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In their article Dynamics of cancer recurrence, J. Foo and K. Leder (F-L, 2012), 

were concerned with the timing of cancer recurrence. The cancer cell population consists 

of two types of cells: Sensitive (S) to the drug administered and drug Resistant (R) cells. 

The replication of S cells produces mutant R cells with some probability. F-L derive 

uniform in time approximations for the paths of the escape from extinction processes and 

its components, in the limit as the initial population size tends to infinity and the mutation 

rate tends to zero. In addition, they derive the time at which (i) the resistant cells 

dominate the sensitive ones – crossover time -  and (ii) the total population T of cancer 

cells T = S + R grows after the initial decline due to the drug – turnabout time . Their 

model is stochastic and they obtain their results from simulation. The large literature on 

the subject has focused upon calculations of the eventual probability of developing 

resistance and the resistant population size. By contrast, F-L focus upon the variable 

timing of tumor resistance. 

This note concerns the same problem but uses a nonlinear variant/modification of 

their model. There are two parts to my note. The first is a deterministic rather than 

stochastic version of the model , and the qualitative solution is presented in terms of 

dynamics and convergence to steady states. The advantages of this alternative model are 

that the analytic solutions and the complete dynamic path are explicit. No approximations 

are made, because I focus upon qualitative solutions. The cases where reversal of the 

tumor size – turnabout time - occurs are explicit.  
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The second part is a stochastic counterpart to the nonlinear dynamic model. Here 

one obtains quantitative results. Probabilistic statements can then be made about the 

nature of convergence. Both the tumor size and resistance cells are normally distributed 

with explicit expressions for expectations and variances. 

I draw upon the F-L model as well as the literature on antibiotic resistance, Handel, 

Margolis and Levin (2008), Frank (2007 ) and Stewart and Levin (1977).  

1. The nonlinear model 

There are two types of cancer cells: sensitive and resistant. Each has its own 

dynamics. Equation (1) describes the dynamics of the S cells. The variant of the logistic 

law of population growth has two vital coefficients. The S cells tend to grow at rate aS(t)  

in the absence of the drug. The effect of the drug on the sensitive cells is bS(t). 

(1) dS(t)/dt = S(t)(a – bS(t)) 

The dynamics of the resistant R cells is equation (2). Due to the immune 

response, the R cells decline at rate rR(t). However, as in F-L, the S cells produce 

mutants that are drug resistant at rate mS(t). 

(2) dR(t)/dt = -rR(t) + mS(t). 

The tumor size T(t) is the subject of concern. 

(3) T(t) = S(t) + R(t).  

2. Equilibrium solution 

There are two equilibria where dS/dt = 0 and dR/dt = 0. The first is (4a) and the second is 

(4b). 

(4a) S* = 0, R* = 0 

(4b) S* = a/b, R* = (m/r)(a/b). 

The resulting total tumor size T*= S* + R* is equation (4c). 

(4c) T* = (a/b)(1 + m/r) 
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Conditions (4b) and (4c) are clear. The steady state tumor size T* is positively related to 

(i) the ratio (a/b) of the intrinsic growth of S cells relative to the efficacy of the drug and 

(ii) the ratio (m/r) of the mutation rate relative to the efficacy of the immune system. The 

patient will be totally cured if the equilibrium is (4a), which will not happen in this 

dynamic model. The tumor size will stabilize at T* in (4c). If the maximum viable tumor 

size is T-max, then the patient will only survive if T* < T.max. Thus the prognosis should 

be based upon V = (T.max – T*). There is hope only if V > 0. If based upon estimates of 

(a/b), (m/r) the value of T* exceeds T.max, alternative treatments should be considered. 

3. Nonlinear Dynamics 

F-L are concerned with the timing of the two types of cancer cells. (a) When will 

the R cells dominate the S cells? (b) When will the tumor recur after a period of decline 

due to the treatment? Figure 1 describes the dynamics, the qualitative solution to my 

alternative or variant of their model, in the form of trajectories from initial conditions. 

The vectors describe the motion of S(t) and R(t) based upon equations (1), (2) and 

(4b). The line labeled dS/dt = 0 is the set of (S,R) where the sensitive cells are constant. 

The vertical vectors describe the motion of S(t) to S*. The line labeled dR/dt = 0 is the 

the set of (S,R) where the resistant cells are constant. The horizontal vectors describe the 

motion of R(t) to R*. 

The total tumor size T = S + R is described the lines with a slope of -1. The 

equilibrium tumor size is T*. Hopefully T* is less than T.max, the maximum viable 

tumor size (not drawn). 

The trajectory of the tumor is given by equation (5) which is just equation (1) plus (2), 

using (3). The solution for S(t) is equation (6), where S(t) converges to its equilibrium 

value in (4b). Hence T(t) converges to the value in (4c). 

(5) dT/dt = -rT(t) + S(t)(a – b S(t) + m + r) 

(6) S(t) = aS(0)/[bS(0) + (a – bS(0))exp(-a(t – t(0))],  lim S(t) = a/b.  



Nonlinear dynamics of cancer recurrence 

 

 4 

In general, substitute (6) into (5) and one can derive the timing of T(t) to T*. When 

if ever will there be a reversal? One needs to know (a, b, r, m) and initial conditions P(1) 

– P(4) or [T(0), S(0) ] or [S(0), R(0).  

If S(0) is close to S* = a/b, then S(t) is relatively constant at S*, that is the trajectory 

is close to/along the dS/dt = 0 curve in figure 1. The R cells, along the dS/dt = 0 curve, 

based upon (2) is equation (7), where R* is the equilibrium value given by (4b). 

(7) R(t) = R* + [R(0) – R*] exp(-rt) 

When S(0) is close to S*, that is the trajectory is close to/along dS/dt = 0, the 

trajectory of T(t) is equation (8) where the equilibrium T = T* given by (4c). 

Consequently one can solve for the time t when the tumor size is equal to any arbitrary 

size. 

(8) T(t) = T* + [T(0) – T*] exp(-rt). 

The crucial variable for the speed of convergence in both cases, when the trajectory is 

along dS.dt = 0, is r, the effect of the immune system in equation (2). 

F-L focus upon means of the distributions of the two populations as well as upon the 

tails. By contrast, my deterministic variant of their model can be viewed as focusing upon 

means and ignoring the stochastic elements which would appear in equations (1), (2). 

Table 1 summarizes the discussion below concerning the trajectories in figure 1 and 

when there will be reversals. Consider four patients/cases P(1) – P(4). In each case 

assume that the tumor is below the maximum viable case T-max. 
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 Figure 1. Dynamics of drug sensitive S and drug resistant R tumors. Total tumor size is 

T. Equilbria are S*,R* and T*. 

Patient P(1) has a large tumor T(1), mostly of the drug sensitive type. With 

treatment, the sensitive cells decline, but the resistant cells rises. The total tumor first 

declines and then rises to the equilibrium T*. This is similar to F-L figure 1. 

Patient P(2) has a large tumor T(0) > T*. Both sensitive and resistant types are high, 

S(0) > S* and R(0) > R*. The drug reduces the sensitive type, the resistant type declines 

and the tumor declines to the equilibrium value T*. 

Patient P(3) has a large tumor T(0) < T*, mainly of the drug resistant type. The 

sensitive type rises, and the resistant type declines. Initially, the total tumor size rises 

above T(0)  but then there is a reversal and the tumor size declines to T*. 

Patient P(4) has a low value of the tumor. Both sensitive and resistant types rise and 

the tumor rises from T(0) to T*. 
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Table 1 Dynamics implied by model and figure 1. 

Initial condition S(t) sensitive R(t) resistant T(t) total tumor 

P(1) 

Similar to F-L fig. 1 

 

decrease  increase Reversal/turnabout: 

T(t) first declines 

then rises to T* 

P(2) decrease decrease decrease 

P(3) increase decrease Reversal/turnabout: 

T(t ) rises  then 

declines to T* 

P(4) rises rises Rises to T* 

 

Unlike F-L, for the same mutation rate, there is reversal in patients P(1) and P(3). Both 

start with high values of the tumor [T-max > T(0)] > [T* = (a/b)(1 + m/r)]. In patient P(1) 

the tumor first declines and then rises. In patient P(3), the tumor first rises and then 

declines. 

3. Stochastic version of the model 

One can consider a stochastic version of the model (1) - (3). Suppose that S(0) is close to 

S*, so that dS ~ 0. Then the stochastic version of the dynamics of the tumor size, 

equation (5) can be written as  

(9) dT(t) = - rT(t) dt + S*(m + r) dt + σ dw(t),  E(dw) = 0, E(dw2) = dt. 

where S* is given by equation (4b). Brownian Motion is w(t). The stochastic term  

σ dw(t), has an expectation of zero and a variance of σ2 dt.  
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The expectation of the change in tumor size is 

(10) E(dt) = [-rE(T) + S*(m+ r)] dt. 

Therefore the expectation of T = T* is equation (11). Using this, write (9) as stochastic 

differential equation (12). 

(11) E(T) = T* = S*( m + r)/r. 

(12) dT(t) = -rT(t) dt + rT* dt + σ dw(t) 

It is convenient to convert (12) into an Ornstein-Uhlenbeck equation. Define y(t) as (13). 

Then (12) can be written as Ornstein-Uhlenbeck equation (14). 

(13) y(t) = T(t) – T* 

(14) dy(t) = - ry(t) dt + σ dw(t) 

The solution of this equation is (15), where y(0) = T(0) – T*. 

(15) y(t) = y(0) exp (-rt) + σ exp (-rt) ∫ exp(rs) dw(s),  t > s > 0. 

The expectation of y(t) = E[y(t)] = y(0) exp (-rt) goes to zero as t grows to infinity, (15a). 

This implies that lim E[T(t)] in (15b) is T*. 

(15a) lim E[y(t)] = 0. 

(15b) lim E[T(t)] = T*. 

The variance of y(t) follows from (15) and is (16a). In the limit var y(t) is (16b). This is 

the variance of T(t), the tumor size. 

(16a) var y(t) = (σ2/2r) (1 – exp (-2rt)) 

(16b) lim var y(t) =  var T(t) = (σ2/2r) 

Equations (15a) - (16b) describe the probability distribution of the tumor size. Since w(t) 

is Brownian Motion, the distribution of lim T is normal N(T*, σ2/2r). 

 

 



Nonlinear dynamics of cancer recurrence 

 

 8 

4. Conclusions 

This note was stimulated by a seminar given by Kevin Leder, April 2012 at the Division 

of Applied Mathematics at Brown University. The F-L paper developed limiting 

stochastic approximations for the population process. They use limit approximations to 

characterize the distribution of the time at which the progression of the disease is 

observed. Moreover, they characterize the time that the resistant mutants overtake the 

original type in the population. 

There are two main conclusions of the F-L model. (1) The time of extinction of the 

resistant cells depends upon Y = (λ(0) + λ(1)) where λ(0) < 0 is the net growth rate of the 

S cells and λ(1) > 0 is the net growth rate of the R cells. If Y  > 0 then the expected 

extinction time is infinite. If Y < 0, then it is finite. (2) The turnabout time when the total 

tumor starts to rise after a period of decline depends positively upon the mutation rate. 

The contribution of part 1 of my note is to use a deterministic variant of their model that 

explicitly shows the dynamics of the two types of cells and total tumor size from initial 

conditions to the steady state. I show under what conditions here will be reversals in the 

tumor growth. Unlike F-L, the S and R cells and total tumor size converge to positive 

constants. The key parameters for the steady states of the Sensitive, Resistant and Total 

tumor are: (i) the ratio (a/b) of the growth of sensitive cells/efficacy of the drug; (ii) the 

ratio (m/r) of the rate of mutation/immune response to the resistant cells. The steady state 

tumor size T* = [(a/b)(1 + m/r)]. For the same mutation rate m > 0, the trajectories are 

described in terms of four patients who differ in the initial conditions. Reversal/turnabout 

occurs when the initial conditions are such that either [S(0) > S*, R(0) < R*] or [S(0) < 

S*, R(0) > R*]. 

The deterministic model provides insights into the dynamics and steady state. Part 2 of 

my note considers a stochastic version of the deterministic model. Let S(0) be close to the 

steady state value S*. The total tumor size T(t) is described by a stochastic differential 

equation of the Ornstein-Uhlenbeck type. There is a drift related to the difference 

between the current value and the steady state value [T(t) – T*]. The diffusion is σ dw, 
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where w(t) is Brownian Motion and σ > 0 is a constant. Then the tumor size converges to 

a normal distribution where E[T] = T* and the variance is σ2/2r where r is the decay rate 

of the R cells due to immunity r. 
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