � > 0 and " > 0 be given. The tightness of 
 guarantees that there exists
a compact set K such that 
(Kc) � ". Substituting into the last display the
function  that equals 0 on K and equals log(1 + 1=") on Kc, we have for
each n 2 N

�n(K
c) � 1

log(1 + 1=")

�
M + log

�

(K) +

�
1 +

1

"

�

(Kc)

��
=

1

log(1 + 1=")

�
M + log

�
1 +

1

"

(Kc)

��
� 1

log(1 + 1=")
(M + log 2):

Since " > 0 can be chosen so that (M+log 2)= log(1+1=") � �, this formula
implies that f�ng is tight. By Prohorov�s Theorem there exists � 2 P(S)
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and a subsequence of n 2 N such that �n =) �. The lower semicontinuity
of R(�k
) yields

R(�k
) � lim inf
n!1

R(�nk
) �M:

This completes the proof that f� 2 P(S) : R(�k
) �Mg is compact.

Theorem 3 (Sanov�s Theorem) Let fXi; i 2 Ng be iid S-valued random
variables with distribution 
. Then fLn; n 2 Ng satis�es the LDP on P(S)
with rate function I(�) = R (� k
 ).

Using the Laplace Principle formulation, it is enough to show that

lim
n!1

� 1
n
logEe�nF (L

n) = inf
�2P(S)

[F (�) +R (� k
 )]

for any bounded and continuous function F on P(S). Using the represent-
ation

� 1
n
logEe�nf(X1;:::;Xn) = inf

f��ni g
E

"
f( �X1; : : : ; �Xn) +

1

n

nX
i=1

R (��ni k
 )
#
;

where ��ni selects the distribution of �Xi, given �Xj ; j = 1; : : : ; i�1. The choice
f(x1; : : : ; xn) = F (

Pn
i=1 �xi(dx)=n) gives

� 1
n
logEe�nF (L

n) = inf
f��ni g

E

"
F
�
�Ln
�
+
1

n

nX
i=1

R (��ni k
 )
#
:

Thus we need to show that

inf
f��ni g

E

"
F
�
�Ln
�
+
1

n

nX
i=1

R (��ni k
 )
#
! inf

�2P(S)
[F (�) +R (� k
 )] :

Since F is bounded, the in�mum in the representation is always bounded
above by kFk1 < 1. It follows that without loss we can always
restrict to controls for which the relative entropy cost is bounded
by 2 kFk1 <1.

1.1 Tightness and weak convergence

The bound on relative entropy costs is all that is available, but also all that
is needed, to prove tightness.

Lemma 4 Let f��ni g be a collection of controls for which E
�
1
n

Pn
i=1R (��

n
i k
 )

�
is uniformly bounded, and let �̂n = 1

n

Pn
i=1 ��

n
i . Then

�
(�Ln; �̂n); n 2 N

	
is

tight.
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Proof. It follows from the convexity of relative entropy and Jensen�s in-
equality that E

�
1
n

Pn
i=1R (��

n
i k
 )

�
� E [R (�̂n k
 )]. Since � ! R (� k
 )

has compact level sets it is a tightness function, and so both f�̂n; n 2 Ng
and fE�̂n; n 2 Ng are tight. Since ��ni is the conditional distribution used to
select �Xi, for any measurable function

E

Z
S
f(x)�Ln(dx) = E

1

n

nX
i=1

f( �Xi) = E
1

n

nX
i=1

Z
S
f(x)��ni (dx) = E

Z
S
f(x)�̂n(dx):

Thus E �Ln = E�̂n, and so
�
�Ln; n 2 N

	
and hence

�
(�Ln; �̂n); n 2 N

	
are

tight.

Thus (�Ln; �̂n) will converge in distribution, at least along subsequences.
To prove the LDP we need to relate the limits of the controls �̂n and the
controlled process �Ln.

Lemma 5 Suppose
�
(�Ln; �̂n); n 2 N

	
converges along a subsequence to (�L; �̂).

Then �L = �̂.

The proof of this result, which is a martingale version of the proof of the
Glivenko-Cantelli Lemma, will be given after we complete Sanov�s Theorem.

1.2 Lower bound

As remarked at the end of Lecture 2, the proof is partitioned into upper and
lower bounds. Owing to an intervening minus sign, the large deviation upper
bound corresponds a lower bound on the representation, and vice versa. For
each " > 0 let f��ni ; i 2 f1; : : : ; ngg and

�
�Xi; i 2 f1; : : : ; ng

	
satisfy

� 1
n
logEe�nF (L

n) + " � E

"
F
�
�Ln
�
+
1

n

nX
i=1

R (��ni k
 )
#
:

Consider any subsequence of
�
(�Ln; �̂n); n 2 N

	
. Owing to tightness we can

extract a further subsequence that converges weakly. If the lower bound is
demonstrated for this subsequence, the standard argument by contradiction
establishes the lower bound for the original sequence. To simplify notation,
we denote the convergent subsequence by n, and its limit by

�
�L; �̂

�
. Ac-

cording to Lemma 5, �L = �̂ a.s. In the following display, we using Jensen�s
inequality and convexity of relative entropy for the second inequality, the
convergence in distribution, lower semicontinuity of relative entropy and
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Fatou�s Lemma for the third inequality, and �L = �̂ a.s. for the last:

lim inf
n!1

� 1
n
logEe�nF (L

n) + " � lim inf
n!1

E

"
F
�
�Ln
�
+
1

n

nX
i=1

R (��ni k
 )
#

� lim inf
n!1

E
�
F
�
�Ln
�
+R (�̂n k
 )

�
� E

�
F
�
�L
�
+R (�̂ k
 )

�
� inf

�2P(S)
[F (�) +R (� k
 )] :

Since " > 0 is arbitrary, the result follows. �

1.3 Upper bound

Next we prove the reverse inequality. For " > 0 let �� satisfy

[F (��) +R (�� k
 )] � inf
�2P(S)

[F (�) +R (� k
 )] + ":

Then let ��ni = �� for all n 2 N and i 2 f1; : : : ; ng, so the �Xi are iid
with distribution ��. By either Lemma 5 or the ordinary Glivenko-Cantelli
Lemma, the weak limit of �Ln equals ��. The fact that this particular choice
of f��ni g is not necessarily in�mizing gives the �rst inequality below, and the
convergence in distribution version of the Dominated Convergence Theorem
gives the equality:

lim sup
n!1

� 1
n
logEe�nF (L

n) � lim sup
n!1

E

"
F
�
�Ln
�
+
1

n

nX
i=1

R (��ni k
 )
#

= [F (��) +R (�� k
 )]
� inf

�2P(S)
[F (�) +R (� k
 )] + ":

Since " > 0 is arbitrary, the upper bound follows. �

Proof of Lemma 5. Since S is Polish there exists countable separating class
ffm;m 2 Ng of bounded, continuous functions. De�neKm = supx2S jfm (x)j
and �n

m;i = fm
�
�Xn
i

�
�
Z
S
fm (x) ��

n
i (dx). For any " > 0

P

"����� 1n
nX
i=1

Z
S
fm (x) � �Xn

i
(dx)� 1

n

nX
i=1

Z
S
fm (x) ��

n
i (dx)

����� > "

#

� 1

"2
E

24 1
n2

nX
i;j=1

�n
m;i�

n
m;j

35 :
Let Fnj = �( �Xn

i ; i = 1; : : : ; j). By a standard conditioning argument, the
o¤-diagonal terms vanish: for i > j

E
�
�n
m;i�

n
m;j

�
= E

�
E
�
�n
m;i�

n
m;j

��Fni �� = E
�
E
�
�n
m;i

��Fni ��n
m;j

�
= 0:
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Since j�n
m;ij � 2Km,

P

"����� 1n
nX
i=1

Z
S
fm (x) � �Xn

i
(dx)� 1

n

nX
i=1

Z
S
fm (x) ��

n
i (dx)

����� > "

#
� 4K2

m

n"2
.

Since (�Ln; �̂n))
�
�L; �̂

�
and " > 0 is arbitrary, by Fatou�s lemma

P

�Z
S
fm (x) �L (dx) =

Z
S
fm (x) �̂ (dx)

�
= 1:

Now use that ffm;m 2 Ng is countable and separating to conclude �L = �̂
w.p.1.

2 Cramér�s Theorem

Cramér�s Theorem states the LDP for the empirical mean of Rd-valued iid
random variables: Sn

:
= 1

n (X1 + � � �+Xn). Of course one can recover
the empirical mean from the empirical measure via Sn =

R
Rd yL

n(dy).
If the underling distribution 
 has compact support then the mapping
�!

R
Rd y�(dy) is continuous on a subset of P(R

d) that contains Ln w.p.1,
and the rate function I for fSn; n 2 Ng follows directly from the contraction
principle. For � 2 Rd,

I(�) = inf

�
R (� k
 ) :

Z
Rd
y�(dy) = �

�
: (2)

However, in general the mapping � !
R
Rd y�(dy) is not continuous,

and the contraction principle does not su¢ ce. The problem is that the
conditions of Sanov�s Theorem are too weak to force continuity with high
probability. They are su¢ cient to imply tightness of controls, but no more.
Once the conditions are appropriately strengthened, the weak convergence
arguments can be carried out just as before, with the only di¤erence being
in the qualitative properties of the convergence. For � 2 Rd let

H(�) = log

Z
Rd
eh�;yi
(dy):

Theorem 6 Let fXn; n 2 Ng be a sequence of iid Rd-valued random vari-
ables with common distribution 
, and let Sn = 1

n

Pn
i=1Xi. Assume that

H(�) < 1 for all � 2 Rd. Then fSn; n 2 Ng satis�es the LDP with rate
function I de�ned as in (2).

Proof. To apply the weak convergence we should consider F : Rd ! R that
is bounded and continuous, and calculate the limits of

� 1
n
logEe�nF(

R
Rd yL

n(dy)): (3)
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Thus it is a special case of the representation used in Sanov�s Theorem that
is relevant, which is

inf
f��ni g

E

"
F

�Z
Rd
y �Ln(dy)

�
+
1

n

nX
i=1

R (��ni k
 )
#
:

Suppose we prove that
�
�Ln; n 2 N

	
is uniformly integrable, in the sense that

whenever the relative entropy cost is uniformly bounded,

lim
M!1

lim sup
n!1

E

�Z
Rd
kyk 1fkyk�Mg �L

n(dy)

�
= 0:

Then it will follow that

E

�
F

�Z
Rd
y �Ln(dy)

��
! E

�
F

�Z
Rd
y �L(dy)

��
;

and the limit of (3) can be calculated using exactly the same argument as
that used to prove Sanov�s Theorem. The integrability should come from
the bound on relative entropy costs and the new assumption H(�) <1.

For b � 0 let `(b) = b log b � b + 1. A bound that is used frequently in
large deviations is that for a � 0, b � 0 and � � 1

ab � e�a +
1

�
(b log b� b+ 1) = e�a +

1

�
`(b):

This follows from the fact that

sup
a2R

fab� e�ag = b

�

�
log

b

�
� 1
�
� 1

�
`(b):

Thus if � 2 P(Rd) satis�es � � 
, thenZ
Rd
kyk 1fkyk�Mg�(dy) =

Z
Rd
kyk 1fkyk�Mg

d�

d

(y)
(dy)

�
Z
Rd
e�kyk1fkyk�Mg
(dy) +

1

�

Z
Rd
`

�
d�

d

(y)

�

(dy)

=

Z
Rd
e�kyk1fkyk�Mg
(dy) +

1

�
R (� k
 ) :

Therefore

E

Z
Rd
kyk 1fkyk�Mg �L

n(dy) = E

Z
Rd
kyk 1fkyk�Mg�̂

n(dy)

�
Z
Rd
e�kyk1fkyk�Mg
(dy) +

1

�
ER (�̂n k
 ) :

Using the uniform bounds on the relative entropy and the fact that H(�) <
1 for all � 2 Rd, taking limits in the order M !1 and then � !1 gives
the uniform integrability.
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Figure 6: Geometry of the Legendre transform in one dimension

Remark 1 The �usual�form of the rate function in the statement of Cramér�s
Theorem is as the Legendre transform of H:

L(�) = sup
�2Rd

[h�; �i �H(�)] :

One can directly verify that the two coincide (see the end of Lecture 6).
The representation in terms of relative entropy is often more useful. Also,
we note that one can also prove the conclusion under the condition that for
some � > 0, H(�) < 1 for all � with k�k � �. However, this requires
unbounded test functions F and a di¤erent line of argument for the lower
bound (the large deviation upper bound).

Some examples of H � L pairs are as follows.

Example 1 Suppose that X1 is Bernoulli with

P fX1 = 0g = 1� p; P fX1 = 1g = p

for p 2 (0; 1). Then
H(�) = log ((1� p) + pe�)

and (with the understanding that 0 log 0 = 0)

L(�) =

(
� log

�
�
p

�
+ (1� �) log

�
1��
1�p

�
� 2 [0; 1]

1 � =2 [0; 1]
:

Example 2 Suppose that X1 is Poisson with parameter � > 0, so that
P fX1 = ng = e���n=n! for n 2 N0. Then

H(�) = � (e� � 1)

and

L(�) =

(
� log

�
�
�

�
� � + � � � 0

1 � < 0
:
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Example 3 Suppose that X1 is Gaussian N(b; �2). Then

H(�) =
�2�2

2
+ �b

and
L(�) =

1

2�2
(� � b)2 :

3 An application of the conditioning result

Recall that Theorem 2 of Lecture 2 asserts under some conditions that given
a rare outcome, the minimizing point in the large deviation rate identi�es
the most likely way the rare event occurs. We will show in Lecture 6 that
the minimizing measure in

inf

�
R (� k
 ) :

Z
Rd
y�(dy) = �

�
is of the form eh�;xi�H(�)
(dx), where � is chosen so thatZ

Rd
yeh�;xi�H(�)
(dx) = �:

Suppose that the Xi�s in Sanov�s Theorem are Poisson with � = 1, and
that we observe Sn = b > 1. Then by this conditioning result, given this
observation we �nd with probability approaching 1 as n ! 1 that Ln

appears to be nearly Poisson with parameter b. Thus the observed mean
in some sense gives information on the likely form of the entire empirical
distribution.
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Lecture 4: Canonical Problem II �Small Noise
Di¤usions

1 A Representation for Functionals of Brownian
Motion

Let (
;F ; P ) be a probability space, and let fFt; 0 � t � 1g be a right-
continuous P -complete �ltration on (
;F ; P ). Suppose that fW (t); 0 � t �
1g is a d-dimensional Ft-Brownian motion, i.e., W (t) is Ft-measurable for
every t 2 [0; 1], and W (t)�W (s) is independent of Fs for all 0 � s � t � 1.
A standard choice of Ft is the sigma-�eld �fW (s) : 0 � s � tg, augmented
with all P -null sets, i.e.,

FWt
:
= � f�fW (s) : 0 � s � tg _ Ng ;

where N = fA � 
 : there is B 2 F with A � B and P (B) = 0g.

De�nition 3 An Rk-valued stochastic process fv(t); 0 � t � 1g on (
;F ; P )
is said to be Ft-progressively measurable if for every t 2 [0; 1] the map
(s; !) 7! v(s; !) from ([0; t] � 
;B([0; t]) 
 Ft) to (Rk;B(Rk)) is measur-
able. Let U denote the collection of all Ft-progressively measurable processes
fv(t); 0 � t � 1g which satisfy E(

R 1
0 jjv(t)jj

2dt) <1.

The following representation theorem for bounded measurable function-
als of a Brownian motion is analogous to the one stated in Lecture 3 for
functionals of an iid sequence. In the representation, the controlled meas-
ures have been replaced by just a control process, and the relative entropy
cost is the expected L2 norm of this process. The representation is given for
the interval [0; 1], but extends in a trivial way to any bounded interval. Let
C([0; 1] : Rk) denote the space of Rk-valued continuous functions on [0; 1].
This space is equipped with the uniform metric, which makes it a Polish
space.

Theorem 1 Let f be a bounded Borel measurable function from C([0; 1] : Rk)
to R. Then

� logEe�f(W ) = inf
v2U

E

�
f

�
W +

Z �

0
v(s)ds

�
+
1

2

Z 1

0
jjv(s)jj2ds

�
: (4)

The proof of this representation appears in [3]. The form of the repres-
entation closely parallels the corresponding discrete time result for product
measure, re�ecting the fact that Brownian motion is the integral of �white�
noise, and progressive measurability is analogous to the fact that in the rep-
resentation for iid noises ��ni is allowed to depend on all controlled noises
up to time i � 1. In fact, if one were to replace W by the correponding
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piecewise linear interpolation with interpolation interval � > 0 (which is
equivalent to a collection of 1=� iid N(0; �) random variables), and assume
that the minimizing measures are Gaussian with means �vni , the L

2 cost in
(4) corresponds to R (N(�vni ; �) kN(0; �)) = �jj�vni jj2=2. The assumption that
one can restrict the discrete time measures to ones of the form N(�vni ; �) is
valid in the limit � ! 0, which is why the continuous time representation is
in some ways simpler than thhe corresponding discrete time representation.

An analgous representation is proved in [43] and applied to problem
of risk sensitive control, though the expectation E in that representation
depends on v. Extensions to in�nite dimensional Gaussian processes (e.g.,
cylindrical Brownian motion, Brownian sheet) and continuous time jump
noises (Poisson random measures) appear in [5, 7, 9].

2 Large Deviation Theory of Small Noise Di¤u-
sions

The representation (4) is very convenient for a weak convergence large de-
viation analysis, and in many ways it makes the continuous time setting
simpler than the corresponding discrete time setting. As an illustration of
its use we prove a large deviation principle for a class of small noise di¤u-
sions. While fairly general, the assumptions on the coe¢ cients are chosen to
make the presentation simple, and can be signi�cantly relaxed. We assume
there is C 2 (0;1) such that b : Rd ! Rd and � : Rd ! Rd�k satisfy

jjb(x)� b(y)jj+ jj�(x)� �(y)jj � Cjjx� yjj and jjb(x)jj+ jj�(x)jj � C

for all x; y 2 Rd. Fix x 2 Rd, and for " > 0 let X" = fX"(t); 0 � t � 1g be
the pathwise solution of the stochastic di¤erential equation (SDE)

dX"(t) = b(X"(t))dt+
p
"�(X"(t))dW (t); X"(0) = x: (5)

Let Ax([0; 1] : Rd) denote the space of Rd-valued, absolutely continuous
functions ' on [0; 1] with '(0) = x. Also, for ' 2 Ax([0; 1] : Rd), let

U' =

�
u 2 L2([0; 1] : Rd) : '(t) = x+

Z t

0
b('(s))ds+

Z t

0
�('(s))u(s)ds; t 2 [0; 1]

�
;

where L2([0; 1] : Rd) is the space of Rd-valued square integrable functions on
[0; 1]. For all other ' 2 C([0; 1] : Rd) let U' be the empty set. The following
large deviation principle for such small noise di¤usions is one of the classical
results in the theory [34]. The in�mum over the empty set is taken to be1.
Theorem 2 The collection fX"; " 2 (0; 1)g satis�es the LDP on C([0; 1] :
Rd) with rate function

I(')
:
= inf

u2U'

�
1

2

Z 1

0
jju(t)jj2dt

�
:
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To prove this theorem, we must show that for bounded and continuous
F : C([0; 1] : Rd)! R

lim
"!0

�" logEe�
1
"
F (X") = inf

'2C([0;1]:Rd)
fF (') + I(')g :

The �rst step will be to interpret F (X") as a bounded measurable function
of W . From the unique pathwise solvability of the SDE (5), it follows that
for each " > 0 there is a measurable map G" : C([0; 1] : Rk) ! C([0; 1] : Rd)
such that X" = G"(

p
"W ). Moreover, if v 2 U , then Girsanov�s Theorem

and the pathwise uniqueness implies G"(
p
"W (�) +

R �
0 v(s)ds) is the unique

solution to

d �X"(t) = b( �X"(t))dt+
p
"�( �X"(t))dW (t)+�( �X"(t))v(t)dt; �X"(0) = x: (6)

This implies the control representation

�" logEe�
1
"
F (X")

= �" log e�
1
"
F�G"(

p
"W )

= inf
v2U

E

�
F � G"

�p
"W (�) +

Z �

0
v(s)ds

�
+
1

2

Z 1

0
jjv(s)jj2ds

�
= inf

v2U
E

�
F
�
�X"
�
+
1

2

Z 1

0
jjv(s)jj2ds

�
:

We would like to consider v as taking values in L2([0; 1] : Rd) with the
weak topology. However, this space is not metrizable as a Polish space.
Since F is bounded, given any � > 0 we can �nd M� < 1 and a control
v that comes within � of the in�mum and such that 1

2

R 1
0 jjv(s)jj

2ds � M�

w.p.1. Thus we can assume that the controls take values in the compact
Polish space SM�

where

SM =

�
� 2 L2([0; 1] : Rd) : 1

2

Z 1

0
jj�(s)jj2ds �M

�
and the weak topology on L2([0; 1] : Rd) is used. The proof, which we omit,
starts with a nearly minimizing control, for which the relative entropy cost
is necessarily bounded. One uses Chebyshev�s inequality to show that the
set where

R 1
0 jjv(s)jj

2ds is large is small, and then uses a stopping time to
modify the de�nition of v on this set. Since F is bounded the resulting total
cost is still close to the in�mum.

We will follow the same scheme of proof as in Sanov�s Theorem. Thus
we �rst prove a tightness result and show how to relate the weak limits
of controls and controlled processes. The proof of the lower bound (which
corresponds to the large deviation upper bound) as well as the proof that
I is a rate function follows, and we conclude with the proof of the upper
bound (the large deviation lower bound).
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2.1 Tightness and weak convergence

Lemma 3 Consider any collection of controls fv"g � U for which 1
2

R 1
0 jjv

"jj2ds
is uniformly bounded by M < 1, and de�ne �X" by (6) with v = v". Then�
( �X"; v"); " 2 (0; 1)

	
is tight.

Proof. Tightness of fv"g is automatic since SM is compact. For the tightness
of
�
�X"
	
, note that

�X"(t)� x =
Z t

0
b( �X"(s))ds+

p
"

Z t

0
�( �X"(s))dW (s) +

Z t

0
�( �X"(s))v"(s)ds:

The �rst and second terms are tight since b and � are bounded using, e.g.,
the Kolmogorov-µCentsov criteria. Tightness of the third follows from the
boundedness of �, and since for 0 � s � t � 1Z t

s
jjv"(r)jjdr � (t� s)1=2

�Z 1

0
jjv"(r)jj2dr

�1=2
� (t� s)1=2M1=2:

Lemma 4 Suppose for each " 2 (0; 1) that ( �X"; v") solves (6), and that
( �X"; v") converges weakly to ( �X; v). Then w.p.1

�X(t)� x =
Z t

0
b( �X(s))ds+

Z t

0
�( �X(s))v(s)ds: (7)

Proof. By a standard martingale bound the stochastic integral converges to
0 as " ! 0. The only remaining issue is to check that

R t
0 �(

�X"(s))v"(s)ds

converges to
R t
0 �(

�X(s))v(s)ds. By the Skorokod representation we can as-
sume the convergence is w.p.1, where the topology of uniform convergence
is used for �X" and the weak topology on L2 is used for v". We haveZ t

0
�( �X"(s))v"(s)ds�

Z t

0
�( �X(s))v(s)ds

=

Z t

0

�
�( �X"(s))� �( �X(s))

�
v"(s)ds+

Z t

0
�( �X(s)) [v"(s)� v(s)] ds:

The �rst term tends to zero by Hölder�s inequality and the second to zero
since �( �X(�)) 2 L2.

2.2 Lower bound

For each � > 0, let
�
( �X"; v"); " 2 (0; 1)

	
satisfy

�" logEe�
1
"
F (X") + � � E

�
F
�
�X"
�
+
1

2

Z 1

0
jjv"(s)jj2ds

�
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and v" 2 SM�
w.p.1. Consider a weakly converging subsequence, with limit

( �X; v). Then using the de�nition of I and (7)

lim inf
"!0

�" logEe�
1
"
F (X") + � � lim inf

"!0
E

�
F
�
�X"
�
+
1

2

Z 1

0
jjv"(s)jj2ds

�
� E

�
F
�
�X
�
+
1

2

Z 1

0
jjv(s)jj2ds

�
� inf

'2C([0;1]:R)
fF (') + I(')g :

The usual argument by contradiction establishes the bound for the full se-
quence " 2 (0; 1). Now let � # 0. �

2.3 Upper bound

For � > 0 choose '� 2 C([0; 1] : Rd) such that

F ('�) + I('�) � inf
'2C([0;1]:Rd)

fF (') + I(')g+ �:

Let u 2 S'� be such that 1
2

R 1
0 jju(s)jj

2ds � I('�) + � and let �X" be the
unique solution of (6) when we replace v on the right side of the equation
by u. By the results on tightness and weak convergence (Lemmas 3 and 4)
�X" converges in probability to '�. Thus

lim sup
"!0

�" logEe�
1
"
F (X") = lim sup

"!0
inf
v2U

E

�
F
�
�X"
�
+
1

2

Z 1

0
jjv(s)jj2ds

�
� lim sup

"!0
E

�
F
�
�X"
�
+
1

2

Z 1

0
jju(s)jj2ds

�
= F ('�) +

1

2

Z 1

0
jju(s)jj2ds

� F ('�) + I ('�) + �

� inf
'2C([0;1]:R)

fF (') + I (')g+ 2�:

Since � > 0 is arbitrary, the upper bound follows. �
Note that when �(x)�(x)T > 0 for all x 2 Rd, we can express I in the

calculus of variations form

I(') =

Z 1

0
L('; _')ds; L(x; �) =

1

2



(� � b(x)); [�(x)�(x)T ]�1(� � b(x))

�
:
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Lecture 5: Freidlin-Wentsell Theory and Moderate
Deviations

This lecture discusses two independent topics�the Freidlin-Wentsell the-
ory and moderate deviations. The Freidlin-Wentsell theory leverages �nite
time large deviation estimates into a set of results on the metastability prop-
erties of small noise processes. We will not have time to go into this topic
in detail, but it is one of the main motivations for the �nite time estimates
that are discussed in detail. Moderate deviation theory �lls the gap between
di¤usion approximations and large deviation theory, and has some potential
applications in Monte Carlo.

1 Freidlin-Wentsell theory for problems on unboun-
ded time intervals

In Examples 1 and 4 of Lecture 1 there were �small noise� process level
large deviation problems, where the event of interest involved a potentially
unbounded time interval. We commented that for those problems one could
essentially reduce to the case of a �nite time analysis, since the probability
that the event happened and took longer than T could be shown (using only
�nite time interval estimates) to have decay rate K(T ), where K(T ) ! 1
as T !1. There are, however, very important problems also of interest on
an a priori unbounded time interval which do not allow for such a simple
reduction to �nite time estimates. The key di¤erence between the two types
of problems is the presence of a rest point for the LLN limit dynamics (the
paths which make the rate function zero) within the domain of interest.

One of the main achievements of large deviation theory is a collection of
results, commonly referred to as the �Freidlin-Wentsell theory,�which allow
one to knit together �nite time estimates with stopping time arguments to
analyze these problems. The methods apply quite broadly, once one has the
appropriate �nite time estimates. They apply to all the process level large
deviation models we consider, and even have extensions to non-Markovian
models if the estimates are suitably uniform in the conditioning data [18].
To simplify we will consider only Markov process, and make assumptions on
the rate function similar to those in the original work [34]. However, these
assumptions can be relaxed considerably, as can virtually all the conditions
we will impose. In particular, the assumption that the function L is �nite is
restrictive and can be relaxed as in [18], where one assumes a �controllable
with small cost�property near the stable point.

Thus we assume that for each x0 2 Rd and each T 2 (0;1) the family of
Markov process fXn; n 2 Ng, conditioned on Xn(0) = x0, satis�es the LDP
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Figure 7: The domain G and the �ow under b.

with a rate function of the form

IT;x0(�) =

� R T
0 L(�(s); _�(s))ds if � 2 Ax0([0; T ] : Rd),

1 otherwise.

We also assume that L : Rd � Rd ! [0;1) is continuous, convex in � for
each �xed x, and uniformly superlinear:

lim
c!1

inf
x2Rd

inf
�:jj�jj=c

1

c
L(x; �) =1:

This latter condition guarantees that IT;x0 has compact level sets. We will
want the large deviation estimates to be uniform in the initial condition in
the sense of [34, Section 3.3]. This uniformity condition generally holds, at
least in �nite dimensional settings. Finally we assume that for each x 2 Rd
there is a unique b(x) 2 Rd such that L(x; b(x)) = 0, and that b is Lipschitz
continuous. Thus the solutions to _� = b(�) are the LLN limits for Xn as
n!1 when Xn(0) = �(0) = x0.

We take as given a bounded, open, and connected set G � Rd with
smooth boundary, and assume that there is a unique attractor for _� = b(�)
in G, which for convenience we label as 0. To be precise, it is assumed that
if n(x) is the outward normal to G at x 2 @G, then supx2@G hb(x); n(x)i < 0,
and all solutions to _� = b(�) starting at a point inside G converge to 0 as
t!1. See Figure 1.

The quasipotential with respect to 0 is de�ned in this context by

Q(x) = inf fIT;0(�) : �(T ) = x; T <1g :

Owing to the fact that 0 is stable, one can show that inf fIT;0(�) : �(T ) = xg
is decreasing to some strictly positive value as T !1. This function gives
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the approximate rate of decay for the probability to reach a neighborhood of
x, after starting at the stable point 0 and over a long but �nite time interval
[0; T ]. Under the given assumptions, it is easy to show that Q is continuous
in G and strictly positive when x 6= 0.

Example 1 Suppose b(x) = �DU(x) + `(x) where hDU(x); `(x)i = 0, and
that L(x; �) = (�� b(x))2=2 (as would be true, for example, in the di¤usion
case). Then under the conditions on b stated above U will have a local
minimum at x = 0, which is the only local minimum in G, and a standard
veri�cation argument will be used in Lecture 7 to show that Q(x) = 2U(x).
There are other examples for which the quasipotential takes an explicit form,
including non-Gaussian noise and even in�nite dimensional examples.

1.1 The exit location and the mean exit time

Among the many results describing the behavior of Xn over large time
intervals we mention two, the �rst concerned with where the process will
leave G, and the second with how long that will take. We �rst state the
results and then suggest why they are valid. The results correspond to [34,
Theorems 4.2.1 and 4.4.1.].

Theorem 1 Suppose that there is a unique point y 2 @G such that Q(y) =
inf fQ(z) : z 2 @Gg. Let �n = inf ft : Xn(t) 2 @Gg. Then for all � > 0 and
x0 2 G

lim
n!1

Px0 fkXn(�n)� yk > �g = 0:

Theorem 2 Let �n = inf ft : Xn(t) 2 @Gg. Then for all x0 2 G

lim
n!1

1

n
logEx0�

n = inf fQ(z) : z 2 @Gg :

The proof of both these results use stopping times and the strong Markov
property. However, the main idea is that a small neighborhood of the rest
point should act like a renewal point.

Although the process may start at x0 6= 0, which probability tending to
one it will approach the neighborhood of the rest point before exiting. Once
near the rest point, occasional bursts of noise will push the system from this
neighborhood, and these excursions will be nearly iid (as in renewal theory).
The problem of the exit time is then one of estimating the time till the �rst
�successful�burst of noise, i.e., the one that leads to escape. The most likely
way that will happen can be found by examining the quasipotential for the
point on the boundary that is easiest to reach, i.e., the point (or points)
that satis�es Q(y) = inf fQ(z) : z 2 @Gg.

Since the probability of this easiest type of escape is p � e�n inffQ(z):z2@Gg,
the distribution of the exit time should be Poisson with mean 1=p, i.e.,
Ex0�

n � en inffQ(z):z2@Gg. If there is only one location y on @G where the
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minimum is achieved, then the likelihood of escape from any other point
should be smaller by an exponential factor, and thus the distribution of the
exit location should concentrate near y as n!1.

2 Comparison with Central Limit Theorem and
moderate deviations

It is instructive to compare the information provided by a LDP with what
one can get from the Central Limit Theorem (CLT) or one of its process-level
generalizations These two limit theorems answer di¤erent questions, and
provide complementary information. To simplify the discussion, consider
for now the sum of n iid random variables. Here the CLT tells us something
about probabilities for sets located distance n1=2 from the mean, whereas
the LDP considers sets that are much further into the tail (sets distance n
from the mean). Suppose, for example, that EX1 = 0, and that the moment
generating function is �nite for all �. (Of course this implies a �nite second
moment, and hence the CLT is also valid.) To simplify the notation assume
the variables are normalized so that EX2

1 = 1.
Consider a set A such that P f� 2 @Ag = 0, where � is N(0; 1). Then

by the CLT

P

�
Sn

n1=2
2 A

�
! P f� 2 Ag ;

and so
P
n
Sn 2 n1=2A

o
� P f� 2 Ag ;

where � means that the ratio tends to 1 as n ! 1. Note that the CLT
can tell us nothing about an estimate of the form P fSn 2 nAg, because this
would require a limit for

P

�
Sn

n1=2
2 n1=2A

�
;

which is not valid since the set n1=2A depends on n.
In contrast, the LDP tells us about P fSn 2 nAg. Suppose that L is

the rate function, and in analogy with P f� 2 @Ag = 0 assume that A is an
L-continuity set with

C
:
= inf

�2A�
L(�) = inf

�2 �A
L(�):

Then

P fSn 2 nAg = P

�
Sn
n
2 A

�
� e�nC ;
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in the sense that the ratio of the logarithms converge to 1. The LDP does
not directly give us any CLT information, since the set A here is also �xed,
and a CLT type statement would require

P

�
Sn
n
2 1

n1=2
A

�
:

It does turn out that there is some CLT information hidden in the rate
function, in that the local expansion up to order 2 of the rate function around
its minimum point is determined by just means and variances, and is the
same as what one would expect from a formal CLT approximation. This is
related to the fact that moderate deviations provide a bridge between large
deviations and the CLT, i.e., it gives limits for scalings between n1=2A and
nA. Such a result is particularly useful for the design of accelerated Monte
Carlo if the event of interest is far enough in the tail that a moderately large
number of samples is required for good accuracy, but the cost per sample
is very high (e.g., if the process model is a stochastic partial di¤erential
equation).

We will give the statement and proof of moderate deviations for the
same di¤usion model as in Lecture 4. This is a little misleading, in that the
proof of the moderate deviations principle (MDP) for other process models
is not such a straightforward adaptation of the proof of the corresponding
LDP. In particular, for other processes (e.g., the process model of Lecture
6), because of the scaling it is a little harder to prove the tightness needed
for the MDP.

Thus we focus on the process model

dX" = b(X")dt+
p
"�(X")dW; X"(0) = x0: (8)

The same conditions as in Lecture 4 are assumed, and in addition that b is
at least once continuously di¤erentiable. Let

Y "(t) =

r
a(")

"

�
X"(t)�X0(t)

�
;

where X0 is the solution to (8) when " = 0. We are interested in the LDP
for Y ", when a(")! 0 and "=a(")! 0.

Applying the representation gives

�a(") logEe�
1

a(")
F (Y ")

= inf
v2U

E

�
F ( �Y ") +

1

2

Z 1

0
kv(s)k2 ds

�
;

where

d �X" = b( �X")dt+
p
"�( �X")dW +

p
"=a(")�( �X")vdt; �X"(0) = x0;

and

�Y "(t) =

r
a(")

"

�
�X"(t)�X0(t)

�
:
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2.1 Tightness and identi�cation of limits

The issues of tightness and relating the limits are essentially the same as for
the LDP. We can write

�Y "(t) = �Y "
1 (t) + �Y "

2 (t) + �Y "
3 (t);

where

�Y "
1 (t) =

r
a(")

"

Z t

0

�
b( �X"(s))� b(X0(s))

�
ds

�Y "
2 (t) =

p
a(")

Z t

0
�( �X"(s))dW (s)

�Y "
3 (t) =

Z t

0
�( �X"(s))v(s)ds:

As in the proof of the LDP we can assume that any sequence of interest
fv"g takes values in the compact set SM for suitably large M < 1, and
therefore

�
( �X"; �Y "

1 ;
�Y "
2 ;
�Y "
3 ; v

"); " 2 (0; 1)
	
is tight. Let " index a convergent

subsequence. It follows directly that �X" ! X0 and �Y "
2 ! 0. Assume that

�Y " ! �Y and v" ! v. Then

�Y "
3 !

Z �

0
�(X0(s))v(s)ds:

Using that

�X"(t) = X0(t) +

r
"

a(")
�Y "(t) and �Y "

1 !
Z �

0
Db(X0(s)) �Y (s)ds;

We conclude that

�Y =

Z �

0

�
Db(X0(s)) �Y (s) + �(X0(s))v(s)

�
ds:

�

2.2 Statement of the MDP

The proof is now the same as that of the LDP. Thus Y " satis�es the LDP
on C([0; 1] : Rd) with the rate

J(�) = inf

�
1

2

Z 1

0
kv(s)k2 ds : �(t) =

Z t

0

�
Db(X0(s))�(s) + �(X0(s))v(s)

�
ds

�
and scaling function a("), which is the MDP for X". Note that the only
information that appears in the rate function for the MDP is a local expan-
sion of the rate function I for the LDP around the zero cost path X0. Note
also that for suitable initial or terminal conditions (e.g., quadratic in �(1))
the in�mization problem is a special case of the famous linear-quadratic-
regulator from the theory of deterministic optimal control, and hence has
an explicit solution.
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Lecture 6: Processes That Are Not Functionals of
an IID Noise Process

1 A Representation for Markovian Noise

For both Sanov�s Theorem and the LDP for small noise di¤usions, the �high-
level�relative entropy representation could be expressed in a much simpler
form. This happened because the quantities of interest could be represen-
ted as measurable functionals of a �white noise�process. However, such a
representation is not always useful, even though it might be possible. For
example, the underlying noise model might be Markovian, and though an
�white noise�representation can be shown to exist, it might be hard to work
with when proving, e.g., a law of large numbers limits.

In this lecture we will consider a �small noise�Markov process model.
The particular model occurs frequently in stochastic systems theory, e.g.,
stochastic approximation and related recursive algorithms, and can be viewed
as a substantial generalization of the random walk considered in Cramér�s
Theorem. It also arises as a discrete time approximation to various continu-
ous time models, such as the SDE model of Lecture 4, and indeed provides
an alternative approach to proving large deviation estimates for such models
(though we much prefer the direct approach of Lecture 4).

2 Process Model

We begin with a description of the process model. Suppose that �(dyjx) is
a stochastic kernel on Rd given Rd. Thus �(�jx) 2 P(Rd) for every x 2 Rd,
and for every A 2 B(Rd) the mapping x ! �(Ajx) is Borel measurable.
Then one can construct a probability space that supports iid random vector
�elds

�
vi : Rd ! Rd; i 2 N0

	
, with the property that for any x 2 Rd vi(x)

has distribution �(�jx). We then de�ne for each n 2 N a Markov process
fXn

i ; i = 1; : : : ; ng by setting

Xn
i+1 = Xn

i +
1

n
vi(X

n
i ); Xn

0 = x0: (9)

This discrete time process is interpolated into continuous time exactly as
was done in Lecture 1, i.e.,

Xn(t) = Xn
i +

�
Xn
i+1 �Xn

i

�
(nt� i) ; t 2

�
i

n
;
i+ 1

n

�
: (10)

Example 1 Suppose that for each x 2 Rd vi(x) has a normal distribution
with mean b(x) and covariance �(x)�T (x). Then Xn(t) can be viewed as
the Euler approximation to the SDE of Lecture 4.
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Example 2 For an example in the form of a stochastic approximation al-
gorithm, one can take vi(x) = �rV (x) + wi, where the wi are iid with
Ewi = 0 and V is a smooth function. In this case 1=n is the �gain�of the
algorithm.

To prove an LDP for fXn; n 2 Ng additional assumptions must be made.
For x 2 Rd and � 2 Rd de�ne

H(x; �)
:
= logEeh�;vi(x)i:

Condition 1 We assume the following:

1. for each � 2 Rd supx2Rd H(x; �) <1,

2. the mapping x! �(�jx) from Rd to P(Rd) is continuous in the topology
of weak convergence,

3. for each x 2 Rd the convex hull of the support of �(�jx) is Rd.

The �rst condition is needed for the rate function to have compact level
sets. The second and third conditions can be weakened. With weakenings
of the third condition the qualitative form of the large deviation rate func-
tion is the same, but additional �Lipschitz type�conditions on x ! �(�jx)
are required. Such weakenings are quite important in applications (e.g., the
third condition rules out bounded noise), but the proof involves a molli�c-
ation and is considerably more complicated than the one we will give here.
Those who are interested can �nd suitable conditions that weaken the third
requirement in [14].

Weakening the second condition generally leads to a qualitatively dif-
ferent form of the rate function, and the process models that violate this
condition are said to have �discontinuous statistics.�Example 4 of Lecture
1 was of this form.

3 Representation

The �rst issue to resolve is the formulation of a representation that re�ects
the natural structure of the process model. Note that one could represent
fXn; n 2 Ng in terms of iid random variables, e.g., in the form Xn

i+1 = Xn
i +

1
nG(X

n
i ; Ui), where G is measurable and the fUi; i 2 N0g are iid uniform.

However, this form, which would allow a representation in terms of an iid
reference measure, would not be useful. The map G would not in general
be continuous, and this formulation would be poorly suited to proving even
a law of large numbers limit.

An alternative and more useful representation follows from the form
(9) and the chain rule for relative entropy. As before we will consider the
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representation one would use to prove an LDP on C([0; 1] : Rd), but [0; 1]
could be replaced by any interval [0; T ], T < 1. The line of argument will
be to adapt the proof used for Sanov and Cramér to this functional setting.
To obtain �process-level�information requires a more complicated empirical
measure than was needed previously. De�ne Ln by

Ln(A�B) :=
Z
B
Ln(Ajt)dt; Ln(Ajt) = �vi(Xn

i )
(A) if t 2 [i=n� 1=n; i=n)

for Borel sets A � Rd and B � [0; 1]. This measure (and its controlled
analogue to be introduced) record the joint empirical distribution of velocity
and time.

Theorem 1 Let G : P(Rd � [0; 1])! R be bounded and continuous and let
Ln be de�ned as in the last display. Then

� 1
n
logEe�nG(L

n) = inf
f��ni g

E

"
G(�Ln) +

1

n

nX
i=1

R
�
��ni (�)



�(�j �Xn
i )
�#
: (11)

The in�mum is over all controls f��ni g, and the controls and controlled process
�Xn and measure �Ln are recursively constructed as follows. Let �Xn

0 = x0 and
de�ne �Fni = �( �Xn

j ; j = 0; : : : ; i). Then ��
n
i is measurable with respect to �Fni

and gives the conditional distribution of �vni . We set

�Xn
i+1 =

�Xn
i +

1

n
�vni ;

and then repeat. When
�
�Xn
i ; i = 1; : : : ; n

	
has been constructed, �Xn(t) is

de�ned as in (10) as the piecewise linear interpolation, and

�Ln(A�B) :=
Z
B

�Ln(Ajt)dt; �Ln(Ajt) = ��vni (A) if t 2 [i=n� 1=n; i=n):

Note that the de�nition of �Ln allows us to write

�Xn(t) =

Z
Rd�[0;t]

y �Ln(dy � dt) + x0:

Thus as in passing from Sanov to Cràmer, convergence of �Ln plus some
uniform integrability will imply convergence of �Xn.

Proof. The representation follows directly from the high-level variational
representation for exponential integrals (Lemma 4 in Lecture 2) and the
chain rule, and is essentially the same as what was done in deriving the rep-
resentation used to prove Sanov�s Theorem. The only di¤erence is that the
base measure there was product measure, re�ecting the iid noise structure.
Here the base measure is the Markov measure

�(dv0jXn
0 ) � �(dv1jXn

1 ) � � � � � �(dvn�1jXn
n�1);
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where
Xn
i+1 = Xn

i +
1

n
vi:

This change in the base measure is re�ected by a change in the relative
entropy cost, i.e., the �Xn

i dependence in �(�j �Xn
i ), which was just �(�) in the

iid case.

Note that, as in the representation developed previously, we suppress
the explicit dependence of ��ni on �Xn

j ; j = 0; : : : ; i, and account for this
dependence by considering any �Fni -measurable controls.

Before going further, we pause to comment on the expected form of the
rate function. There is a time scale separation, which is due to the 1=n
scaling and the weak continuity of x ! �(�jx). Over an interval [s; s + �],
with � > 0 small, the noise terms in the de�nition of Xn(s+ �)�Xn(s) are
approximately iid �(�jXn(s)), and therefore by Cramér�s Theorem

Xn(s+ �)�Xn(s)

�
� 1

n�

bns+n�cX
i=bnsc

vi(X
n(s))

will satisfy the LDP with rate �L(Xn(s); �), where

L(x; �) = inf

�
R (�(�) k�(�jx)) :

Z
Rd
y�(dy) = �

�
: (12)

Using the Markov property to combine estimates over small intervals and the
heuristic LD approximation mentioned in Lecture 1, for a smooth trajectory
� that starts at x0 and small � > 0, an even more heuristic calculation gives

P fXn 2 B�(�)g
� P fXn(j�) 2 B�(�(j�)) all 0 � j � b1=�cg

� P

�
Xn(j� + �)�Xn(j�)

�
2 B�

�
�(j� + �)� �(j�)

�

�
; 0 � j � b1=�c

�
�

b1=�cQ
j=0

e�n�L(�(j�);[�(j�+�)��(j�)]=�)

� e�n
R 1
0 L(�(s);

_�(s))ds;

and so one may expect the rate function I(�) =
R 1
0 L(�(s);

_�(s))ds for such
�.

We now turn to the rigorous analysis. As in the previous cases, we will
establish tightness (and as with Cramér�s Theorem a uniform integrability),
and then prove a result which links the limits of weakly converging controls
and controlled processes. We then prove the Laplace principle by showing a
lower bound (which implies the large deviation upper bound) and an upper
bound (which gives the large deviation lower bound). Besides the empirical
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measures
�
�Ln; n 2 N

	
we will make use of an analogous measure that records

the time dependence of the ��ni , and therefore de�ne

��n(A�B) :=
Z
B
��n(Ajt)dt; ��n(Ajt) = ��ni (A) if t 2 [i=n� 1=n; i=n): (13)

4 Statement and Proof of the LDP

Theorem 2 Assume Condition 1, and de�ne Xn by (10). Let

I(�) =

� R 1
0 L(�(s);

_�(s))ds if � 2 Ax0([0; 1] : Rd),
1 otherwise,

where L : Rd � Rd ! [0;1) is de�ned by (12). Then fXn; n 2 Ng satis�es
the LDP in C([0; 1] : Rd) with rate I.

Note that the alternative expression

L(x; �) = sup
�2Rd

[h�; �i �H(x; �)]

mentioned when discussing Cramér�s Theorem applies here as well. A proof
of this fact will be given in Lemma 5. For the rest of this lecture we assume
Condition 1.

4.1 Tightness and uniform integrability

Lemma 3 Consider any sequence of controls f��ni g for which the relative
entropy costs

E

"
1

n

nX
i=1

R
�
��ni (�)



�(�j �Xn
i )
�#

appearing in the representation (11) are uniformly bounded by K < 1.
Then the empirical measures

�
�Ln; n 2 N

	
are tight and in fact uniformly

integrable in the sense

lim
M!1

lim sup
n!1

E

"Z
Rd�[0;1]

kyk 1fkyk�Mg �L
n(dy � dt)

#
= 0:

Also, the processes
�
�Xn; n 2 N

	
are tight, as are the random measures

f��n; n 2 Ng.

Proof. Except for more complicated notation, the proof is almost the same
as for Cramér�s Theorem. We recall from Lecture 3 that if � 2 P(Rd)
satis�es �� �, then for any � � 1Z

Rd
kyk 1fkyk�Mg�(dy) �

Z
Rd
e�kyk1fkyk�Mg�(dy) +

1

�
R (� k� ) :
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This is applied for each i = 1; : : : ; n with (�; �) =
�
��ni (�); �(�j �Xn

i )
�
:

E

"Z
Rd�[0;1]

kyk 1fkyk�Mg �L
n(dy � dt)

#

� sup
x2Rd

Z
Rd
e�kyk1fkyk�Mg�(dyjx) +

1

�
K:

We claim that with � �xed the �rst term vanishes as M ! 1. Using the
bound

e�kyk �
dX
j=1

h
ed�yj + e�d�yj

i
;

it follows that for each j and k and choice of �,

sup
x2Rd

Z
Rd
e�d�yj1f�yk�Mg�(dyjx) � e��M

Z
Rd
e�d�yje��yk�(dyjx)

� e��Mesupx2Rd H(x;�d�ej��ek)

! 0

and the claim follows from this. Sending �rst M ! 1 and then � ! 1
gives tightness and uniform integrability of

�
�Ln; n 2 N

	
.

To establish tightness of
�
�Xn; n 2 N

	
we use the fact that

�Xn(t) =

Z
Rd�[0;t]

y �Ln(dy � dt) + x0: (14)

Tightness will follow if given " > 0 there is � > 0 such that

lim sup
n!1

P fwn(�) � "g = 0; (15)

where wn(�) := sup0�s<t�1:t�s�� kXn(t)�Xn(s)k. Let � > 0 be given, and
choose M <1 such that

lim sup
n!1

E

"Z
Rd�[0;1]

kyk 1fkyk�Mg �L
n(dy � dt)

#
� "�

2
:

Let � :
= ("=2M) ^ 1. Then since M� � "=2;

sup
0�s<t�1:t�s��

Z
Rd�[s;t]

kyk 1fkyk�Mg �L
n(dy � dt) �M� � "

2
:

Hence

P fwn(�) � "g � P

(Z
Rd�[0;1]

kyk 1fkyk�Mg �L
n(dy � dt) � "

2

)

� 2

"
E

"Z
Rd�[0;1]

kyk 1fkyk�Mg �L
n(dy � dt)

#
� �:
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Since � > 0 is arbitrary, the limit (15) follows.
Finally, f��n; n 2 Ng is tight because each ��n is just a conditional mean of

the corresponding �Ln, since �vni has conditional distribution ��
n
i (see Lemma

9 of Lecture 2).

4.2 Weak convergence

When taking limits we will need to keep track of �(�j �Xn
i ). With this in mind

we introduce

�n(A�B) :=
Z
B
�n(Ajt)dt; �n(Ajt) = �(Aj �Xn

i ) if t 2 [i=n� 1=n; i=n):

Lemma 4 Consider any sequence of controls f��ni g for which the relative
entropy costs

E

"
1

n

nX
i=1

R
�
��ni (�)



�(�j �Xn
i )
�#

appearing in the representation (11) are uniformly bounded. Let
�
( �Xn; �Ln; ��n);

n 2 Ng denote a weakly converging subsequence, which for notational con-
venience we label by n, with limit ( �X; �L; ��). Then w.p.1 �L = ��, and
��(dy � dt) can be decomposed as ��(dyjt)dt, where ��(dyjt) is a stochastic
kernel on Rd given [0; 1], and

�X(t) =

Z
Rd�[0;t]

y��(dy � dt) + x0 =
Z
Rd�[0;t]

y��(dyjt)dt+ x0: (16)

In addition, �n converges weakly to a limit � of the form

�(A�B) =
Z
B
�(Aj �X(t))dt:

Proof. Precisely the same martingale argument as in the proof of Sanov�s
Theorem can be used to show that �L = �� w.p.1. The uniform integrability
allows us to pass to the limit in (14) and obtain

�X(t) =

Z
Rd�[0;t]

y �L(dy � dt) + x0:

Now use that �L = �� w.p.1. to get the �rst part of (16). Since each ��n(dy�dt)
has Lebesgue measure as its second marginal the same is true for ��, and so
both the decomposition and the second part of (16) follow. Finally, the weak
convergence of �n and the form of the limit follow from the weak convergence
of �Xn to �X and the assumption that x! �(Ajx) is continuous.
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4.3 Lower bound

To prove the lower bound on the representation we again follow the line of
argument used for Cramér�s Theorem. The �rst step is to specialize the
representation for application to fXn; n 2 Ng. Let F : C([0; 1] : Rd) ! R
be bounded and continuous. Since Xn is a measurable function of Ln, the
representation (11) implies

� 1
n
logEe�nF (X

n) = inf
f��ni g

E

"
F ( �Xn) +

1

n

nX
i=1

R
�
��ni (�)



�(�j �Xn
i )
�#
:

The de�nitions of ��n and �n as measures that are piecewise constant in t
gives the �rst inequality and the chain rule gives the second in the following:

1

n

nX
i=1

R
�
��ni (�)



�(�j �Xn
i )
�
=

Z
[0;1]

R (��n(�jt) k�n(�jt)) dt (17)

= R (��n(dy � dt) k�n(dy � dt)) :

Now choose any " > 0, and let f��ni ; i 2 f1; : : : ; ngg satisfy

� 1
n
logEe�nF (X

n) + " � E

"
F ( �Xn) +

1

n

nX
i=1

R
�
��ni (�)



�(�j �Xn
i )
�#
:

Consider any subsequence of
�
( �Xn; ��n; �n); n 2 N

	
that converges to a weak

limit ( �X; ��; �), and denote the convergent subsequence by n. If the lower
bound is demonstrated for this subsequence, the standard argument by con-
tradiction establishes the lower bound for the original sequence. The details
of the following calculation are given after the display:

lim inf
n!1

� 1
n
logEe�nF (X

n) + "

� lim inf
n!1

E

"
F ( �Xn) +

1

n

nX
i=1

R
�
��ni (�)



�(�j �Xn
i )
�#

= lim inf
n!1

E
�
F ( �Xn) +R (��n(dy � dt) k�n(dy � dt))

�
� E

�
F
�
�X
�
+R (��(dy � dt) k�(dy � dt))

�
= E

"
F
�
�X
�
+

Z
[0;1]

R
�
��(dyjt)



�(dyj �X(t))� dt#

� E

"
F
�
�X
�
+

Z
[0;1]

L( �X(t); _�X(t))dt

#
� inf

�2C([0;1]:Rd)
fF (�) + I(�)g :

The �rst equality uses the rewriting of the relative entropy in (17); the
next inequality is due to the weak convergence, the lower semicontinuity
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of R (� k�) and continuity of F , and Fatou�s lemma; the next equality uses
the decompositions ��(dy � dt) = ��(dyjt)dt and �(dy � dt) = �(dyj �X(t))dt;
the third inequality uses Lemma 4 and the de�nition of L in (12); the last
equality uses the de�nition of I and the fact that �X(0) = x0 w.p.1.

4.4 I is a rate function

In the weak convergence approach, a deterministic version of the argument
used to prove the lower bound usually shows that the proposed rate function
is indeed a rate function, i.e., that it has compact level sets. Suppose that�
�j ; j 2 N

	
is given such that I(�j) � K < 1. Then we need to show�

�j ; j 2 N
	
is precompact, and that if �j ! � then

lim inf
j!1

I(�j) � I(�):

It follows from the de�nition of L in (12) that for each j there is a
probability measure �j(dy � dt) such that

I(�j) +
1

j
�
Z
[0;1]

R
�
�j(dyjt)



�(dyj�j(t))� dt;
where �j(dy � dt) = �j(dyjt)dt and

R
Rd y�

j(dyjt) = _�j(t). Using I(�j) �
K <1, exactly the same argument as in Lemma 3 shows that

�
�j ; j 2 N

	
is tight and uniformly integrable, and a deterministic version of Lemma
4 shows that if �j denotes a convergent subsequence with limit �, then
�j ! � where

R
Rd y�(dyjt) = _�(t). Using the lower semicontinuity of relative

entropy and the same arguments just used for the lower bound, we have

lim inf
j!1

�
I(�j) +

1

j

�
� lim inf

j!1
R
�
�j(dy � dt)



�(dyj�j(t))dt�
�

Z
[0;1]

R (�(dyjt) k�(dyj�(t))) dt

�
Z
[0;1]

L(�(t); _�(t))dt

= I(�):

4.5 Upper bound

To prove the upper bound and complete the proof of the theorem, we must
take a trajectory � that nearly minimizes in inf�2C([0;1]:Rd) fF (�) + I(�)g
and show how to construct a control that can be applied to the repres-
entation which will have asymptotically the same cost. This requires some
regularity properties of L(x; �), which we now state. The proof of this result
is given at the end of the notes.
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Lemma 5 De�ne L(x; �) by (12). Then L is continuous on Rd � Rd, and
convex in � for each �xed x.

We can now approximate a nearly minimizing trajectory and construct
a control for the representation. Fix " > 0. Then there is  2 C([0; 1] :
Rd) such that [F ( ) + I( )] � inf�2C([0;1]:Rd) [F (�) + I(�)] + ". While
f (t) : 0 � t � 1g is bounded by continuity, we also claim we can assume,
without loss of generality, that f _ (t) : 0 � t � 1g is bounded. This claim
will be shown after we complete the proof.

Let M <1 and K <1 be such that

sup
t2[0;1]

k (t)k _ sup
t2[0;1]

jj _ (t)jj �M; sup
(x;�):kxk�M+1;k�k�M+1

L(x; �) � K:

For � > 0 let  � be the piecewise linear interpolation of  , with interpol-

ation points t = k�. Since supt2[0;1] jj �(t)jj � M and supt2[0;1] jj _ 
�
(t)jj �

M , the dominated convergence theorem implies there is � > 0 such that�
F ( �) + I( �)

�
� [F ( ) + I( )] + ". We set �� =  � for such a �.

The construction of a control to apply in the representation is now
straightforward. Given (x; �), one can choose ��x;� in a measurable way
(as a function of x; �) such thatZ

Rd
y��x;�(dy) = � and R

�
��x;�(dy) k�(dyjx)

�
� L(x; �) + ":

Recall that ��ni depends on time and is also allowed to be any measurable
function of �Xn

j ; j = 0; : : : ; i. De�ne N
n = inffj : jj �Xn

j � ��(j=n)jj > 1g ^ n.
Then we set

��ni (�) =
(
���Xn

i ;
_�
�
(i=n)

(�) if i � Nn

�(�j �Xn
i ) if i > Nn

:

The cost under this control satis�es

E

"
1

n

nX
i=1

R
�
��ni (�)



�(�j �Xn
i )
�#
� E

"
1

n

NnX
i=1

L( �Xn
i ;
_�
�
(i=n)) + "

#
� K + ":

It follows that Lemma 3 applies. Since �n :
= Nn=n takes values in a compact

set, given any subsequence of N we can �nd a further subsequence (again
denoted by n) such that ( �Xn; ��n; �n) converges in distribution to a limit
( �X; ��; �). It follows from the fact that the mean of ��ni is _�

�
(i=n) for i � Nn

that Z
Rd�[0;t]

y��(dyjt)dt+ x0 = ��(t)

for all t 2 [0; � ], and therefore �X(t) = ��(t) for all t 2 [0; � ], w.p.1. The
de�nition of Nn implies that whenever � < 1, lim sups#�



 �X(s)� ��(�)

 �
1. However this contradicts the fact that �X has continuous sample paths,
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and thus � = 1 w.p.1. Therefore along the full sequence N, �Xn converges in
distribution to ��.

We can now put the pieces together to prove the upper bound. For the
particular control f��ni g just constructed, we have

lim sup
n2N

� 1
n
logEe�nF (X

n)

� lim sup
n2N

E

"
F ( �Xn) +

1

n

nX
i=1

R
�
��ni (�)



�(�j �Xn
i )
�#

� lim sup
n2N

E

"
F ( �Xn) +

1

n

nX
i=1

L( �Xn
i ;
_�
�
(i=n)) + "

#

=

"
F (��) +

Z
[0;1]

L(��(t); _�
�
(t))dt+ "

#
� inf

�2C([0;1]:Rd)
[F (�) + I(�)] + 3":

Since " > 0 is arbitrary, the upper bound (and hence the large deviation
lower bound) follows.

Lemma 6 Consider  2 C([0; 1] : Rd) such that [F ( ) + I( )] <1. Then
given " > 0, there is  � such that f _ �(t) : 0 � t � 1g is bounded and
[F ( �) + I( �)] � [F ( ) + I( )] + ".

Proof. For � 2 (0; 1) let D�
:
= ft : jj _ (t)jj � 1=�g, and de�ne a time

rescaling S� : [0; 1]! [0;1) by S�(0) = 0 and

_S�(t) =

�
jj _ (t)jj=(1� �) t 2 D�

1 otherwise.

Then S�(t) is continuous and strictly increasing. Let T� be de�ned by
T�(S�(t)) = t. Then T� is de�ned on [0; S�(1)] � [0; 1], and when con-
sidered on [0; 1]

 �(t)
:
=  (T�(t))

is a �slowed�version of  . By the chain rule _ �(S�(t)) = _ (t)= _S�(t), and
therefore _ �(t) has uniformly bounded derivative.  

� in the lemma will be
 � for large but �nite �.

First note that since I( ) <1 we have

lim
�!0

Z 1

0
1D�(t)L( (t);

_ (t))dt = 0:

Owing to part 1 of Condition 1, L(x; �) is uniformly superlinear in �, i.e.,
L(x; �)=jj�jj ! 1 uniformly in x as jj�jj ! 1. Therefore the last display
implies

lim
�!0

Z 1

0
1D�(s)jj _ (t)jjdt = 0;
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which in turn implies lim�!0 S�(s) = s uniformly for s 2 [0; 1]. Since

sup
t2[0;1]

jj �(t)� (t)jj = sup
t2[0;1]

jj (T�(t))� (t)jj = sup
t2[0;T�(1)]

jj (s)� (S�(s))jj;

supt2[0;1] jj �(t)�  (t)jj ! 0 as �! 0.
Thus we need only show that I( �) is close to I( ). Let

�
:
= sup

t2[0;1]
sup

�:jj�jj�1
L( (t); �) <1:

For t 2 D� the non-negativity of L implies

L

 
 (t);

_ (t)
_S�(t)

!
_S�(t)� L( (t); _ (t)) � L

 
 (t);

(1� �) _ (t)
jj _ (t)jj

!
jj _ (t)jj
1� �

� �

1� � jj
_ (t)jj

and therefore

I( �)� I( ) �
Z S�(1)

0
L( �(t);

_ �(t))dt�
Z 1

0
L( (t); _ (t))dt

=

Z 1

0
L( �(S�(t));

_ �(S�(t))) _S�(t)dt�
Z 1

0
L( (t); _ (t))dt

=

Z 1

0
L

 
 (t);

_ (t)
_S�(t)

!
_S�(t)dt�

Z 1

0
L( (t); _ (t))dt

� �

1� �

Z 1

0
1D�(s)jj _ (t)jjdt:

We can now let �! 0.

4.6 Proof of Lemma 5

Proof. We �rst show that L is �nite on Rd � Rd. Since for each x the
support of �(�jx) is all of Rd (part 3 of Condition 1), the map �! H(x; �)
is superlinear, which implies that for each x 2 Rd the gradient D�H(x; �) is
onto Rd. Since the map is also convex, given � there is a unique vector �(�)
such that D�H(x; �(�)) = �. Setting �(dy) = eh�(�);yi�(dyjx)=eH(x;�(�)),
we haveZ

Rd
y�(dy) =

1

eH(x;�(�))

Z
Rd
yeh�(�);yi�(dyjx) = D�H(x; �(�)) = �:

Direct calculation using the form of �(dy) and the de�nition of relative
entropy then gives

L(x; �) � R (�(dy) k�(dyjx)) = h�(�); �i �H(x; �(�)) <1: (18)
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The convexity of L in � follows directly from the de�nition of L. Suppose
�i, i = 1; 2, come within " > 0 of achieving the in�mum for �i, i = 1; 2.
Then for any � 2 [0; 1]Z

Rd
y [��1(dy) + (1� �)�2(dy)] = ��1 + (1� �)�2:

Since relative entropy is convex,

L(x; �) � R ([��1(dy) + (1� �)�2(dy)] k�(dyjx))
� �L(x; �1) + (1� �)L(x; �2) + ";

and the convexity holds since " > 0 is arbitrary. Using the lower semicon-
tinuity of relative entropy, one can likewise show that L(x; �) is jointly lower
semicontinuous, and hence � ! L(x; �) is a proper convex function for each
�xed x.

We next claim that

L(x; �) = sup
�2Rd

[h�; �i �H(x; �)] : (19)

Using the de�nition of L, we have

H(x; �) = sup
�2P(Rd)

�Z
Rd
h�; yi�(dy)�R (�(dy) k�(dyjx))

�
:

Consider the sequence gN;�(y) = [h�; yi _ �N ] ^ N of bounded continuous
functions. By duality for relative entropy (Lemma 4 of Lecture 2)

log

Z
Rd
egN;�(y)�(dyjx) = sup

�2P(Rd)

�Z
Rd
gN;�(y)�(dy)�R (�(dy) k�(dyjx))

�
:

As discussed previouslyH(x; �) <1 for all � 2 Rd implies
R
Rd e

�jjyjj�(dyjx) <
1 for all � 2 (0;1), which provides a dominating function to use when tak-
ing limits on the left hand side. Now �x any measure � 2 P(Rd) for which
R (�(dy) k�(dyjx)) <1. As was argued in the proof of Cramér�s Theorem,
we have uniform integrability of gN;�. Passing to the limit in

log

Z
Rd
egN;�(y)�(dyjx) �

Z
Rd
gN;�(y)�(dy)�R (�(dy) k�(dyjx))

gives

R (�(dy) k�(dyjx)) �
�
�;

Z
Rd
y�(dy)

�
�H(x; �);

and therefore for all �

L(x; �) � h�; �i �H(x; �):
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By (18) there is an � for which the reverse inequality holds, and therefore
(19) follows.

Joint continuity of H(x; �) follows from the weak continuity of x !
�(dyjx) and the dominated convergence theorem. We now show that joint
continuity of L(x; �) follows from this. If a sequence of di¤erentiable convex
functions gi with Legendre transforms g�i converge pointwise to another dif-
ferentiable convex function g with transform g�, and if � is any point such
that g�(�) <1, then whenever �i ! � we have g�i (�i)! g�(�) [14, Lemma
C.8.1]. We apply this result with g�i (�) = H(xi; �) and g(�) = H(x; �), to
conclude that if xi ! x and �i ! �, then L(xi; �i)! L(x; �).
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Lecture 7: Extracting Information From the
Variational Problem

In this lecture we remark on methods for solving the variational problem
that arises in the large deviation study of time dependent, nearly determin-
istic systems. As one might suspect there is no single technique�one needs
to use whatever structure the problem o¤ers. Methods for approximating
variational problems associated with empirical measure problems are less
well studied, and a few remarks on this topic are given in Lecture 11.

1 Example problems

To illustrate the di¤erent methods but at the same time keep the discussion
focused, we will consider a few canonical problems. There are many similar
and closely related problems which allow an analogous treatment. Through-
out, we assume there is a process fX"; " 2 (0; 1)g for which a large deviation
principle holds for any initial condition x 2 Rd and any interval [0; T ]. We
assume that the rate function takes the form

IT (�) =

Z T

0
L(�(t); _�(t))dt

whenever it is �nite. When the process is suitably �stationary,�this is very
mild assumption. Additional assumptions will be placed on L in the sequel,
but at a minimum it is assumed non-negative and lower semicontinuous,
and convex in the second variable. Note that L(x; �) =1 is allowed. This
happens when the noise in the system does not push the state in all directions
in Rd.

Example 1 (Hitting a rare set before entering a neighborhood
of a stable point) We consider two Borel sets A;B � Rd, where A con-
tains a global attractor for the zero cost trajectories of the rate function, and
an initial condition x 2 (A [B)c. The problem of interest is the estimation
of

Px fX" enters B before entering Ag :

One can prove under appropriate conditions that

�" logPx fX" enters B before entering Ag ! V (x);

where

V (x)
:
= inf

�Z T

0
L(�(t); _�(t))dt : � 2 Cx;T , T <1

�
;

and

Cx;T = f�(0) = x; �(t) 2 B for some t 2 [0; T ] and �(s) =2 A for s 2 [0; t]g :
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Figure 8: Stability of the zero cost trajectories

There are two types of conditions (besides the large deviation principle)
needed for such a limit to hold. The �rst is a regularity condition on A;B
and L which essentially guarantees that the in�mum of the rate over the
interior and closure of Cx;T agree. The second is an assumption on �(x)

:
=

f� : L(x; �) = 0g which asserts that all solutions to _�(t) 2 �(�(t)) converge
in some sense to A as t!1. The multi-dimensional random walk (Example
1 of Lecture 1) is an example of this type, although in this case A is not
needed (or could be interpreted as points �at �1�). Such a criterion would
also be suitable for the di¤usion process that models a tracking loop of
Lecture 1 (with A a neighborhood of 0 and B the complement of the domain
of attraction), as well as the queueing model of Lecture 1 (with A = f0g
and B corresponding to the second queue exceeding the bu¤er size).

Example 2 (Problems on a finite time interval) We consider a Borel
set B � Rd and T 2 (0;1), and use large deviations to estimate either

Px fX" enters B before Tg or Px fX"(T ) 2 Bg :

In the �rst case we assume any solution to _�(t) 2 �(�(t)); �(0) = x will
not enter B by T , and in the second case �(T ) =2 B. As before, regularity
conditions on @B and L are required for the in�mum over the closure and
interior to agree. Under these conditions we have

�" logPx fX" enters B before Tg ! V (x);

where

V (x)
:
= inf

�Z T

0
L(�(t); _�(t))dt : �(0) = x; �(t) =2 B for all t 2 [0; T ]

�
;
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and similarly for the second case.

Example 3 (Risk-sensitive cost) Let F : Rd ! R be bounded and con-
tinuous and let T 2 (0;1), and suppose we seek to approximate Exe�

1
"
F (X"(T )).

Then
�" logExe�

1
"
F (X"(T )) ! V (x);

where

V (x)
:
= inf

�Z T

0
L(�(t); _�(t))dt+ F (�(T )) : �(0) = x

�
:

Depending on the use, one may want to solve for just a particular initial
condition, �nd the solution for all initial conditions (i.e., the solution to the
related PDE), or something in between (e.g., subsolutions of the PDE�see
Lectures 9 and 10).

2 Related PDE

The PDE related to these examples can be derived by a formal application
of dynamic programming. Here we will just state the PDE and relevant
terminal/boundary conditions. The use of these PDE will also be formal,
and in particular we will not worry about questions of uniqueness.

PDE for Example 1 The PDE for the �rst example is as follows. Let

H(x; �) = sup
�2Rd

[h�; �i � L(x; �)] ;

and recall that in the large deviation theory developed in previous lecturesH
had an interpretation as a log-moment generating function or some similar
quantity, and was often available in explicit form. Let DV (x) denote the
gradient of V : Rd ! R. The PDE based on dynamic programming that
should characterize V (x) is

inf
�2Rd

[hDV (x); �i+ L(x; �)] = 0 for x 2 (A [B)c

together with the boundary conditions

V (x) = 0 for x 2 @B and V (x) =1 for x 2 @A:

In the appropriate framework of viscosity solutions the condition on @A is
relaxed to V (x) � 1, and therefore may be ignored. It is convenient to
introduce the function H : Rd � Rd ! R de�ned by

H(x; p) = inf
�2Rd

[hp; �i+ L(x; �)] = � sup
�2Rd

[h�p; �i � L(x; �)] = �H(x;�p)
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so that the PDE is written as H(x;DV (x)) = 0 for x 2 (A[B)c. Note that
since H(x; �) is convex in �, H(x; p) is concave in p.

PDE for Example 2 For the second example, we should �rst extend the
de�nition of V to allow any initial condition (t; x); t 2 [0; T ]; x =2 B, and
minimize over all trajectories that satisfy the initial condition �(t) = x.
The PDE for the problem of entering a rare set B during an interval [0; T ]
takes the form

Vt(t; x) +H(x;DV (t; x)) = 0 for (t; x) 2 (0; T )�Bc;

together with the boundary and terminal conditions

V (t; x) = 0 for (t; x) 2 [0; T )� @B and V (T; x) =1 for x 2 Bc:

The solution to the variational problem corresponds to V (0; x).

PDE for Example 3 The PDE for the problem involving the risk-sensitive
cost Exe�

1
"
F (X"(T )) takes the form

Vt(t; x) +H(x;DV (t; x)) = 0 for (t; x) 2 (0; T )� Rd; (20)

together with the terminal condition V (T; x) = F (x).

3 Using convexity

The simplest problems for which a more-or-less explicit solution is possible
are those which exploit convexity.

Example 4 We consider again the multi-dimensional random walk model
(Example 1 of Lecture 1), and the associated variational problem. To sim-
plify the notation let d = 2. Assume b is the unique point for which L(b) = 0,
and that bi < 0 for i = 1; 2. The variational problem can then be reduced
to

V (x)
:
= inf

�Z T

0
L( _�(t))dt : �(0) = x; �1(T ) �M1 or �2(T ) �M2, T <1

�
= V1(x) ^ V2(x);

where

Vi(x) = inf

�Z T

0
L( _�(t))dt : �(0) = x; �i(T ) �Mi, T <1

�
; i = 1; 2:

Since L is convex by Jensen�s inequality
R T
0 L( _�(t))dt � TL([�(T )� x]=T ),

and hence one can restrict to paths with constant velocity in Vi(x), i.e.,
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�(t) = x+ t�. To satisfy the constraint requires �i � [Mi � xi]=T , and it is
easy to argue that the minimizer will satisfy this with equality. Thus

Vi(x) = inf fTL(�) : T�i = (Mi � xi); T <1g :

It is easy to check that Vi(x) is a¢ ne in x, with a gradient in the direction
of ei (the standard basis vectors). Thus Vi(x) =



x; pi

�
+ ci, with pij = 0 if

i 6= j.

Figure 9: Roots for H(p) = 0

Since Vi should satisfy H(DVi(x)) = 0 we �nd H(pi) = 0, and using the
boundary condition to solve for ci gives Vi(x) =



(x�Miei); p

i
�
, where the

roots pi are illustrated in Figure 9. That the relevant roots of H(�) = 0
have positive components is due to the facts that H(0) = 0; DH(0) = b < 0
and convexity, while the negativity of the roots to H(p) = 0 follows from
H(p) = �H(�p). Having constructed a candidate solution, one can use a
veri�cation argument (with a suitable generalization of the chain rule) to
prove that in fact V (x) = V1(x) ^ V2(x).

Remark 1 Many problems from stochastic networks have �sectionally ho-
mogeneous�dynamics, such as the queueing example (Example 4 in Lecture
1), and as a consequence L(x; �) has a very structured dependence on x.
In Example 4, L(x; �) is independent of x in any of the sets S;D; @1 and
@2 indicated in Figure 10. Using convexity of L(x; �) within these regions,
one can argue that minimizing trajectories have constant velocities within
these sets, and thereby reduce the minimization problem over trajectories
to a �nite dimensional minimization. Examples of this sort can be found in
[22, 21, 25, 29, 30].

4 Other explicit solutions

There are other classes of system dynamics for which one can obtain an ex-
plicit solution. The most well known of these corresponds to large deviations
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Figure 10: Jump rates and partition of the state space for the scaled system.

for the linear SDE

dX"(t) = �B(t)X"(t)dt+
p
" �A(t)dW (t);

where �B(t) is deterministic and takes values in the space of d� d matrices,
�A(t) takes values in the space of d�k matrices, andW (t) is a k-dimensional
standard Brownian motion. Assume that �B(t) and �A(t) are continuous. It
follows from Lecture 4 that the local rate function L(x; �) for this process
takes the form

L(x; �) =
1

2

D�
� � �B(t)x

�
;
�
�A(t) �A(t)T

��1 �
� � �B(t)x

�E
(21)

if �A(t) �A(t)T is positive de�nite. When �A(t) �A(t)T is only non-negative def-
inite there is a similar form in those directions � in which the noise can push
the system, and value 1 for all other directions.

Owing to the quadratic form of L(x; �), explicit solutions are possible
in terms of the famous linear-quadratic-regulator (LQR) from the theory
of deterministic optimal control [46]. Consider the risk-sensitive cost in
Example 3 with F quadratic. If one assumes the form

V (t; x) =
1

2
h(x� b(t)); a(t) (x� b(t))i+ c(t)

and inserts this into (20) then a coupled system of ODEs for a; b and c is
obtained, together with terminal conditions from V (T; x) = F (x). From
these one can construct a solution to the PDE, and again a veri�cation
argument can be used to show that V (t; x) indeed characterizes the solution
to the variational problem for all x and t.

The LQR can also be used to solve other problems that are not of exactly
the LQR form, though only for particular initial conditions. For example,

59



consider the problem of approximating the probability Px fX"(T ) 2 Bg.
This leads to the same PDE as the LQR, but with the terminal condition

F (x) =

�
0 x 2 B
1 x 2 Bc :

One can consider bounding F from below by the minimum of a �nite col-
lection of quadratic functions Uj(x); j = 1; : : : ; J , and then solving the LQR
for each terminal condition Uj to produce Vj(t; x). This yields the lower
bound

V (t; x) � min
j=1;:::;J

Vj(t; x)

which under suitable conditions can be made tight by optimizing over the
�nite set of parameters that describe Uj(x); j = 1; : : : ; J . For example, if
d = 1 and B = [l1; l2] is an interval, then it su¢ ces to consider Ui(x) =
bi(x� li); i = 1; 2 with b1 > 0 and b2 < 0 (see Lecture 9).

Although the form (21) appears special, we would note that this is the
generic form that appears with moderate deviations (see Lecture 5), regard-
less of whether the underlying process model is Gaussian or not. Finally, we
remark that other broad classes of models exist which admit explicit solu-
tions but which are less well known. An example of such are the variational
problems one needs to solve in connection with the occupancy problems
(Example 5 of Lecture 1) [31].

5 Gradient systems

Recall that the quasipotential with respect to the starting point 0 was
de�ned in Lecture 5 by

Q(x) = inf

�Z T

0
L(�; _�)dt : �(0) = 0; �(T ) = x; T <1

�
:

Although none of Examples 1-3 can be directly solved based on just the
quasipotential, their solutions can sometimes be approximated in terms of
Q, and there are other variational problems such as those mentioned in Lec-
ture 5 for which it gives the exact solution. It was remarked in Example 1
of Lecture 5 that Q(x) could be found explicitly for certain types of gradi-
ent systems, and here we will �ll in some of the details using a classical
veri�cation argument. Assume L(x; �) = (� � b(x))2=2, where 0 is a global
attractor for b and that b(x) = �DU(x) + `(x), where U is smooth with its
unique local minimum of 0 at 0 and hDU(x); `(x)i = 0. The claim is that Q
has the explicit solution 2U .

We will use the control form

Q(x) = inf

�Z T

0

1

2
kuk2 dt : _� = b(�) + u; �(0) = 0; �(T ) = x; T <1

�
:
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First note that a formal dynamic programming argument suggests that Q
should satisfy

0 = inf
u2Rd

�
�hDQ(x); b(x) + ui+ 1

2
kuk2

�
=

�
�hDQ(x); b(x)i � 1

2
kDQ(x)k2

�
:

Trying the proposed solution indeed gives

�2 hDU(x);�DU(x) + `(x)i � 2 kDU(x)k2 = 0

since by assumption hDU(x); `(x)i = 0. From

inf
u2Rd

�
�2 hDU(x); b(x) + ui+ 1

2
kuk2

�
= 0

it follows that
�2 hDU(x); b(x) + ui+ 1

2
kuk2 � 0

for all u 2 Rd, with equality if and only if u = 2DU(x).
Now consider any control u in the de�nition of Q. By the chain rule and

the last display

d

dt
2U(�(t)) = 2 hDU(�(t)); b(�(t)) + u(t)i � 1

2
ku(t)k2 ;

and integrating givesZ T

0

1

2
ku(t)k2 dt � 2U(x)� 2U(0) = 2U(x):

Thus Q(x) � 2U(x). To prove the reverse inequality we solve _� = b(�) +
2DU(�) = `(�)+DU(�) backward in time with terminal condition �(T ) = x.
This corresponds to using u(t) = 2DU(�(t)), and since equality holds givesZ T

0

1

2
ku(t)k2 dt = 2U(x)� 2U(�(0)):

Stability of b and the condition hDU(x); `(x)i = 0 imply �(0) ! 0 as T !
1, and therefore Q(x) � 2U(x).

Explicit formulas for the quasipotential are not limited to such Gaussian
rate functions, and even hold for some in�nite dimensional problems [39].

6 Numerical methods

When an analytic solution or approximate solution is not possible one can at-
tempt a numerical solution. However, these are also limited in their range of
application and/or e¤ectiveness. There are methods which attempt a global
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solution to the variational problem, either directly (e.g., Markov chain ap-
proximations as in Kushner-Dupuis or in�nite dimensional linear program-
ming as in Gaitsgory) or through the PDE (e.g., �nite di¤erence approxim-
ations as in Bardi-Falcone or the max-plus method of McEneaney). Other
methods seek a solution to the variational problem at a particular initial
condition. Examples in this category are the string method as in E-Vanden-
Eijnden and the elastic band method of Jonsson, which utilize a descent
in the space of trajectories to �nd a local minimizer, as well as shooting
methods based on the Euler-Lagrange equations. This latter class of meth-
ods is better suited to problem with large dimension (if one is interested in
only a particular initial condition), but as noted it may produce only a local
minimizer to the variational problem.
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Lecture 8: An Overview of Importance Sampling
for Rare Events

In previous lectures we have described how large deviation theory gives
approximations for various distributions, and in particular approximations
to expected values and probabilities that are largely determined by rare
events. These approximations take the form of logarithmic asymptotics, i.e.,
exponential decay rates.2 For some purposes, especially when one is seeking
qualitative information on how a rare event occurs, these approximations
may be su¢ cient. However the quantitative value of the approximation
may not be su¢ cient, and improved estimates may be sought.

In this situation it is natural to turn to Monte Carlo approximation.
However, as we will explain in some detail, the Monte Carlo approximation
of small probabilities and related expected values also has di¢ culties owing
to the role of rare events, and the design of reliable schemes requires great
care. It turns out that many of the tools and constructions used for the
large deviation analysis of a given problem can be used for the problem of
designing Monte Carlo schemes that are e¢ cient and reliable. These topics
will be discussed in this lecture and the two that follow.

1 Example of a quantity to be estimated

We return to a problem mentioned in Lecture 7, which is to evaluate

Px fXn enters B before entering Ag ;

where the set A is an attractor of the noiseless system and B is rare. As
a process model we consider the setup of Lecture 6, which is the general
Markov model based on iid random vector �elds

�
vi(y); y 2 Rd

	
, and de�ned

by

Xn
i+1 = Xn

i +
1

n
vi(X

n
i ); Xn

0 = x

and

Xn(t) = Xn
i +

�
Xn
i+1 �Xn

i

�
(nt� i) ; t 2

�
i

n
;
i+ 1

n

�
:

We recall the notation

H(y; �) = logE exp h�; vi(y)i ; L(y; �) = sup
�2Rd

[h�; �i �H(y; �)] :

We also recall that under some mild regularity conditions

� 1
n
logPx fXn enters B before entering Ag ! V (x);

2For certain special structures one can obtain more accurate approximations, e.g., ap-
proximations which identify both the exponential rate of decay as well as �pre-exponential�
terms.
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Figure 11: Stability of the zero cost trajectories

where

V (x)
:
= inf

�Z T

0
L(�(t); _�(t))dt : � 2 Cx;T , T <1

�
;

and

Cx;T = f�(0) = x; �(t) 2 B for some t 2 [0; T ] and �(s) =2 A for s 2 [0; t]g :

2 Basics of Monte Carlo

The problem of interest is to estimate

pn(x)
:
= Px fXn enters B before entering Ag :

Let Cx
:
= [T2(0;1)Cx;T , the trajectories that enter B before entering A. For

standard Monte Carlo one simulatesK independent copies fXn
k ; k = 1; : : : ;Kg

of Xn, and then forms the estimate

p̂nK(x)
:
=
1

K

KX
k=1

1fXn
k 2Cxg:

Note that k here is the index of the sample and not the time step.
The variance of a single sample is

Var(1fXn
k 2Cxg) = E

h
1fXn

k 2Cxg � E1fXn
k 2Cxg

i2
= E1fXn

k 2Cxg �
�
E1fXn

k 2Cxg
�2

= pn(x)� (pn(x))2 ;
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and since pn(x) is exponentially small (pn(x))2 can be neglected. The relative
error, which is de�ned by the ratio of the standard deviation of p̂nK(x) and
pn(x), is then p

Var(p̂nK(x))
pn(x)

�
r
pn(x)

K
� 1

pn(x)
=

s
1

Kpn(x)
:

Thus to obtain a relative error of size roughly 1 requiresK � enV (x) samples.
This is computationally infeasible when pn(x) is very small (e.g., 10�5), or
even when pn(x) is not so small if the computational e¤ort needed to gen-
erate samples of Xn is great. This is typical in many problems where rare
event estimation is important. For example, consider the problem of estim-
ating the probability of an unusually large concentration of pollutant in a
model for ground water contamination. The generation of each sample would
typically involve solving a time dependent partial di¤erential equation, and
hence each sample is computationally expensive.

An alternative is to construct iid random variables 
n1 ; : : : ; 

n
K with

E
n1 = pn(x), and use the unbiased estimator

q̂nK(x)
:
=

n1 + � � �+ 
nK

K
:

The performance as with ordinary Monte Carlo is determined by variance
of 
n1 , and since E


n
1 = pn(x), minimizing the variance is equivalent to

minimizing E (
n1 )
2.

It is easy to obtain bounds on the best possible performance. For ex-
ample, by Jensen�s inequality

� 1
n
logE (
n1 )

2 � � 2
n
logE
n1 = �

2

n
log pn(x)! 2V (x):

Hence the decay rate for the second moment cannot possible exceed 2V (x).
An estimator is called asymptotically e¢ cient if

lim inf
n!1

� 1
n
logE (
n1 )

2 � 2V (x);

i.e., the decay rate is achieved.
One could consider more stringent measures of performance, such as

bounded relative error : there is K <1 such that

lim sup
n!1

p
Var(
n1 )
pn(x)

� K;

and for systems with very simple structure this is sometimes possible. How-
ever, even mild complicating features (e.g., state dependent coe¢ cients in a
small noise di¤usion) make this not feasible.
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There are at least two well known methods to design random variables
f
nkg that are unbiased, which can be simulated with reasonable e¤ort, and
for which one hopes to get good performance: importance sampling and
splitting schemes. In these notes we will focus on importance sampling
(IS), though many of the constructions needed for the successful design and
analysis are essentially the same for both approaches [10, 11].

We stress that for any approach to this problem a rigorous and independ-
ent analysis of performance is very important, since typical methods one
would use to assess accuracy of the estimates (e.g., the empirical variance)
are prone to the same di¢ culties and errors which can a¤ect the estimates
themselves. This point will be illustrated in the numerical examples.

3 Importance sampling

3.1 Generalities

The idea of importance sampling is simple. Suppose the random variable
X taking values in a Polish space S has distribution �, and the goal is to
approximateM = Ef(X) =

R
S f(x)�(dx). An alternative probability meas-

ure � on S is introduced with the property that � is absolutely continuous
with respect to �, so the Radon-Nykodym derivative (or likelihood ratio)
[d�=d�](x) is well de�ned. One then simulates a random variable Y with
distribution �, and forms the estimate f(Y ) � [d�=d�](Y ), which is unbiased
since

Ef(Y )
d�

d�
(Y ) =

Z
S
f(x)

d�

d�
(x)�(dx) =

Z
S
f(x)�(dx):

The (single sample) variance of this estimator is then

E

�
f(Y )

d�

d�
(Y )�M

�2
= E

�
f(Y )

d�

d�
(Y )

�2
�M2:

Depending on the choice of �, the variance may be larger or smaller than
ordinary Monte Carlo. The bene�ts (and dangers!) are especially acute in
the rare event setting, since as we will see [d�=d�] scales exponentially in n,
the large deviation parameter.

Consider the case of estimating a probability, so that 1fY 2Ag[d�=d�](Y )
is used to estimate p = P fX 2 Ag. Ordinary Monte Carlo uses an average
of 0�s and 1�s to approximate p. If p is very close to 0 (or 1) it will take
many samples, since 0 and 1 are far away from each other (relative to p). A
well designed IS scheme will cluster the samples near p through the design of
d�=d�. However, in a complicated system the actual values taken by d�=d�
may be hard to predict, and they could be very far from p.
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3.2 Importance sampling for rare events

Next we consider the particular problem of estimating pn(x). The �rst ques-
tion is, �what are natural changes of measure?�A hint is provided by the
analysis of Lecture 6. The control measures ��ni of the weak convergence
approach are equivalent to a new distribution for the noises under a change
of measure. An a posteriori conclusion of the analysis is that exponen-
tial changes of measure are asymptotically optimal for the large deviations
analysis. Exponential changes of measure have a �nite dimensional para-
meterization, and thus are very convenient to work with. Recalling that
fvi(x); i 2 Ng are iid with distribution �(dvjx) and associated log moment
generating functions H(x; �), this suggests measures of the form

��(dvjx) = eh�;vi�H(x;�)�(dvjx)

be used to generate the noise sequence under the new distribution. The
parameter � can be thought of as a control to be selected to produce good
performance of the resulting Monte Carlo scheme.

While more complicated dependencies could be considered, it will turn
out that allowing � to depend on time and the current state of the simulated
trajectory will be su¢ cient for asymptotic e¢ ciency, and thus a control
scheme (i.e., a change of measure) will be characterized as a collection of
measurable mappings �ni (x), de�ned for i 2 N0 and x 2 Rd, and taking
values in Rd. The generation of a single sample as well as the likelihood
ratio needed to estimate pn(x) then proceeds as follows.

We initialize with Y n
0 = x. A sequence of noises wni and states Y

n
i+1 are

then generated recursively by

P fwni 2 dvj Fni g = ��ni (Y ni )(dvjY
n
i ); with Fni = �

�
wnj ; j = 0; : : : ; i

�
and

Y n
i+1 = Y n

i +
1

n
wni :

The simulation proceeds up until

Nn = inf fi : Y n
i 2 A [Bg ;

and we de�ne Y n(t) to be the piecewise linear interpolation, so that 1fY n2Cxg
means B was entered before A. The likelihood ration is then

Nn�1Q
i=0

d�(�jY n
i )

d��ni (Y ni )(�jY
n
i )
(wni ) =

Nn�1Q
i=0

e�h�ni (Y ni );wni i+H(Y ni ;�ni (Y ni ));

and the estimate based on a single sample is thus

1fY n2Cxg
Nn�1Q
i=0

e�h�ni (Y ni );wni i+H(Y ni ;�ni (Y ni )): (22)
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One then simulates K independent copies of (22) and takes the sample
average.

We recall that performance is determined by the variance of a single
sample, and minimizing this is the same as minimizing the second moment.
The second moment of (22) is

E

�
1fY n2Cxg

Nn�1Q
i=0

e�2h�ni (Y ni );wni i+2H(Y ni ;�ni (Y ni ))
�
;

which when rewritten in terms of the distribution of the original process
fXn

i g takes the form

E

�
1fXn2Cxg

Nn�1Q
i=0

e�h�ni (Xn
i );vi(X

n
i )i+H(Xn

i ;�
n
i (X

n
i ))

�
:

4 A standard heuristic, and dangers in the rare
event setting

Since one of the classical approaches to the large deviation lower bound
involves a change of measure argument, it is natural to ask if there is a
connection between the change of measure used there to prove bounds for
a particular event or expected value, and the change of measure that might
yield a good IS scheme for that same event. A few example problems sug-
gested this to be true, and for some time it was generally thought that using
the lower bound change of measure would work in general. This turned out
to be false, and indeed the class of schemes that had been considered up
to that time turned out to be, in general, inadequate. In this section we
illustrate the issue through an example due to [36].

The example is as follows. Suppose that vi(Xn
i ) are in fact independent

of Xn
i , i.e., that they are just an iid sequence with distribution �. We

further assume d = 1 and that x = 0. Then Xn
i is a random walk, and

Xn
n =

Pn�1
i=0 vi=n is just the sample mean, i.e., we are in the setting of

Cramér�s Theorem with rate function L(�). Let C � R, and suppose we
want to estimate P fXn 2 Cg by importance sampling.

The heuristic just described to construct an alternative sampling dis-
tribution is straightforward. Let �� solve inf fL(�) : � 2 Cg (and assume
the in�mum over the interior and closure of C are the same). If �� is
dual to ��, i.e., if �� is the point that maximizes in the relation L(��) =
sup�2R[��

� �H(�)], then as discussed in Lecture 6 the mean of ���(dv) =
eh�

�;vi�H(��)�(dv) is exactly ��, and ��� is the control we would use to
prove the large deviation lower bound for a set that contains ��. Since this
problem is over a �xed time horizon the single sample estimate is just

1fY nn 2Cg
n�1Q
i=0

e�h��;wni i+H(��) = 1fY nn 2Cge
�n[h��;Y nn i�H(��)]:
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Figure 12: An expected trajectory and a rogue trajectory

We can now easily see the shortcomings of this heuristic. Assume that
� is Gaussian N(0; 1) and consider the non-convex set C = (�1;�0:22] [
[0:2;1). For this process L(�) = �2=2, H(�) = �2=2, and �� = �� =
0:2, and the change of measure will shift the mean to this value. If all
goes according to plan and the simulated trajectory ends up near ��, then
the likelihood ratio will be near exp�n [h��; ��i �H(��)] = exp�nL(��),
which is exactly what is needed. However, it is also possible that a rare event
under the ���(dv) distribution could occur, and one might end up with Y n

n

near ��. Such an occurrence is labeled the �rogue� trajectory in Figure 1.
When this happens, the likelihood ration will be approximately

exp�n
�

��; ��

�
�H(��)

�
= expn

�
0:2� 0:22 + 1

2
(0:2)2

�
:

This quantity grows exponentially in n and, while the event itself might be
rare, it happens enough that the variance of the estimate is very large, and
even larger than standard Monte Carlo!

In this example the true probability for n = 100 is pn = 3:67 � 10�2.
The following data re�ects four trials of K = 5000 replications each.

No. 1 No. 2 No. 3 No. 4
Estimate p! n (×10?2) 2.23 2.24 17.32 16.37
Standard Error (×10?2) 0.05 0.05 14.98 14.10
95% C.I. (×10?2) [2.13, 2.33] [2.14, 2.34] [­12.64, 47.28] [­11.83, 44.57]

In the �rst two trials there were no �rogue� trajectories. The two es-
timates are smaller than the true value, and in fact neither of the con�d-
ence intervals contains the true value. Thus the same di¢ culties that a¤ect
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the estimation of pn also make the con�dence intervals essentially useless,
though one does not a priori know this to be the case. Because of this, an
independent theoretical (and not data driven) analysis of errors is essential
for rare event Monte Carlo estimation. The second pair of trial include at
least one rogue trajectory, which is needed to avoid the bias of the �rst two
trials. The estimates are far from the true value, but in this case at least
the con�dence intervals are correctly indicating this fact.

One could argue that this example can be avoided by splitting the prob-
lem into estimating two half-in�nite intervals. While such an approach would
work here, it will fall apart as soon as one considers problems in higher di-
mensions or even slightly more complicated dynamics. What is needed is a
global approach that properly controls the likelihood ratio for any possible
simulated trajectory.

5 A dynamic game interpretation of importance
sampling

Further insight into the di¢ culties of IS in the rare event setting can be
obtained by modeling the performance with respect to the natural family
of schemes in terms of deterministic di¤erential game. In this section we
formally develop this approximation for the simple random walk model just
discussed (it actually holds quite broadly). Suppose that for the iid random
walk model we consider, instead of the constant control �� suggested by the
standard heuristic, a collection of sampling controls of the form suggested
previously, and in particular assume

�ni (Y
n
i ) = u(Y n

i ; i=n)

for some smooth function u : R�[0; 1]! R. In this case, the second moment
of a single sample, and hence the performance of the scheme, is given by the
exponential integral

E

�
1fY nn 2Cg

n�1Q
i=0

e�2u(Y
n
i ;i=n)w

n
i +2H(u(Y

n
i ;i=n))

�
;

which we can rewrite in terms of the original process as

E

�
1fXn

n2Cg
n�1Q
i=0

e�u(X
n
i ;i=n)vi+H(u(X

n
i ;i=n))

�
:

This is the same type of quantity we have considered in previous lec-
tures.3 It is expected to scale exponentially in n, and thus it is natural to

3Since the exponent is not bounded the results of [14] (Lemma 5 of Lecture 2) do
not apply. However, under the assumed bound on the moment generating function the
representation can be extended to cover the case where the exponent is a¢ ne in vi.
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consider the log transform and the corresponding relative entropy represent-
ation. Using the same notation for the controls (measures) and controlled
processes as previously, we have

� 1
n
logE

�
1fXn

n2Cg
n�1Q
i=0

e�u(X
n
i ;i=n)vi+H(u(X

n
i ;i=n))

�
= inf

f��ni g
E

"
1

n

nX
i=1

�
u( �Xn

i ; i=n)�vi �H(u( �Xn
i ; i=n))

�
+
1

n

nX
i=1

R (��ni k� ) +11Cc
�
�Xn
n

�
:

#
One can analyze the limit using weak convergence as was done previously.
Under the LLN scaling we have (approximately and in a weak sense)

�Xn
i � �(i=n); E�vi � _�(i=n) � E

Z
R
y��ni (dy); and R (��

n
i k� ) � L( _�(i=n));

and so the limit produces the optimization problem

C[u] =

inf
�

"Z
[0;1]

h
u(�(t); t) _�(t)�H(u(�(t); t)) + L( _�(t))

i
dt+11Cc (�(1))

#
;

where the in�mum is over absolutely continuous � with �(0) = 0.
The quantity C[u] gives the rate of decay of the second moment of the IS

scheme that uses the sampling control �ni (Y
n
i ) = u(Y n

i ; i=n) to dynamically
choose the change of measure. There are in fact two controls, which are
u(y; t), which is in feedback form but �xed for the analysis, and _� [i.e., we
are considering a calculus of variations form of the control problem]. This
latter control arises in the large deviations analysis of the second moment.
Since C[u] is the rate of decay, the IS control u will want to make this as large
as possible, and so one can consider the problem U = supu(�;�)C[u]. This

is a kind of deterministic di¤erential (or dynamic) game, where _� attempts
to minimize (in open loop form) and u attempts to maximize (in feedback
form, but being selected before � is chosen).

We will not delve deeply into the nuances of di¤erential games, since this
game has a special structure which allows a reduction to a much simpler
problem. We observe that the running cost takes the for �� �H(�) +L(�)
with � = u(�(t); t) and � = _�(t). Note that this cost satis�es the min/max
property:

sup
�2R

inf
�2R

[�� �H(�) + L(�)] = inf
�2R

sup
�2R

[�� �H(�) + L(�)] = 2 inf
�2R

L(�):

Suppose we extend the de�nition to allow for an arbitrary initial condition
(x; t) (i.e., we consider the cost over [t; 1] and with �(t) = x), and denote the
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corresponding optimal rate of decay by U(x; t). Let Ut be the partial with
respect to t and DU(x; t) the gradient in x. Then U(x; t) will be a viscosity
solution to

Ut(x; t) + sup
�2R

inf
�2R

[DU(x; t)� + �� �H(�) + L(�)] = 0 (23)

and the terminal condition

U(x; 1) =1 for x 2 Cc and U(x; 1) = 0 for x 2 C:

Note that the PDE can be rewritten as

0 = Ut(x; t) + inf
�2R

[DU(x; t)� + 2L(�)] = Ut(x; t) + 2H(DU(x; t)=2):

Recalling from Lecture 7 that the large deviation rate V (x; t) for such
initial conditions will satisfy the same terminal condition and the PDE

Vt(x; t) +H(DV (x; t)) = 0;

a comparison principle will imply U(x; t) = 2V (x; t), which is the best pos-
sible rate of decay. The PDE for U (called an Isaacs equation in this context)
also tells us (at least for smooth solutions) optimal controls for both players.
Evaluating the in�mum in � in (23) gives

sup
�2R

inf
�2R

[DU(x; t)� + �� �H(�) + L(�)]

= sup
�2R

"
� sup
�2R

[�(DU(x; t) + �)� � L(�)]�H(�)
#

= � inf
�2R

[H(�DU(x; t)� �) +H(�)] ;

and since H is convex the optimum is at � = �DU(x; t)=2. In terms of the
solution to the equation that governs the large deviation rate this is simply
� = �DV (x; t).

Although this formal derivation was for the iid random walk model ap-
pearing in Cramér�s Theorem, the same logic holds generally and for both
the di¤usion model of Lecture 4 and the state dependent random walk
model of Lecture 6 one has the analogous PDEs and the analogous for-
mula for the formally optimum state feedback sampling control, which is
�ni (x) = �DV (x; t). For the problem of hitting a rare set B before A the
PDE is stationary and with appropriate boundary conditions, but the change
of measure suggested by the analysis takes the analogous form without time
dependence: �n(x) = �DV (x).
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Lecture 9: The Subsolutions Approach to
Importance Sampling

In the last lecture we discussed the shortcomings of the �open loop�
sampling schemes that had been used previously for rare event sampling,
and described how the introduction of feedback allowed (at least formally)
for the existence of asymptotically optimal sampling controls. However, the
constuction of the controls was in terms of the solution to a game (or as it
turned out an equivalent control problem), and a rigorous analysis was not
given.

It turns out that one does not need to solve the game or control problem,
and in fact the construction of suitable subsolutions to the associated PDE
will be su¢ cient. This is a signi�cant simpli�cation, because for many inter-
esting classes of problems such subsolutions can be constructed explicitly.
The reason subsolutions su¢ ce is because one bound on performance (an
upper bound on the rate of decay of the second moment) was automatic due
to Jensen�s inequality. To prove the reverse bound will require only certain
inequalities, which coincide with the subsolution de�nition.

In the next section the de�nitions of classical and piecewise classical sub-
solution will be given. It will turn out to be much easier for many problems
to �nd appropriate piecewise classical subsolutions, so this generalization is
important. We also spell out how the various subsolutions generate sampling
schemes.

1 Subsolutions

We will describe the subsolutions needed for both �nite time problems and
exit problems. We begin with the �nite time problem, which generalizes
the example used in Lecture 8. For convenience, we recall the notation
and construction of the state dependent random walk model of Lecture
6.
�
vi : Rd ! Rd; i 2 N0

	
are a collection of iid random vector �elds with

distribution �(�jx) 2 P(Rd), i.e.,

P fvi(x) 2 Ag = �(Ajx):

We then de�ne for each n 2 N a Markov process fXn
i ; i = 1; : : : ; ng by setting

Xn
i+1 = Xn

i +
1

n
vi(X

n
i ); Xn

0 = x0;

and Xn(t) is de�ned by piecewise linear interpolation:

Xn(t) = Xn
i +

�
Xn
i+1 �Xn

i

�
(nt� i) ; t 2

�
i

n
;
i+ 1

n

�
:
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Also, we assume H(x; �) = logE exp h�; vi(x)i < 1 for all x 2 Rd and
� 2 Rd.

The importance sampling problem of interest is to estimate

Px0 fXn(T ) 2 Cg ;

where C � Rd. Recall that the PDE that characterizes the large deviation
rate and half the optimal rate of decay for an asymptotically optimal im-
portance sampling scheme is

Vt(x; t) +H(x;DV (x; t)) = 0 (24)

for (x; t) 2 Rd� [0; T ), where H(x; p) = �H(x;�p). The terminal condition
is

V (x; T ) =1 for x 2 Cc and V (x; T ) = 0 for x 2 C; (25)

To simplify notation we assume Tn is an integer.

De�nition 4 A function �V : Rd � [0; T ] ! R is a classical sense subsolu-
tion (or just classical subsolution) if it is continuously di¤erentiable in both
variables and if

�Vt(x; t) +H(x;D �V (x; t)) � 0

for all (x; t) 2 Rd � [0; T ) and if

�V (x; T ) � 1 for x 2 Cc and �V (x; T ) � 0 for x 2 C:

Note that the condition �V (x; T ) � 1 for x 2 Cc is vacuous. Let ^Jj=1aj
denote the minimum of real numbers aj ; j = 1; : : : ; J .

De�nition 5 A function �V : Rd � [0; T ] ! R is a piecewise classical sense
subsolution (or just piecewise classical subsolution) if the following hold.
There is J 2 N and functions �V (j) : Rd � [0; T ] ! R; j = 1; : : : ; J , that are
continuously di¤erentiable in both variables and satisfy

�V
(j)
t (x; t) +H(x;D �V (j)(x; t)) � 0

for all (x; t) 2 Rd � [0; T ]. Moreover �V (x; t) = ^Jj=1 �V (j)(x; t) satis�es

�V (x; T ) � 1 for x 2 Cc and �V (x; T ) � 0 for x 2 C:

Example 1 Consider again the iid random example of Lecture 8, where
H(�) = logEe�vi and fvi; i 2 Ng are iid and mean zero. The set C in the
example was of the form (�1; ��] [ [��;1), with �� < 0 < ��. For this
example a piecewise classical subsolution as the minimum of two functions
is natural. One can easily construct solutions to the PDE of the simple form
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Figure 13: Terminal condition corresponding to a subsolution

�ax+ bt+ c by requiring the relation b+H(�a) = b�H(a) = 0. If �̂ and
�̂ are convex dual points, i.e.,

L(�̂) = sup
�2R

h
��̂ �H(�)

i
= �̂�̂ �H(�̂)

we obtain the solution ��̂(x� �̂) + (L(�̂)� �̂�̂)[1� t], which correponds to
the terminal condition ��̂(x� �̂). Thus the two solutions

�V (1)(x; t) = ���(x� ��) + (L(��)� ����)[1� t];
�V (2)(x; t) = ���(x� ��) + (L(��)� ����)[1� t];

which correspond to the terminal conditions indicated in Figure 13, generate
a piecewise subsolution. Note that since they are convex dual points, ��

and �� generate changes of measure with the means �� and ��, respectively.
See Figure 14. Note also that the subsolution �V (x; t) has a much simpler

Figure 14: Partition of the domain by a piecewise classical subsolution

structure than the solution V (x; t), but has the same value at (0; 0).

The de�nitions for the problem of entering a rare set B before a typical
set A are similar. We consider V : Rd ! R.

H(x;DV (x)) = 0; (26)

75



Figure 15: Subsolution for the exit problem

and the boundary conditions are

V (x) =1 for x 2 @A and V (x) = 0 for x 2 @B: (27)

The importance sampling problem is to estimate

Px0 fXn enters B before entering Ag :

De�nition 6 A function �V : Rd ! R is a classical sense subsolution (or
just classical subsolution) if it is continuously di¤erentiable and if

H(x;D �V (x)) � 0

for all x 2 (A [B)c, and if
�V (x) � 1 for x 2 A and �V (x) � 0 for x 2 B:

De�nition 7 A function �V : Rd ! R is a piecewise classical sense subsolu-
tion (or just piecewise classical subsolution) if the following hold. For some
J 2 N there are functions �V (j) : Rd ! R; j = 1; : : : ; J , that are continuously
di¤erentiable and satisfy

H(x;D �V (j)(x)) � 0

for all x 2 (A [B)c. Moreover �V (x) = ^Jj=1 �V (j)(x) satis�es

�V (x) � 1 for x 2 A and �V (x) � 0 for x 2 B:

Of couse there are many other types of events and (risk-sensitive) expec-
ted values that one could consider, and the interested reader can �nd the
appropriate de�nitions for many of these in the references. These two will
su¢ ce to illustrate the main points.
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1.1 The IS scheme associated to a subsolution

Consider the �nite time problem. As discussed in Lecture 8, if a smooth
solution V (x; t) to the HJB equation were available, then the correct change
of measure if the current state of the simulated trajectory is at �Xn

i would
be to replace the original distribution on the noise vi( �Xn

i ), i.e., �(dyj �Xn
i ),

by

��(dvj �Xn
i ) = eh�;vi�H(

�Xn
i ;�)�(dvj �Xn

i ) with � = �DV ( �Xn
i ; i=n):

If one is using a classical subsolution to design a scheme we follow exactly
the same recipe, and the resulting second moment, rewritten in terms of the
original random variables and process model, will equal

M( �V )
:
= Ex0

�
1fXn

Tn2Cg
Tn�1Q
i=0

ehD �V (Xn
i ;i=n);vi(X

n
i )i+H(Xn

i ;�D �V (Xn
i ;i=n))

�
:

If dealing with a piecewise classical sense subsolution, the situation is
di¤erent. In such a case the gradient D �V is not smooth, and the analysis
used below to prove rigorous bounds on the performance would not apply.
In this case we can mollify �V and use a very simple-to-implement mixture
of the changes of measure associated with the functions �V (j) appearing in
�V (x; t) = ^Jj=1 �V (j)(x; t).
To be precise, for a small parameter � > 0 the standard molli�cation

�V �(x; t) = �� log
�
e�

1
�
�V (1)(x;t) + � � �+ e�

1
�
�V (J)(x;t)

�
is used. The properties of this molli�cation are summarized in the following
lemma.

Lemma 1 Let

�V �(x; t) = �� log
�
e�

1
�
�V (1)(x;t) + � � �+ e�

1
�
�V (J)(x;t)

�
where each function �V (j)(x; t); j = 1; : : : ; J is continuously di¤erentiable.
De�ne the weights

��j(x; t) =
e�

1
�
�V (j)(x;t)

e�
1
�
�V (1)(x;t) + � � �+ e� 1

�
�V (J)(x;t)

:

Then

D �V �(x; t) =
JX
j=1

��j(x; t)D
�V (j)(x; t) and �V �

t (x; t) =
JX
j=1

��j(x; t)
�V
(j)
t (x; t)

Moreover
e�

1
�
�V (x;t) � e�

1
�
�V �(x;t) � Je�

1
�
�V (x;t);

and therefore
�V (x; t) � �V �(x; t) � �V (x; t)� � log J:
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The role of the molli�cation is to de�ne a mixture whose performance
is very close to that of a classical subsolution, without giving up the �ex-
ibility and convenience of piecewise subsolutions. Speci�cally, it is imple-
mented as follows. Given that the state of the current simulated trajectory
is �Xn

i , we generate an independent random variable �ni 2 f1; : : : ; Jg with
probabilities ��j( �X

n
i ; i=n), and then use the change of measure de�ned by

� = �D �V (j)( �Xn
i ; i=n) if �

n
i = j. The resulting second moment, rewritten in

terms of the original process and noises, is then

M( �V )
:
=

Ex0

241fXn
Tn2Cg

Tn�1Q
i=0

0@ JX
j=1

��j

�
Xn
i ;
i

n

�
ehD �V (j)(Xn

i ;
i
n);vi(X

n
i )i+H(Xn

i ;�D �V (j)(Xn
i ;

i
n))

1A35 :
The implementation and resulting form of the second moment are en-

tirely analogous for the problem of hitting a rare set before a typical set,
save that the scheme has no explicit dependence on time, and Tn is replaced
by the �rst exit time Nn.

2 Statement of resulting performance

We recall that the performance of any scheme is characterized by the vari-
ance of a single sample, and that since the schemes are unbiased minimizing
the variance is equivalent to minimizing the second moment. We also recall
that the best possible rate of decay for this second moment is precisely twice
the large deviation rate for the quantity being estimated.

We next identify the decay rate for a scheme constructed in terms of a
subsolution, as described in the last section. As we will see, the rate has
a very simple expression, and moreover the proof of this fact will follow
almost immediately from the same argument used to prove the large devi-
ation upper bound. We �rst state the result for the �nite time problem and
then the corresponding result for the exit problem. The process model will
be the state dependent random walk model of Lecture 6. However, for the
reason just given the proof carries over to other process models once one has
established the corresponding large deviation theory

For the �nite time problem we estimate Px0 fXn(T ) 2 Cg, and to sim-
plify the discussion we will want a large deviation limit to hold. This requires
some regularity of C. For example, such a limit will hold if C is the closure
of its interior.

Theorem 2 Consider the process model fXn; n 2 Ng of Lecture 6 and as-
sume

� 1
n
logPx0 fXn(T ) 2 Cg ! V (0; x0)

= inf fIT (�) : �(0) = x0; �(T ) 2 Cg :
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Let �V be a classical subsolution for the corresponding PDE and de�ne the
IS scheme as in the last section. Then the second moment for this scheme
satis�es

lim inf � 1
n
logM( �V ) � V (x0; 0) + �V (x0; 0):

If �V is a piecewise classical subsolution and if �V � is the corresponding mol-
li�cation, then the last display holds with �V replaced by �V �.

Remark 1

1. The conclusion of the result is clear. The performance of the scheme
based on any subsolution is measured by the value of the subsolution at
the starting point, with larger values giving better performance. When
there is a comparison principle for the PDE a subsolution can never
be greater than the solution, and the best possible value is �V (x0; 0) =
V (x0; 0), which corresponds to asymptotic optimality.

2. Note that the equality between subsolution and solution is only re-
quired at the starting point (x0; 0). For many problems subsolutions
with the optimal value at one point are structrually simpler and much
easier to �nd than the solution. Also, there can be many subsolutions
with the optimal value at the starting point.

3. Note that the subsolution �V (x0; 0) � 0 corresponds to standard Monte
Carlo, and gives the very poor rate of decay V (x0; 0). Thus any subso-
lution with �V (x0; 0) > 0 will improve on standard Monte Carlo, though
it is also possible that a scheme could correspond to �V (x0; 0) < 0 and
do even worse than standard Monte Carlo!

4. For the piecewise classical subsolution, one can allow � = �n ! 0
as n ! 1 to get a limit in terms of �V rather than �V �, so long as
n�n !1.

5. In the case where the piecewise subsolution is constructed from exactly
two pieces one can show that the molli�cation is not needed.

3 Example

A subsolution with the optimal value at the origin was identi�ed in Example
1 for the problem used to illustrate the shortcomings of the �open loop�
sampling schemes discussed in Lecture 8. The sampling scheme based on the
piecewise subsolution incorporates state feedback, and in fact will change the
distribution of the next increment as illustrated in Figure 14. The theoretical
results of Theorem 2 are re�ected in the performance of the scheme�see Table
1. We recall that the true value for the problam data is pn = 3:67� 10�2.
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No. 1 No. 2 No. 3 No. 4

Estimate p! n (×10?2) 3.72 3.65 3.67 3.56

Standard Error (×10?2) 0.11 0.11 0.10 0.10

95% Confidence Interval (×10?2) [3.50, 3.94] [3.43, 3.87] [3.47, 3.87] [3.36, 3.76]

Figure 16: Table 1

No. 1 No. 2 No. 3 No. 4

Estimate p! n (×10?2) 2.23 2.24 17.32 16.37

Standard Error (×10?2) 0.05 0.05 14.98 14.10

95% C.I. (×10?2) [2.13, 2.33] [2.14, 2.34] [­12.64, 47.28] [­11.83, 44.57]

Figure 17: Table 2

This should be contrasted with the performance of the open loop sampling
scheme presented in Table 2.
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Lecture 10: The Subsolutions Approach to
Importance Sampling, Cont�d

1 Proof of the performance bound for the �nite
time problem

We recall the statement of the theorem regarding performance of a IS scheme
based on a subsolution �V .

Theorem 1 Consider the process model fXn; n 2 Ng of Lecture 6 and as-
sume

� 1
n
logPx0 fXn(T ) 2 Cg ! V (0; x0)

= inf fIT (�) : �(0) = x0; �(T ) 2 Cg :

Let �V be a classical subsolution for the corresponding PDE and de�ne the
IS scheme as in the last section. Then the second moment for this scheme
satis�es

lim inf � 1
n
logM( �V ) � V (x0; 0) + �V (x0; 0):

If �V is a piecewise classical subsolution and if �V � is the corresponding mol-
li�cation, then the last display holds with �V replaced by �V �.

Proof. We �rst consider the simpler case of a classical subsolution. Recall
from Lecture 8 that when rewritten in terms of the original process model,
the second moment of the scheme de�ned in terms of a subsolution �V took
the form

M( �V ) = Ex0

�
1fXn

Tn2Cg
Tn�1Q
i=0

ehD �V (Xn
i ;i=n);vi(X

n
i )i+H(Xn

i ;�D �V (Xn
i ;i=n))

�
:

As done many times before, we will rewrite this using a relative entropy
representation. Thus we have

� 1
n
logM( �V )

=
1

n
inf
f��ni g

Ex0

"
Tn�1X
i=0

�
�
�
D �V

�
�Xn
i ;
i

n

�
; �vi

�
�H

�
�Xn
i ;�D �V

�
�Xn
i ;
i

n

���

+

Tn�1X
i=0

R
�
��ni (�)



�(�j �Xn
i )
�
+11f �Xn

Tn2Ccg

#
:

Our goal is to prove a lower bound for this quantity. In fact, virtually all
that is needed has already been established in proving the large deviation
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upper bound for the sequence fXn; n 2 Ng. First note that since �V is a
subsolution,

�H
�
�Xn
i ;�D �V

�
�Xn
i ; i=n

��
= H

�
�Xn
i ; D �V

�
�Xn
i ; i=n

��
� � �Vt( �Xn

i ; i=n): (28)

Next note that we can assume without loss that the expected relative
entropy is bounded from above, since otherwise there is nothing to prove.
We can therefore use the results on tightness of controls and controlled
processes as well as their asymptotic relations proved in Lecture 6. To be
speci�c, we use recall the controlled empirical measures

�Ln(A�B) :=
Z
B

�Ln(Ajt)dt; �Ln(Ajt) = ��vni (A) if t 2 [i=n� 1=n; in);

as well as the piecewise constant interpolation

X̂n(t) = �Xn
i ; t 2

�
i

n
;
i+ 1

n

�
:

It was proved in Lecture 6 that
�
( �Xn; �Ln; ��n); n 2 N

	
was tight, where �Xn

is the piecewise linear interpolation, ��n is the control measure, and that also
y is uniformly integrable with respect to �Ln(dy�dt). It was also shown that
any limit ( �X; �L; ��) allowed the decomposition ��(dyjt)dt, and that

�X(t) =

Z
Rd�[0;t]

y �L(dy � dt) + x0 =
Z
Rd�[0;t]

y��(dyjt)dt+ x0

It is easy to check that the piecewise linear and piecewise constant interpol-
ations �Xn and X̂n must have the same limit.

We can now argue why the lower bound follows from these previously
proved results. Consider any weakly converging subsequence, which we again
denote by n. Exactly as in Lecture 6 we have

lim inf
n!1

Ex0

"
1

n

Tn�1X
i=0

R
�
��ni (�)



�(�j �Xn
i )
�
+11f �Xn

Tn2Ccg

#

� Ex0

�Z T

0
L( �X; _�X)dt+11f �X(T )2Ccg

�
:

We have already explained why the �H
�
�Xn
i ;�D �V

�
�Xn
i ; i=n

��
term may be

replaced by � �Vt( �Xn
i ; i=n). To bring in the empirical measure on the �vi, we

rewrite the sum as

Ex0

"
1

n

Tn�1X
i=0

��
D �V

�
�Xn
i ;
i

n

�
; �vi

�
� �Vt

�
�Xn
i ;
i

n

��#

= Ex0

"Z
Rd�[0;T ]

�D
D �V

�
X̂n(t); t

�
; y
E
� �Vt

�
X̂n(t); t

��
�Ln(dy � dt)

#
+O(1=n);
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where the error termO(1=n) is due to replacingD �V (Xn
i ; 1=n) byD �V (X̂

n(t); t)
for t 2 [i=n; i=n+ 1=n). Using the uniform integrability thus gives

lim
n!1

Ex0

"
1

n

Tn�1X
i=0

��
D �V

�
�Xn
i ;
i

n

�
; �vi

�
� �Vt

�
�Xn
i ;
i

n

��#

= Ex0

"Z
Rd�[0;T ]

�

D �V

�
�X; t
�
; y
�
� �Vt

�
�X; t
��
��(dyjt)dt

#

= Ex0

�Z T

0

D
D �V

�
�X; t
�
; _�X
E
dt

�
:

Hence we have the combined lower bound

Ex0

�Z T

0

�
�
D
D �V

�
�X; t
�
; _�X
E
� �Vt

�
�X; t
��
dt+

Z T

0
L( �X; _�X)dt+11f �X(T )2Ccg

�
:

Unless �X(T ) 2 C w.p.1 this cost is in�nite. Using that �X(0) = x0 and that
since �V is a subsolution �V (x; T ) � 0 for x 2 C, by the (ordinary) chain ruleZ T

0

�
�
D
D �V

�
�X; t
�
; _�X
E
� �Vt

�
�X; t
��
dt � �V (x0; 0)

and from the de�nition of V (x0; 0)Z T

0
L( �X; _�X)dt � V (x0; 0) ;

both w.p.1. We thus obtain the lower bound V (x0; 0) + �V (x0; 0), which
concludes the proof for the case of a classical subsolution.

The proof for the piecewise classical is very similar. In this case the
second moment is

Ex0

241fXn
Tn2Cg

Tn�1Q
i=0

0@ JX
j=1

��j

�
Xn
i ;
i

n

�
ehD �V (j)(Xn

i ;
i
n);vi(X

n
i )i+H(Xn

i ;�D �V (j)(Xn
i ;

i
n))

1A35 :
Using Jensen�s inequality gives the lower bound

Ex0

�
1fXn

Tn2Cg
Tn�1Q
i=0

�
e
PJ
j=1 �

�
j(Xn

i ;
i
n)[hD �V (j)(Xn

i ;
i
n);vi(X

n
i )i+H(Xn

i ;�D �V (j)(Xn
i ;

i
n))]

��
:

For this we write a representation in the usual way. The relative entropy
terms in this representation are treated in exactly the same way as was just
done for a classical subsolution. We also use that �V (j) satis�es (28) to replace
�H

�
�Xn
i ;�D �V (j)

�
�Xn
i ; i=n

��
by the smaller quantity � �V (j)t ( �Xn

i ; i=n). Then
the new and di¤erent terms are of the form

�
Z T

0

JX
j=1

��j
�
�X; t
� �D

D �V (j)
�
�X; t
�
; _�X
E
+ �V

(j)
t

�
�X; t
��
dt:
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However, using the identities

D �V �(x; t) =
JX
j=1

��j(x; t)D
�V (j)(x; t) and �V �

t (x; t) =
JX
j=1

��j(x; t)
�V
(j)
t (x; t)

from Lemma 1 of Lecture 9, we can apply the chain rule as before and with
exactly the same result.

Remark 1 The argument uses little of the particular properties of the un-
derlying process, given that one has used the weak convergence to establish
the large deviation upper bound, and thus adapts with few changes to other
process models.

Remark 2 The proof for the problem of entering a rare set B before a
typical set A is essentially reduced to the �nite time problem. Recall that
it is assumed that there is a single global attractor that is contained in the
interior of A. As in [34, Lemma 2.2, Chapter 5], one can argue that there is
K(T )!1 as T !1 such that the large deviation rate for any trajectory
that starts at x0 and enters neither A nor B by time T has cost at least
K(T ). Using this one can argue there is an arbitrarily large lower bound in
the representation for the second moment for trajectories that do not reach
A or B by time T . Lower bounds for the remaining trajectories follow as in
the �nite time case from the chain rule for �V and the de�nition of V .

2 Examples

2.1 Level crossing

We consider Example 1 of Lecture 1 with Zi � (Exp(1) � 2;Exp(1) � 3),
where Exp(1) denotes the exponential distribution with mean 1 (this allows
the exact solution to be explicitly computed). The subsolution (actually
a solution) is constructed as in Example 4 of Lecture 7. The �rst table
gives the outcome from the state independent scheme, and the second table
presents 4 sets of 20,000 simulations each, where the true value is 9:51�10�5.
The third and fourth tables give the corresponding results for the scheme
based on the subsolution, with molli�cation parameters � = 0:1 and 0:2,
respectively. The example is taken from [29].

2.2 Server slowdown

Here we consider Example 4 of Lecture 1, with parameters (�; �1; �2; �1) =
(0:3; 0:36; 0:34; 0:32). The construction of a subsolution suitable for import-
ance sampling is more complex than the last example, since it includes
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n = 10 n = 20 n = 30
Theoretical value 9.51 × 10?5 2.88 × 10?8 9.24 × 10?12

Estimate 7.13 × 10?5 2.44 × 10?8 8.36 × 10?12

Standard Error 0.06 × 10?5 0.02 × 10?8 0.08 × 10?12

95% C.I. ß7.01,7.25à × 10?5 ß2.40,2. 48à × 10?8 ß8.20, 8. 52à × 10?12

No. 1 No. 2 No. 3 No. 4
Estimate (×10?5) 7.12 23.4 53.9 7.01
Standard Error (×10?5) 0.07 16.3 46.9 0.07
95% C.I. (×10?5) [6.98,7.26] [­9.2,56.0] [­39.9, 147.7] [6.87, 7.15]

n = 10 n = 20 n = 30
Theoretical value 9.51 × 10?5 2.88 × 10?8 9.24 × 10?12

Estimate 9.56 × 10?5 2.87 × 10?8 9.31 × 10?12

Standard Error 0.10 × 10?5 0.03 × 10?8 0.09 × 10?12

95% C.I. ß9.36,9.76à × 10?5 ß2.81,2. 93à × 10?8 ß9.13, 9. 49à × 10?12

n = 10 n = 20 n = 30
Theoretical value 9.51 × 10?5 2.88 × 10?8 9.24 × 10?12

Estimate 9.54 × 10?5 2.90 × 10?8 9.14 × 10?12

Standard Error 0.10 × 10?5 0.03 × 10?8 0.11 × 10?12

95% C.I. ß9.34,9.74à × 10?5 ß2.84,2. 96à × 10?8 ß8.92, 9. 36à × 10?12
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Figure 18: Subsolution based on 4 a¢ ne functions

regions of di¤ering statistical behavior as well as boundaries, see [21]. The
construction is based on the roots for various Hamiltonians, and leads to a
subsolution that is the minimum of 4 a¢ ne functions, whose gradients are
depicted as �[j],j = 0; 1; 2; 3 in the left side Figure 1. The true solution is
much more complex. The resulting performance is given in the table, based
on K = 1; 000; 000 samples.

n = 20 n = 50 n = 100
Theoretical value 5.63 × 10?2 1.19 × 10?3 1.63 × 10?6

Estimate 5.62 × 10?2 1.18 × 10?3 1.61 × 10?6

Std. Err. 0.03 × 10?2 0.01 × 10?3 0.02 × 10?6

95% C.I. ß5.56,5.68à × 10?2 ß1.16,1.20à × 10?3 ß1.57,1.65à × 10?6

2.3 Path dependent functional

Let fY1; Y2; : : :g be a sequence of iid random variables with common distri-
bution � and E[Yi] = 0. As before, let H be the log-moment generating
function and L its convex conjugate. Fix n 2 N, and for 1 � i � n de�ne

Xn
i
:
=
1

n

iX
j=1

Yj ;

with Xn
0
:
= 0. We are interested in estimating

En
:
= E

h
e�nF (X

n
n )1fmax0�i�nXn

i �hg

i
where h > 0 is a given constant. Assume that the large deviation limit

lim
n!1

� 1
n
logEn = 
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holds, with 
 the solution of the following variational problem:


 = inf

�Z 1

0
L( _�(t)) dt+ F (�(1)) : � 2 A0([0; 1] : R); max

0�t�1
�(t) � h

�
:

To write down the PDE associated with this estimation problem, one
needs to expand the state space to accommodate the path-dependence of
the event. More precisely, the state process is (Xn

i ; B
n
i ), where

Bi
:
= 1fmax0�j�iXn

j �hg

is the indicator of whether or not the �barrier" h has been breached by time
i. One obtains a coupled pair of PDEs for the subsolution, of the form

�Vt(1; x; t) +H(D �V (1; x; t)) � 0; �V (1; x; t) � 2F (x);

�Vt(0; x; t) +H(D �V (0; x; t)) � 0; �V (0; x; t) � �V (1; x; t)

for x � h; t 2 [0; 1].
We consider the speci�c problem En

:
= E[1fmax0�i�nXn

i �hg1fXn
n�lg] with

l < h. Again a subsolution with the optimal value at the origin can be
constructed, for details see [29]. For the numerical example we take Yi �
N(0; 1) and h = 1 and l = 0:8. Simulations were run for n = 10; 20; 30,
and each estimate consists of 20,000 samples. What we call the �theoretical
value�is an estimate based on 1 billion samples of the importance sampling
scheme.

n = 10 n = 20 n = 30
Theoretical value 1.68 × 10?5 9.66 × 10?9 6.09 × 10?12

Estimate 1.74 × 10?5 9.58 × 10?9 6.26 × 10?12

Standard Error 0.04 × 10?5 0.27 × 10?9 0.19 × 10?12

95% C.I. ß1.66,1.82à × 10?5 ß9.04,10.12à × 10?9 ß5.88,6. 64à × 10?12

2.4 Other examples

Subsolutions have been constructed for many other types of problems, in-
cluding the following.

� Networks with feedback

� Non-Markovian systems

� Serve-the-longer discipline

� Open/closed network
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� General Jackson networks

� Reversible systems

� Multi-scale processes (homogenization)

For details, see [21, 23, 25, 27, 29, 30].
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Lecture 11: The Empirical Measure of a Markov
Chain

1 Problem formulation

In this lecture we consider the large deviation theory for the empirical meas-
ure of a Markov chain, thus generalizing Sanov�s Theorem from Lecture 3.
The ideas developed here are useful in other contexts, such as proving sample
path large deviation properties of processes whose �driving noises�have a
Markovian structure rather than an iid structure.

To focus on the main issues, we simplify by considering only Markov
chains with a compact state space S. Dealing with the unbounded case
requires existence of a suitable Lyapunov function to proves the required
tightness results [14, 12, 13]. These results are automatic when the state
space is compact.

Thus let fXi; i 2 N0g denote a Markov chain with transition kernel p(x; dy)
and compact state space S. The object of interest is the empirical measure
de�ned by

Ln(A) =
1

n

n�1X
i=0

�Xi(A) for A 2 B(S):

Under ergodicity there will be a unique invariant measure � 2 P(S), and by
the ergodic theorem we have the LLN result Ln ! � in the weak topology,
w.p.1. The goal is to prove an LDP for fLn; n 2 Ng in the weak topology,
and identify the rate function.

Remark 1 Although both here and when considering Sanov�s Theorem we
use the weak topology, the results also hold in the stronger � -topology [14,
Section 9.3]. As a consequence, one can approximate the distribution of
quantities such as

R
S f(x)L

n(dx) when f is just bounded and measurable
(and not necessarily continuous).

2 Some applications

2.1 Markov modulated dynamics

Many of the process models mentioned in Lecture 1 can be made more
realistic for applications by allowing the distribution of the driving noise
to depend on an exogenous Markov chain. For example, Example 1 models
insurance risk, with the noises Zi representing the di¤erence between income
and payouts at time i. A more realistic model would allow the distribution
� to depend on a �nite state Markov chain Yi representing, e.g., the state
of the economy and other factors. Such a process would be called Markov
modulated. Similarly, in order to model �bursty�data the arrival rate in the

89



queueing and data loss problem (Example 4) should depend on a �nite state
chain. For such more sophisticated process models the rate function can be
found and a large deviation analysis given by combining the methods used
in say Lecture 6 with those of the present section. The construction of IS
schemes for these processes is also possible, and various examples can be
found in the references at the end of Lecture 10.

2.2 Markov chain Monte Carlo

One of the most important uses of the empirical measure is in the numerical
approximation of integrals of the form

R
S f(x)�(dx), and in particular when

� is a Gibbs measure, i.e., a measure of the form e�V (x)=�dx=Z, where V is
a potential function, � is a parameter, and Z is a normalization that makes
the indicated measure a probability measure. There are well known methods
to construct ergodic Markov processes fXi; i 2 N0g for which � is the unique
invariant distribution, and thus

R
S f(x)L

n(dx) gives a converging approx-
imation to

R
S f(x)�(dx). This technique has a tremendous number of very

practical applications in the physical and biological sciences, engineering,
statistics, and elsewhere.

However, for many problems the dimension of S is very large, and in
addition the methods that generate the chain from V have the property that
when V has many deep local minima, parts of the state space communicate
poorly under the dynamics p(x; dy). When this happens, and it happens
very frequently, the problem of algorithm design becomes crucial.

In order to compare algorithms, one needs a criterion for good perform-
ance. Since it focuses on the object of interest, i.e., the empirical measure,
it would seem that the large deviation rate is a good measure. The rate
function I depends of course on the dynamics, though for any chain leading
to � as an invariant distribution I(�) = 0 if and only � = �. Di¤erent al-
gorithms lead to di¤erent rate functions, the rate functions give one a great
deal of information that can be used to compare the algorithms.

This should be compared with other measures that have been tradition-
ally used to compare chains, such as the second eigenvalue. Let p(x; dy) be
an ergodic transition kernel with invariant distribution �. Then p(x; �) has
a single eigenvalue of modulus 1 corresponding to the eigenvector �, and the
magnitude j�1j of the next largest is often used to characterize the perform-
ance of the associated empirical measure. However, the second eigenvalue
provides information only on convergence of the n-step transition kernel
p(n)(x; dy) = P fXn 2 dyjX0 = xg, and does not give any direct information
on the empirical measure.

A recent work which e¤ectively applied the large deviation rate as a
measure of rate of convergence is [24], and its further application to problems
of algorithm design are ongoing.
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3 The representation

To apply the weak convergence approach, we �rst need the representation.
As usual, it will follow from the high level representation (Lemma 4 of
Lecture 2) and the chain rule (Lemma 5). The base measure in this case is
the Markov measure

�pn(x0; dx1; : : : ; dxn) = p(x0; dx1)p(x1; dx2) � � � p(xn�1; dxn)

on Sn. We consider any measure �n(x0; dx1; : : : ; dxn) with �nite relative
entropy with respect to �pn, and factor it as the conditional distribution on
the jth variable given all preceding variables:

�n(x0; dx1; : : : ; dxn)

= �n1j0(dx1jx0)�
n
2j0;1(dx2jx0; x1) � � ��

n
nj0;:::;n�1(dxnjx0; : : : ; xn�1):

Let ( �Xn
1 ; : : : ;

�Xn
n ) have the distribution �

n. As was the case with Sanov�s
Theorem, we de�ne the random control measures

��ni (dxi) = �nij0;:::;i�1(dxijx0; �X
n
1 : : : ;

�Xn
i�1);

so that ��ni (dxi) picks the distribution of �X
n
i given �Xn

1 : : : ;
�Xn
i�1. Finally, let

�Ln be the controlled empirical measure (with �Xn
0 = x0):

�Ln(A) =
1

n

n�1X
i=0

� �Xn
i
(A) for A 2 B(S):

Then using the chain rule as was done previously (see Lecture 2), we have

� 1
n
logEe�nF (L

n) = inf
f��ni g

E

"
F (�Ln) +

1

n

nX
i=1

R
�
��ni (�)



p( �Xn
i�1; �)

�#

for any bounded and measurable F : P(S) ! R. To prove an LDP it will
be enough to consider bounded and continuous F .

3.1 Form of the rate function

In the setting of Sanov�s Theorem the minimizing controls were found, a
posteriori, to be asymptotically product measure, re�ecting the form of the
base measure on the collection fXi; i 2 N0g. One might suspect something
analogous here, which is that nearly optimizing controls for large n might
be of the Markov form ��ni (dxi) = q( �Xn

i�1; dxi) for some transition kernel q.
With this in mind, we rewrite the relative entropy using the chain rule:

R
�
��ni (�)



p( �Xn
i�1; �)

�
= R

�
��ni (�)



p( �Xn
i�1; �)

�
+R

�
� �Xn

i�1
(�)



� �Xn

i�1
(�)
�

= R
�
� �Xn

i�1
(dx)��ni (dy)




� �Xn
i�1
(dx)p(x; dy)

�
:
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The measure � �Xn
i�1
(dx)��ni (dy) records the control used to pick the distribu-

tion of �Xn
i depending on the location of �X

n
i�1, and will help us learn the

form of q(x; dy).
Let us see if we can guess the form of the rate function, and at the same

time give the proof of the lower bound (the large deviation upper bound).
By Jensen�s inequality and the joint convexity of relative entropy

E

"
F (�Ln) +

1

n

nX
i=1

R
�
� �Xn

i�1
(dx)��ni (dy)




� �Xn
i�1
(dx)p(x; dy)

�#

� E

"
F (�Ln) +R

 
1

n

nX
i=1

� �Xn
i�1
(dx)��ni (dy)






 1n
nX
i=1

� �Xn
i�1
(dx)p(x; dy)

!#

= E

"
F (�Ln) +R

 
1

n

nX
i=1

� �Xn
i�1
(dx)��ni (dy)






 �Ln(dx)p(x; dy)
!#

:

Let

�n(dx� dy) = 1

n

nX
i=1

� �Xn
i�1
(dx)��ni (dy):

Since S and hence S2 are compact so are P(S) and P(S2), and so auto-
matically

��
�n; �Ln

�
; n 2 N

	
is tight. Note that �Ln is the �rst marginal of

�n, and that since ��ni (dy) is picking the distribution of �X
n
i , the martin-

gale generalization of the Glivenko-Cantelli lemma (Lemma 4 in Lecture
3) shows that asymptotically the �rst and second marginals of �n are the
same. Thus if

�
�n; �Ln

�
!
�
�; �L

�
in distribution along a subsequence, then

[�]1(dx) = [�]2(dx) = �L(dx), where [�]1 and [�]2 denote the �rst and second
marginals of �. We will assume that p(x; dy) is Feller, i.e., that the map-
ping x! p(x; �) is continuous in the topology of weak convergence. This will
imply �Ln(dx)p(x; dy) ! �L(dx)p(x; dy) in distribution. Indeed, if f(x; y) is
bounded and continuous, then by the Feller property x!

R
S f(x; y)p(x; dy)

is bounded and continuous, and sinceZ
S

Z
S
f(x; y)p(x; dy)�Ln(dx)!

Z
S

Z
S
f(x; y)p(x; dy)�L(dx)

and f is arbitrary the result follows.
We can then compute a lower bound along the weakly converging sub-

sequence using Fatou�s Lemma, the continuity of F , and lower semicontinu-
ity of R:

lim inf
n!1

� 1
n
logEe�nF (L

n)

� lim inf
n!1

E
�
F (�Ln) +R

�
�n(dx� dy)k �Ln(dx)p(x; dy)

��
� E

�
F (�L) +R

�
�(dx� dy)k �L(dx)p(x; dy)

��
:
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Suppose we de�ne

I(�) = inf

2P(S2);[
]1=[
]2=�

R (
(dx� dy)k�(dx)p(x; dy)) :

Then since [�]1 = [�]2 = �L we have shown

lim inf
n!1

� 1
n
logEe�nF (L

n) � inf
�
[F (�) + I(�)] ; (29)

suggesting that I may in fact be the rate function.
To complete the proof we must show the reverse inequality with the same

function I. Note that if [
]1 = [
]2 = �, then we can factor 
(dx � dy) in
the form 
(dx� dy) = �(dx)q(x; dy) for some transition kernel q, and that
[
]2 = � is exactly the statement that � is an invariant distribution for q.
This will suggest how to construct a control for the reverse inequality.

4 Assumptions and statement of the LDP

Condition 1 S is compact and p satis�es the Feller property. In addition,
p satis�es the following transitivity condition. There exist positive integers
l0 and n0 such that for all x and � in S

1X
i=l0

1

2i
p(i) (x; dy)�

1X
j=n0

1

2j
p(j) (�; dy) ; (30)

where p(k) denotes the k-step transition probability.

Theorem 1 Assume the condition just given on the Markov chain fXi; i 2 N0g
and let fLn; n 2 Ng be the empirical measure. Then fLn; n 2 Ng satis�es an
LDP with rate function

I(�) = inf

2P(S2);[
]1=[
]2=�

R (
(dx� dy)k�(dx)p(x; dy)) :

Let d(�; �) denote the metric on S. Suppose in addition that for each x 2 S
there are � 2 P(S), k 2 N, and c > 0 such that for all � 2 S satisfying
d(�; x) < c and all A 2 B(S)

kX
i=0

p(j) (�; A) � c�(A):

Then the large deviation estimates are uniform in the initial condition x0.
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5 Sketch of the proof

First note that under the compactness of S and the Feller condition p(x; dy)
has an invariant distribution �. Indeed, it is automatic that fELn(dx); n 2 Ng
is tight and for any bounded and continuous f����Z

S
f(x)ELn(dx)�

Z
S2
f(y)p(x; dy)ELn(dx)

����
=

����E Z
S
f(x)Ln(dx)� E

Z
S2
f(y)p(x; dy)Ln(dx)

����
� 2

n
kfk1

! 0:

If � is any weak limit then
R
S f(x)�(dx) =

R
S2 f(y)p(x; dy)�(dx) follows

from the Feller property, and thus � is invariant. Second note that the
de�nition of I is as the in�mum of a convex and lower semicontinuous func-
tion subject to an a¢ ne constraint. As a consequence, I is convex and lower
semicontinuous. Since P(S) is compact, I has compact level sets.

The bound (29) has already been proved and all that remains is the
upper bound

lim sup
n!1

� 1
n
logEe�nF (L

n) � inf
�
[F (�) + I(�)] ; (31)

which is equivalent to the large deviation lower bound. We now state two
key facts which follow from the transitivity condition whose proof will be
omitted (see [14, Lemma 8.6.2]). The �rst is that p(x; dy) is ergodic and �
is unique, and the second is that I(�) <1 implies �� �. Note that from
the de�nition I(�) = 0, as expected.

We now show how the bound (31) follows from these facts. Let " > 0
and let �� satisfy F (��)+I(��) � inf� [F (�) + I(�)]+". From the de�nition
of I there is 
 2 P(S2) such that [
]1 = [
]2 = �� and

R (
(dx� dy)k�(dx)p(x; dy)) � I(��) + ":

Since [
]1 = [
]2 = �� there is q(x; dy) such that 
(dx�dy) = ��(dx)q(x; dy)
and �� is invariant under q. Moreover by the chain rule

1 > R (
(dx� dy)k��(dx)p(x; dy)) =
Z
S
R (q(x; �)k p(x; �))��(dx):

If q were ergodic, we could use it to de�ne controls for the representation
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via ��ni (�) = q( �Xn
i�1; �), and then by the L1-ergodic theorem

lim sup
n!1

� 1
n
logEe�nF (L

n)

= lim sup
n!1

inf
f��ni g

E

"
F (�Ln) +

1

n

nX
i=1

R
�
��ni (�)



p( �Xn
i�1; �)

�#

� lim sup
n!1

E

"
F (�Ln) +

1

n

nX
i=1

R
�
q( �Xn

i�1; �)


p( �Xn

i�1; �)
�#

= lim
n!1

E

�
F (�Ln) +

Z
S
R (q(x; �) kp(x; �)) �Ln(dx)

�
=

�
F (��) +

Z
S
R (q(x; �) kp(x; �))��(dx)

�
� inf

�
[F (�) + I(�)] + 2";

and since " > 0 is arbitrary we would be done.
The problem is that we don�t know q(x; dy) is ergodic. To deal with this

we add a little bit of p to q to make the combination ergodic. For � 2 (0; 1)
let �� = (1� �)�� + ��. Since F is continuous we can choose � > 0 so that
F (��) � F (��) + ", and by convexity one also has

I(��) = I((1� �)�� + ��) � (1� �)I(��) + �I(�) = (1� �)I(��)

since I(�) = 0. Let


�(dx� dy) = (1� �)��(dx)q(x; dy) + ��(dx)p(x; dy):

Then it is easy to check that [
�]1 = [
�]2 = (1 � �)�� + ��, and therefore
there is a transition kernel q�(x; dy) such that 
�(dx�dy) = ��(dx)q�(x; dy).
It is not hard to show that q�(x; dy) inherits the same transitivity condition
(30) [14, Lemma 8.6.3], and therefore q� is ergodic with unique stationary
distribution ��. Thus

lim sup
n!1

� 1
n
logEe�nF (L

n) � inf
�
[F (�) + I(�)] + 2";

and the result follows.
Finally we remark on the uniformity. The large deviation result just

stated applies to each initial condition separately, and in principle �how
large n has to be� could depend on x0. However, when combined with
the Markov property the last condition of the theorem gives uniformity in
an open neighborhood of each x0. Since S is compact, an open covering
argument gives global uniformity.
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Lecture 12: Current Developments and Related
Problems

The use of large deviation ideas in the design and analysis of Monte
Carlo schemes is just beginning. In this �nal lecture we make some remarks
on areas where the insights of an appropriate large deviations analysis may
make a di¤erence with regard to whether or not one can e¤ectively evaluate
probabilities and expected values involving rare events.

In order to keep the presentation focused we have emphasized the theory
and computational methods associated with �light-tailed�random variables.
There is also signi�cant interest when the �driving noises�of the system have
heavy tails, though there are far fewer general results to date and the models
and dynamics are typically much more constrained than in the light tailed
setting. A good reference for some theoretical results is [37], and references
on importance sampling include [38, 2, 20].

1 Homogenization and problems with multiple scales

Many problems in the physical sciences involve multiple temporal and/or
spatial scales. An example of a potential energy surface with multiple scales
(a �rough� energy landscape) is illustrated in Figure 19. The left hand

Figure 19: A rough energy landscape

panel plots level curves of the energy in two dimensions. The right hand
side follows the energy U as a particle traces out the red arrow moving from
the end of the arrow to its base. The relevant process model is

dX" = �rU(X")dt+
p
"dW;

and one is interested in the probability of a transition from a neighborhood
of the end of the arrow to the deep basin of attraction at the beginning of
the arrow.

To model such a situation one might consider U(x) to be the sum of a
smoothly varying component V (x) plus "Q(x=�; 
)=�, where Q(�; 
) is an
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ergodic random �eld, and both " > 0 and � > 0 are �small,� and general-
izations such as "F (x)Q(x=�; 
)=� with F deterministic. Based on consid-
erations from the application, one should assume "=� !1 as they tend to
zero. A natural choice would be to use Gaussian random �elds.

The large deviation theory in the form one would need for to applications
to Monte Carlo has not been established for these problems (though one
can identify algorithms that seem to work well be analogy with simpler
problems, such as when Q(�) is periodic but not random). One issue is
that the LLN problem is still not well understood for either the controlled
or uncontrolled version of the di¤usion model. References on the LDP for
periodic coe¢ cients include [1, 26, 33]. Two papers which consider some
aspects of large deviations for random coe¢ cients are [40, 41]. However,
these papers do not give an explicit form for the rate function, and hence
are not suitable as a basis for the design of Monte Carlo. A paper which
suggests an importance sampling scheme for the case of random media by
analogy with the case of periodic media is [27].

2 Simulation near rest points

The problems considered in Lectures 9 and 10 for applications of import-
ance sampling involved either a risk-sensitive cost or a probability of escape
over a �nite time interval, or escape from a set that did not include a rest
point of the noiseless dynamics. In Lecture 5 we brie�y commented on the
Freidlin-Wentsell theory, which allows one to tie together large deviation
estimates over �nite time intervals to prove results for the escape time and
escape location from a domain which does include a rest point. Just as the
situation when the domain contains a rest point complicated the large devi-
ation analysis, it also complicates the construction of e¤ective Monte Carlo
methods. In this section we comment brie�y on some of the di¢ culties.

Consider the assumptions on the process fXn; n 2 Ng and domain G
that were made in Lecture 5. Thus we assumed that on any �nite time
interval [0; T ], fXn; n 2 Ng satis�es an LDP with rate IT that is uniform in
the initial condition in compact sets, that the rate function vanishes on the
solutions to _� = b(�), and that hb(x); n(x)i < 0 for all x 2 @G. The origin
was assumed asymptotically stable under _� = b(�), and we also assumed a
nondegeneracy condition on the function L appearing in the de�nition of IT
that was su¢ cient but not necessary for the results stated in Lecture 5.

Among the quantities one would like to compute more accurately are the
mean escape time E0�n, where �n

:
= ft : Xn(t) =2 Gg. Under the conditions

just stated we know

n logE0�
n ! inf fQ(z) : z 2 @Gg ;

where Q is the quasipotential. A more accurate approximation could, in
principle, be obtained through Monte Carlo. However, unlike the problems
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of estimating an exponentially small probability discussed in Lectures 9 and
10, no straightforward way to speed up the estimation of E0�n has emerged.
The di¢ culties are not so much due to the relative variance of the standard
Monte Carlo estimator, but rather due to the fact that the construction
of even a single sample will scale exponentially in n. When estimating
a small probability the random variable of interest is supported on two
points (i.e., 0 and 1) which are far apart relative to the quantity being
estimated, and for this reason the variance is large. The distribution of �n

is peaked near expn inf fQ(z) : z 2 @Gg, and for this reason samples will
scale exponentially in n, and any standard form of importance sampling
(or other scheme such as standard splitting) does not change this in any
meaningful way.

Among the surrogates that one might consider for E0�n is P0 f�n � Tg,
where T is large but order 1 (i.e., it does not scale with n). If one can
construct a subsolution to the corresponding PDE

Vt(x; t) +H(x;DV (x; t)) = 0;

V (x; t) = 0 for x 2 @G� [0; T ) and V (x; T ) =1 for x 2 G

then the theory of Lectures 9 and 10 applies and one obtains good perform-
ance. However, in many problems one is tempted to exploit the fact that T
is large, and therefore seek a time-independent subsolution, i.e., a function
�V (x) that satis�es

H(x;D �V (x)) � 0 and �V (x) � 0 for x 2 @G; (32)

and with value �V (0) � V (0; 0) that is close to V (0; 0). For example, with an
appropriate choice of the constant c, one can show that �V (x) = �Q(x) + c
satis�es (32), and that V (0; 0)! �V (0) as T !1.

However it turns out, as remarked previously, that the use of subsolu-
tions is more subtle when the domain contains a rest point. In particular,
straightforward use of the scheme generated by �V that satis�ed (32) will
lead to a scheme that degrades sharply as T ! 1. The problem is related
to the fact that when a rest point is present one can construct subsolutions,
but not strict subsolutions near the rest point (a strict subsolution would
satisfy H(x;D �V (x)) � � for some � > 0). Because of this, simulated traject-
ories that remain in a neighborhood of the origin build up likelihood ratios
that are exponentially large in T , and thus lead to large variance. These
trajectories are in fact similar to the �rogue�trajectories mentioned in Lec-
ture 8. A detailed discussion of the issues, as well as one possible approach
to dealing with the di¢ culties (but only in dimension 1!) can be found in
[28].
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3 In�nite dimensional systems and SPDEs

In�nite dimensional stochastic systems in continuous time take many forms.
Examples familiar to the author of these notes include stochastic �ows of
di¤eomorphisms [17, 8], stochastic partial di¤erential equations driven by
Poisson noise [4], and weakly interacting systems of many particles [6]. In
the �rst example a system driven by in�nite dimensional Brownian motion
is used to construct a random di¤eomorphism (change of variable), which is
then to de�ne a prior for a Bayesian approach to the problem of matching
shapes (speci�cally three dimensional shapes that arise in medical imaging).
The change of variable can be thought of as a random �rubber sheet�, and
any model driven by a �nite collection of Brownian motions would arti�-
cially favor certain distortions of the sheet. The second example arises in
modeling the �ow of pollutants in an aquifer or other body of water, where
the pollutant enters via discrete injections (leading to the Poisson driving
noise), and drives a linear PDE used to account for advection and di¤usion.
The �nal example is essentially in�nite dimensional, since one is interested
in a large number of particles, and studies the system as the number of
particles tends to in�nity.

The approach based on representations and weak convergence is espe-
cially attractive for proving large deviation estimates for in�nite dimensional
systems, since it does not use discretizations or approximations of any sort,
nor does it require uniqueness for an in�nite dimensional nonlinear par-
tial di¤erential equation. Indeed, a large number of authors have used
the representation for in�nite dimensional Brownian motion to study many
di¤erent types of models, including stochastic wave equations, stochastic
Navier-Stokes, stochastic Volterra equation, etc. As mentioned in Lecture
4, a representation for functionals of a general Poisson random measure on
a Polish space, and also for functionals of an in�nite dimensional Brownian
motion and an independent Poisson random measure were recently estab-
lished. Thus one has representations for many of the processes one might
encounter driven by in�nitely divisible noises.

With useful representations available and certain a priori constructions
that allow one to restrict to controls that take values in a compact set,
the general approach usually follows the arguments used in the simple case
of stochastic di¤erential equations treated in Lecture 4. Thus one needs
a strong solution, by which we mean a solution that leads to a measurable
mapping from the noise space to the system output, as well as a good under-
standing of qualitative properties such as tightness for the controlled version
of the original model and LLN limits. As mentioned previously there is great
variety to the problem and model formulations in the in�nite dimensional
setting, and these basic qualitative properties that one needs to carry out
the analysis require a fairly deep understanding of the nuances of the speci�c
problem formulation.
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As a last comment, it should be noted that there is very little experience
with the design and use of importance sampling in the in�nite dimensional
setting. In this setting the construction of even a single sample is usually
expensive, and so there is even more value to e¢ cient simulation methods.
The cost of constructing samples suggests that speedup would be useful even
for events that are not so far out in the tail of the distribution, and so the
moderate deviation theory for these problems may be useful.
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