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Part I - Mathematical Results

1 Introduction.

The field of geometric measure theory (GMT) is at an interface of problems in mathematical

analysis and geometry. This article is intended as a historical retrospective, with emphasis on

the decade 1960-1969. This was a time of rapid development of GMT, and Brown University

was at the forefront. It is a revision and extension of material presented at a miniconference

on April 16, 2011 in memory of Herbert Federer, who died in April 2010.

Federer joined the Mathematics Department in 1945, and remained at Brown throughout

his career. He is remembered for his many deep and original contributions to GMT, beginning

with his paper [Fe45] on the Gauss-Green theorem. It is difficult to imagine that the rapid

growth of GMT beginning in the 1960s, as well as its subsequent influence on other areas

of mathematics, could have happened without Federer’s ground breaking efforts. His book

Geometric Measure Theory [Fe69] is a classic reference. Reference [P12] is a scientific obituary

article about him.

At Federer’s initiative I came to Brown in 1958, and had the good fortune to participate

in GMT research during the exciting years immediately afterwards. In particular, I had the

good fortune during my first year at Brown to collaborate with Federer on our joint paper

Normal and Integral Currents [FF60].

My purpose is to give some remembrances of developments in GMT through the 1960s,

with selected references to more recent work. By 1970, I had left GMT to work on other

research topics. As mentioned above [Fe69] is a definitive treatment of results in GMT up to

its date of publication. Reference [Fe78] is based on Federer’s 1977 American Mathematical

Society Colloquium lectures. It can be a useful complement to the more detailed development

in [Fe69]. Another thorough introduction to GMT is L. Simon’s book [SL83]. It is often
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recommended to students and others wishing to learn this subject. F. Morgan’s book [MF00]

provides a readable introduction to concepts and results in GMT, with many references. F.J.

Almgren’s survey paper [AF93] provides a good, concise overview of concepts and results in

GMT, with emphasis on area minimizing surfaces.

These notes are organized as follows. Part I discusses mathematical results. We begin

in Section 2 with a brief review of pre-1960 background. Among the developments during

the 1950s which directly influenced developments in GMT afterward were deRham’s theory

of currents, L.C. Young’s generalized surfaces and Whitney’s geometric integration theory

(Section 2, (v)-(vii)). Sections 3 and 4 focus on my paper with Federer [FF60] and subsequent

results by Federer. This paper is in a deRham current setting, which involves orientations of

k-dimensional “surfaces.” Section 5 describes an alternative setting, in terms of Whitney’s

flat chains, which does not involve orientations of surfaces.

The next Section 6 introduces the Plateau (minimum area) problem, in both the Reifen-

berg [Re60] and integral current formulations. This is followed in Section 7 by a brief

summary of results about the notoriously difficult questions about regularity of solutions to

the higher dimensional Plateau problem. Section 8 discusses solutions to geometric problems

in the calculus of variations, in the setting of Young’s generalized surfaces. Such solutions

exist without assumptions of convexity or ellipticity, needed for existence and regularity of

“ordinary” solutions as integral currents or flat chains. Some open questions about repre-

sentations of generalized surface solutions are discussed in Appendix C. Almgren’s varifolds,

which are defined in a way formally similar to generalized surfaces, are also mentioned in

Sections 7 and 8.

The remainder of these notes (Part II) present a shift from mathematical discussions to

some remembrances of the milieu at Brown University in the 1960s, and of our graduate

students and visitors in GMT during that period (Sections 9 and 10). I then give in Section
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11 some brief personal remembrances about F.J. Almgren, E. De Giorgi, H. Federer, E.R.

Reifenberg and L.C. Young, who are no longer with us. Except for Reifenberg, who died in

a tragic mountaineering accident in 1964, I cite other scientific obituary articles. There are

volumes of selected works of Almgren [AF99] and De Giorgi [DG06].

I wish to thank William Allard and William Ziemer for their valuable comments on an

earlier draft of this article.

Part I - Mathematical Results

2 Pre-1960 background.

We begin with a brief overview of work before 1960 which impacted subsequent developments

in GMT afterward. Throughout the discussion, Rn denotes n-dimensional Euclidean space,

and k is an integer with 0 ≤ k ≤ n. Other notations are summarized in Appendix A.

i Structure of sets of finite Hausdorff measure.

During the early 20th century several definitions of k-dimensional measure of a set K ⊂ Rn

were given. Among them the Hausdorff definition is now most widely used. The Hausdorff

measure of K is denoted by Hk(K). A set K is called k-rectifiable if it differs in arbitrarily

small Hk measure from a finite union of closed sets K1, . . . , Km, such that each Ki is the

image of a set Di ⊂ Rk under some Lipschitz function fi. The k-rectifiable sets have an

important role in the theory of rectifiable and integral currents (Section 3). A set K with

Hk(K) finite is called purely k-unrectifiable if K has the following property. Let ρ denote

the orthogonal projection of Rn onto a k-dimensional plane π containing 0. Then ρ(K) has

k dimensional Lebesgue measure 0 for “almost all” such projections ρ.

Besicovitch showed for k = 1, n = 2, that any set K ⊂ R2 with 0 < H1(K) < ∞ is the

union of 1-rectifiable and purely 1-unrectifiable subsets K1,K2. This result was extended
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by Federer to arbitrary dimensions n and k < n, in his fundamental paper [Fe47]. He also

showed that, if K is k-rectifiable, then all reasonable definitions of k-dimensional measure

of K agree with Hk(K). See also [Fe52,69].

ii Gauss-Green (divergence) theorem.

The classical Gauss-Green theorem states that if E ⊂ Rn is a bounded set with smooth

boundary B, then

∫
E

divζ(x)dx =

∫
B

ζ(y) · ν(y)dHn−1(y)(2.1)

for any smooth Rn-valued function ζ, where ν(y) is the exterior unit normal at y. An early

achievement of GMT, by Federer [Fe45] and De Giorgi [DG55], was to obtain a version

of (2.1) for a much larger class of sets E, without any smoothness assumptions about the

boundary B. For any bounded Borel set E ⊂ Rn, De Giorgi defined a quantity P (E) called

the perimeter of E. If E happens to have a smooth boundary B, then P (E) = Hn−1(B).

It turns out that a set E has finite perimeter P (E) if and only if the first order partial

derivatives of the indicator function 1E (in the Schwartz distribution sense) are measures.

In [DG55] De Giorgi defined the reduced boundary Br of a set E with P (E) < ∞. He

also defined an approximate exterior unit normal ν(y) at each y ∈ Br. See [DG55, Thm.

III]. Then Br is a (n− 1)-rectifiable set and formula (2.1) holds, with B replaced by Br. De

Giorgi’s paper was written in Italian. An English translation of it is included in the selected

papers by De Giorgi book [DG06].

iii The Plateau (least area) problem.

The classical Plateau problem for two dimensional surfaces in R3 is as follows. Find a surface

S0 of least area among all surfaces S with given boundary C. This is a geometric problem in

the calculus of variations, which has been studied extensively. During the 1930s, J. Douglas
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[Do31] and T. Rado [Ra30] independently gave solutions to a version of the Plateau problem.

Their results were widely acclaimed. Douglas received a Fields Medal in 1936 for his work.

In the Douglas-Rado formulation, admissible surfaces were defined in terms of “para-

metric representations” of surfaces. Any such parametric representation f maps a simply

connected region D ⊂ R2 into R3. The boundary condition is that the restriction of f to the

boundary of D is a parametric representation of the boundary curve C, which is assumed

to have no multiple points (a “simple closed curve”). The area A(f) is given by its classical

formula,

A(f) =

∫
D

∫ ∣∣∣ ∂f
∂u1

∧ ∂f

∂u2

∣∣∣du1du2.(2.2)

(See Appendix A for notations). Special (conformal) parametric representations are chosen

such that D is a circular disk and

A(f) =
1

2

∫
D

∫
|∇f |2du1du2,(2.3)

which is the Dirichlet integral. It was then shown by Douglas and Rado that there is a con-

formal parametric representation which minimizes A(f), subject to the boundary conditions.

The components of this R3-valued function f are harmonic functions.

If the parameter domain D is simply connected, then the surface parameterized by f

was said to be of the “topological type of a circular disk.” The Douglas-Rado result was

afterward generalized by Courant [C50] and Douglas [Do39] to give a solution to the Plateau

problem for surfaces bounded by a finite number of disjoint curves and of prescribed finite

Euler characteristic. However, in [Fl56] an example was given which shows that the problem

of least area with unrestricted topological types may have no solution of finite topological

type, even in case the boundary C consists of a single closed curve of finite length.

The Douglas-Rado methods depend on conformal parameterizations, and hence are in-

trinsically 2 dimensional. For these reasons, it was clear by the late 1950s that entirely new

formulations were needed to study the Plateau problem for surfaces of dimension k > 2.
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During the 1960s and 1970s, remarkable progress was made in that regard. See Sections 6

and 7.

iv Surface area theory.

The issue of giving a suitable definition of area for surfaces, without traditional smoothness

assumptions, goes back to Lebesgue’s thesis at the beginning of the 20th century. As in

(iii) consider surfaces defined parametrically. Let f be a continuous function from a region

D ⊂ R2 into R3. The Lebesgue area A`(f) is defined as the lower limit of the elementary

areas of approximating polyhedra. Lebesgue area theory flourished from the 1930s through

the 1950s. T. Rado and L. Cesari were leaders in the field, and their books [Ra48] [Ce56] are

important sources. In the years after WW2, they were joined by Federer who contributed

many of the most significant advances during this period.

One of the objections to the Lebesgue definition is that there are examples in which

A`(f) is finite but the set f(D) has positive 3-dimensional Lebesgue measure. Besicovitch

[B45] gave an alternative definition of area which is not subject to this objection. A basic

question in area theory is to find an integer valued multiplicity function Θ(x) which yields

A`(f), when integrated over f(D) with respect to Hausdorff measure H2. If f is Lipschitz,

then A`(f) = A(f) as in (2.2) and one can take Θ(x) = N(x), where N(x) is the number

of points (u1, u2) in D such that f(u1, u2) = x. However, the task of defining a suitable

multiplicity Θ(x) for every f with A`(f) finite presented a major challenge. For this purpose,

corresponding multiplicity functions were first defined for mappings form R2 into R2 in terms

of topological indices. Another important result was Cesari’s inequality, which states that

A`(f) is dominated by the sum of the Lebesgue areas of the projections of f onto the three

coordinate planes.

A brief overview of Federer’s important contributions to area theory is given in W.

Ziemer’s part of the scientific obituary article [P12], and also in [FZ14]. Federer extended
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many results about Lebesgue area to k-dimensional surfaces, defined by mappings f from

D ⊂ Rk into Rn, with 2 < k ≤ n. In doing so, he used recent developments in algebraic

topology. Topological indices for the case k = 2 were replaced by topological degrees, defined

in terms of Čech cohomology groups.

v deRham’s currents.

The L. Schwartz theory of distributions appeared just at the end of WW2. Since then it

has had a very profound influence on mathematical analysis. A Schwartz distribution T is

defined as a linear functional on a space of smooth test functions on Rn. Any such T has

(by definition) partial derivatives of every order, which are also Schwartz distributions. Soon

afterward, deRham’s theory of currents appeared [Rh55]. Another approach, motivated by

geometric problems in the calculus of variations, was L.C. Young’s theory of generalized sur-

faces [Y51]. See part (vi), Section 8 and Appendix C. Both [Rh55] and [Y51] are formulated

in functional analysis settings.

In [Rh55], deRham introduced the concept of currents on a smooth manifold V . He was

motivated primarily by questions in algebraic topology and differential geometry. However,

deRham’s currents turned out to provide a very convenient framework for studying questions

in geometric measure theory. This connection was first made in [FF60].

For simplicity, we consider only V = Rn. A current of dimension k is defined as a linear

functional on a space of Dk of smooth differential forms ω of degree k, which have compact

support. (deRham calls T a current of degree n− k.)

Example 1. Let k = n and g an integrable function on Rn with compact support. The

corresponding current Tg of dimension n (degree 0) satisfies for every smooth test function

φ on Rn

Tg(ω) =

∫
Rn

g(x)φ(x)dx(2.4)
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where ω = φ(x)dx1 ∧ · · · ∧ dxn is the corresponding differential form of degree n.

Example 2. Let S ⊂ M, where M is a smooth k-dimensional sub-manifold of Rn and

S has an orientation specified by a continuously varying unit tangent k-vector τ(x), x ∈ S.

The associated current TS is defined by

TS(ω) =

∫
S

ω =

∫
S

ω(x) · τ(x)dHk(x),(2.5)

for all ω ∈ Dk. In (2.5), τ(x) = |α(x)|−1α(x) where α(x) = v1(x) ∧ · · · ∧ vk(x) and

v1(x), . . . , vk(x) are linearly independent tangent vectors to M at x. See Appendix A for

notations. The unit k-vector τ(x) is determined, up to a ± sign, by the order of these

basis vectors v1(x), . . . , vk(x) for the tangent space at x. Note that −TS has the opposite

orientation from TS.

For any current T of dimension 1 ≤ k ≤ n, the boundary ∂T is defined as the current

∂T of dimension k − 1 such that

∂T (ω) = T (dω)(2.6)

for all ω ∈ Dk−1 where the k-form dω is the exterior differential of ω. Formula (2.6) includes

as a special case the classical theorem of Gauss-Green in (2.1). In this case k = n − 1 and

S = B is the (smooth) boundary of E. The (k − 1)-vector τ(x) in (2.5) is the adjoint of

the unit exterior normal to E at the point x ∈ B. The (n− 1)-form ω in (2.5) is adjoint to

the 1-form determined by ζ in (2.1). See [Fl77, Section 8.7] and Appendix A. The classical

Stokes formula for surfaces in R3 can also be rewritten in the form (2.6). Let S be a smooth

surface in R3 with smooth boundary C, and with consistent orientations chosen for S and

C. Let TC and TS denote the corresponding currents of dimensions 1,2 respectively. The

classical Stokes’ formula is equivalent to TC(ω) = TS(dω) for every 1 form ω ∈ D1. In the

classical statement of Stokes’ formula, the adjoint of the 2-form dω corresponds to the curl

of ω. See [Fl77, Section 8.8].
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vi Young’s generalized surfaces.

Young is well known for his work during the 1930s on generalized curves. This early work

provided solutions to calculus of variations and optimal control problems with nonconvex

integrands, which may have no solution in the traditional sense. A generalized curve solution

involves an ordinary curve C, to which is attached a measure-valued function on the set of

possible tangent vectors at each point of C. See [Y37] [Y69].

In the seminal paper [Y51], Young defined the notion of generalized parametric surface

of dimension k = 2. One of his goals was to provide an alternative to the surface area theory

formulations of geometric problems in the calculus of variations, which would also apply in

dimension k > 2. A generalized surface of any dimension k is defined as a nonnegative linear

functional on a space Ek of continuous functions F (x, α), with x ∈ Rn and α a k-vector,

see Section 8. His approach allows the use of methods based on weak convergence and

convex duality arguments. However, Young had a broader vision, including for example a

possible Morse theory in terms of generalized surfaces. This was expressed, for example, in

the introduction to his paper [Y62]. In modified form, various parts of Young’s vision were

later achieved by Young himself, and also by others in the framework of integral currents,

Whitney-type flat chains and Almgren’s varifolds.

Young was my PhD thesis advisor, and he had a profound influence on my mathematical

career. We wrote three joint papers on generalized surfaces [FY54, 56a,b], which are mainly

of historical interest now. Some results in [FY56b] were precursors of later results about

rectifiable and integral currents. Generalized surfaces are discussed further in Section 8 and

Appendix C.
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vii Whitney’s geometric integration theory.

H. Whitney’s book [WH57] was another influential source of ideas for developments in GMT

soon afterward. Whitney began by asking what a theory of k-dimensional integration in Rn

should look like. A central role is played by the spaces Pk(R1) of polyhedral chains P of

dimension k with real coefficients. Such a polyhedral chain is a finite linear combination

of oriented polyhedral convex cells in Rn. Two possible norms on Pk(R1) were considered,

called the flat and sharp norms. The flat norm turned out to be particularly useful later.

See [FF60][Z62][Fl66], also Sections 3 and 5 below.

A polyhedral convex cell σ is a bounded subset of some k dimensional plane π ⊂ Rn,

such that σ is the intersection of finitely many half k-planes of π. Each P ∈ Pk(R1) is a

finite linear combination of polyhedral convex cells σi

P =
∑

i

aiσi(2.7)

with real coefficients ai.

Whitney was particularly interested in characterizing the dual spaces to Pk(R1) with

either flat or sharp norms. Elements of these dual spaces are called cochains, denoted by

X in [WH57]. Under either flat or sharp norm, the dual space contains all cochains which

correspond to smooth differential forms of degree k. The cochain Xω associated with such a

k-form ω is defined by

Xω(P ) =
∑

i

ai

∫
σi

ω(2.8)

for all P ∈ Pk(R1).

In [WH57, Chap. 4] it is shown that, under the flat norm, a cochain corresponds to what

Whitney called a flat differential form, which is defined pointwise in terms of directional

derivatives. Under the sharp norm, the dual space of cochains has a less explicit description

[WH57, Chap. 11]. The perspectives in [Rh55] and [WH57] are quite different. In [Rh55]
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deRham considered only “cochains” corresponding to smooth differential forms of degree k.

These have the role of test functions in deRham’s theory. The class of deRham’s currents

of dimension k is very large, including many currents which have no geometric properties

at all. In contrast, Whitney’s polyhedral chains correspond to test functions, and the large

dual spaces include many cochains which do not correspond to differential forms in the usual

sense.

3 Rectifiable and integral currents.

During the academic year 1958-59, Federer and I wrote the paper Normal and integral

currents [FF60], for which we later received a Steele Prize from the American Mathematical

Society. A brief overview of the principal motivations and results of this paper is given in this

section, and in Sections 4,6. As already mentioned in Section 2(i), one of the goals of GMT

is to provide a theory of k-dimensional measure for subsets of Rn. Another goal is a theory

of integration of k-dimensional “surfaces” without traditional smoothness assumptions. In

[FF60], this is addressed in a systematic way. The Introduction to [FF60] begins with the

following paragraph (written by Federer):

“Long has been the search for a satisfactory analytic and topological formulation of the

concept “k dimensional domain of integration in euclidean n-space.” Such a notion must

partake of the smoothness of differentiable manifolds and of the combinatorial structure of

polyhedral chains with integer coefficients. In order to be useful for the calculus of variations,

the class of all domains must have certain compactness properties. All these requirements

are met by the integral currents studied in this paper.” In Federer’s book [Fe69] Chapter

4, which is titled “Homological integration theory,” also gives a systematic treatment of

rectifiable and integral currents.

In the following discussion, we refer to Appendix A for notation and definitions. M(T )
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denotes the mass of a current T , and f#(T ) the image of T under a Lipschitz function f

from Rm into Rn. Three types of convergence of sequences of currents are of interest: weak,

strong and in the Whitney flat distance.

An indication of how we arrived in [FF60] at the class of integral currents is as follows.

First of all, we sought a class Ck of k dimensional currents T , with compact support spt T ,

and with the following properties:

1. TS ∈ Ck if TS corresponds to a bounded subset S ⊂ M ⊂ Rn as in (2.5) and S has

“piecewise smooth” boundary. Note that M(TS) = Hk(S). In particular, we can take

S = σ where σ is an oriented polyhedral convex cell in some k dimensional plane, as

in Section 2 (vii).

2. If T1, . . . , Tm are in Ck and a1, . . . , am are integers then

T =
m∑

i=1

aiTi

is in Ck. In particular, any polyhedral chain P with integer coefficients is in Ck.

3. Any Lipschitz image f#(T ) of T ∈ Ck is also in Ck.

4. If T1, T2, · · · ∈ Ck and Tj → T strongly as j → ∞, then T ∈ Ck [Recall that strong

convergence means M(Tj − T ) → 0 as j →∞.]

The class of all rectifiable currents of dimension k, as defined in [FF60, Sec. 3], is the smallest

class of currents determined by properties (1)-(4). From results [FF60, pp. 500-502] any

rectifiable current T has the following representation. There exist a bounded k-rectifiable

set K, and for Hk-almost all x ∈ K there exist Θ(x) with positive integer values and an

approximate tangent vector τ(x) with |τ(x)| = 1, such that:

T (ω) =

∫
K

ω(x) · τ(x)Θ(x)dHk(x),∀ω ∈ Dk,(3.1)
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M(T ) =

∫
K

Θ(x)dHk(x).(3.2)

In view of (3.2), M(T ) is also called the k area of the rectifiable current T , and Θ(x)

represents the number of times x is counted. More precisely, K is countably k-rectifiable

as defined in [Fe69, Sec 3.2.14], or equivalently in the sense of [FF60, pp. 500-502]. This

definition provides consistent orientations for the approximate tangent k-vectors τ(x)

For the study of existence theorems for calculus of variations, some property like (4) is

needed in which strong convergence is replaced by weak convergence. As in [FF, Sec. 3],

T is called an integral current if both T and its boundary ∂T are rectifiable currents. We

take Ck to be the class of integral currents of dimension k. The desired weak convergence

analogue of property (4), called the Closure Theorem, is discussed below. It requires that

N(Tj) is bounded, where N(T ) = M(T ) +M(∂T ).

The need for some such additional condition is seen by considering the case k = n. A

rectifiable current of dimension n has the form (2.4), where g is an integrable integer valued

function with compact support and M(Tg) is the L1 norm of g. If g1, g2, . . . is a sequence

in L1(Rn) with bounded L1 norms, then weak convergence of Tgj
as j →∞ corresponds to

convergence of gj in the Schwartz distribution sense. The limit can be any signed measure

on a bounded subset of Rn. The restriction that M(∂Tgj
) is also bounded gives a geometric

significance to the limit T . In particular, if gj is the indicator function of a set Ej with

“piecewise smooth” boundary which converges in n-dimensional Lebesgue measure to a set

E as j →∞, then E is a set of finite measure in De Giorgi’s sense. See Section 2(ii).

Highlights of [FF60].

Among the main results are the following:

(a) Deformation Theorem [FF60, Thm. 5.5.]. This essential tool provides polyhedral

chain approximations to integral currents in the Whitney flat metric (and hence also
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in the sense of weak convergence.) The cells of the approximating integral polyhedral

chains belong to the k dimensional skeleton of a cubical grid in Rn.

An immediate consequence of the Deformation Theorem is a result [FF60, Thm. 5.11]

which provides a way to characterize homology groups for subsets of Rn. Such subsets

need not be smooth manifolds, but are required to have a local Lipschitz neighborhood

retract property.

(b) Isoperimetric inequalities. Other very useful tools are the isoperimetric inequalities

for currents [FF60, Sec. 6]. The proofs rely on the Deformation Theorem. In [FF60,

Remark 6.6] the best isoperimetric constant is obtained, by an argument through

which the inequality [FF60, Corollary 6.5] was originally discovered. This argument

was outlined earlier in an abstract (Appendix B).

(c) Weak and flat convergence. In [FF60, Sec. 7] it is shown that weak convergence

of a sequence Tj to T as j → ∞ is equivalent to convergence in the Whitney flat

distance, provide that N(Tj) is bounded. The Deformation Theorem has an essential

role in the proof. The Whitney flat distance also has a key role in the “nonoriented

case,” discussed in Section 5.

(d) Closure Theorem [FF60, Thm. 8.12]. This result says that, if Tj is a sequence of

integral currents such that N(Tj) is bounded, spt Tj is contained in a compact subset

of Rn and Tj → T weakly as j →∞, then T is also an integral current. The proof of

the Closure Theorem given in [FF60] relies on what was called a rectifiable projection

property. It also uses deep covering and differentiation theorems of A.S. Besicovitch

and A.P. Morse for measures on Rn. Later, B. Solomon [SB84] and B. White [WB89]

gave different proofs of the Closure Theorem. A corollary of the Closure Theorem is

the following result [FF60, Corollary 8.13]: for any positive constants c, r, the set of
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integral currents T such that N(T ) ≤ c and spt T ⊂ Br(0) is weakly compact.

(e) Strong approximation Theorem. [FF60, Thm. 8.22] provides the following results,

which further justify the idea that (in a measure theoretic sense) any integral current of

dimension k nearly coincides with a finite sum of pieces of oriented smooth manifolds.

In fact, there exist sequences of integral polyhedral chains Tj and diffeomorphisms fj

converging to the identity map, such that N [fj#Tj − T ] tends to 0 as j →∞.

(f) Minimal currents. [FF60, Sec. 9] is concerned with integral currents which minimize

k-area, subject to given boundary conditions. Some of these results are sketched in

Section 6.

During the 1950s, I had worked on L.C. Young’s generalized surfaces, and I planned to

continue doing so after my arrival at Brown in September 1958. A difficult problem was the

absence of a generalized surface counterpart to the Closure Theorem for integral currents,

except for some results in [FY56b] for k = 2, n = 3. Late in the autumn of 1958, I found

a method which promised to work in any dimensions k and n, and mentioned it to Federer.

This technique was similar to that used in [FF60] to prove the Closure Theorem. Quite

independently, he had developed other parts of a theory of normal and integral currents.

In fact, his paper [Fe55] on surface area theory already contained the basic idea of the

Deformation Theorem. Federer soon convinced me of the advantages of the deRham current

setting. We then began an intensive joint effort through the rest of the academic year 1958-59

and summer 1959. Federer undertook the task of organizing our results into the systematic

and coherent form in which [FF60] appears.

See Appendix B for abstracts which announced early versions of the Closure and Defor-

mation Theorems, and also an isoperimetric inequality.
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4 Normal currents, other results.

As in [FF60] a current T is called normal if N(T ) = M(T ) + M(∂T ) is finite. Weak

compactness of {T :N(T ) ≤ c, spt T ⊂ Br(0)} holds for any positive constants c, r. The

Deformation Theorem implies that T is normal if and only if T is the weak limit as j →∞

of a sequence Pj of polyhedral chains with real coefficients, with N(Pj) bounded and spt

Pj ⊂ Br(0) for some r.

The case k = n is of interest, due to its connections with bounded variation (BV)

functions on Rn. If k = n and T is normal, then as in formula (2.4) T = Tg for some

g ∈ L1(Rn) with compact support. The condition M(∂Tg) <∞ is equivalent to the property

that the Schwartz distribution gradient of g is a vector-valued measure with finite norm. The

function g is called of BV type. For n = 1, BV functions are of bounded variations on R1

in the usual sense. If a BV function is the indicator function of a bounded set E ⊂ Rn,

then the condition M(∂Tg) <∞ says that E is a set of finite perimeter in De Giorgi’s sense

(Section 2(ii)).

Federer made significant contributions to the theory of BV functions on Rn. His results

were announced in [Fe68]. The details (including proofs) are included in Theorem 4.5.9

of [Fe69]. The statement of this theorem has 31 parts, which represent a nearly complete

theory of BV functions as of 1969. Striking new results announced in [Fe68] include a precise

generalization of the classical property for n = 1 that a BV function has everywhere left and

right limits, which differ only on a countable set. See also [Fe78, pp305-306].

Other results.

During the 1960s, Federer wrote several important papers in addition to his monumental

book [Fe69]. His last publication on surface area theory was [Fe61]. In it he used GMT

methods to study surfaces of dimension k ≥ 2, defined by parametric representations and
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with finite Lebesgue area. The influential paper [Fe65] has created linkages between Rie-

mannian, complex and algebraic geometry. The technique of slicing for normal currents was

introduced in this paper. Another important result in [Fe65] is his proof of mass minimality

for complex subvarieties of Kähler manifolds. This led to the subject of calibration theory.

5 Flat chains.

With any integral current T of dimension k is associated an orientation of its approximate

tangent spaces. In [Z62] and [Fl66] another formulation was considered in terms of Whitney’s

flat chains. This formulation does not involve orientations.

Let G be a metric abelian group, for example G = R1, G = Z (the integers) or G = Zp

(the integers mod a prime p). In [Z62], p = 2, which amounts to ignoring orientations. In

the discussion here, we let G be a finite group and follow [Fl66].

As in Section 2(vii), let Pk(G) denote the group of polyhedral chains P of dimension k

in Rn, with coefficients in G. Let M(P ) denote the k-dimensional area of P , and let

W (P ) = inf
Q,R
{M(Q) +M(R):P = Q+ ∂R},(5.1)

where Q, R are also polyhedral chains. The Whitney flat distance between P1, P2 in Pk(G)

is W (P1 − P2). The elements of the W -completion of Pk(G) are called flat chains over G

and are often denoted by A.

Let P1, P2, . . . be a fundamental sequence in Pk(G), tending to a flat chain A. Since

W (∂Pi − ∂Pj) ≤ W (Pi − Pj),

the boundary ∂A is defined as the W -limit of ∂Pj as j →∞. The mass M(A) of a flat chain

A is defined as the lower limit of M(Pj) as j → ∞, taken among all sequences Pj ∈ Pk(G)

tending to A as j →∞ [Fl66, Section 3]. Let N(A) = M(A) +M(∂A).
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A flat chain is called rectifiable if A is the strong limit as j → ∞ of fj#Pj, where

Pj ∈ Pk(G) and fj is Lipschitz [Fl66, Section 9].

In [Z62] and [Fl66] analogues of the main results of [FF60] about integral currents are

proved. The statement and proof of the Deformation Theorem for flat chains are quite

similar to that in [FF60, Sec. 5]. However, different arguments were needed to obtain results

corresponding to the Closure Theorem and compactness of N -bounded sets mentioned in

Section 3(d). The main result of [Fl66] is as follows. Let Aj be rectifiable for j = 1, 2, . . .

with M(Aj) bounded and W (Aj − A) → 0 as j → ∞. Then A is rectifiable. More simply,

this result can be restated as follows. If M(A) is finite, then A is rectifiable. The proof uses

the Deformation Theorem, a structure theorem for sets of finite Hausdorff measure and the

Besicovitch covering theorem for measures on Rn. The compactness property [Fl66, Cor.

7.5] states that, for any positive constant c, r, {A:N(A) ≤ c, spt A ⊂ Br(0)} is W -compact.

Another consequence of the Deformation Theorem is an isoperimetric inequality [Fl66, Thm.

7.6].

6 Higher dimensional Plateau problem.

As mentioned at the end of Section 2(iii), by the late 1950s it was clear that entirely new

formulations and methods were needed to study the Plateau (least area) problem for surfaces

of dimension k > 2. The first major step in that direction was Reifenberg’s paper [Re60].

In his formulation, a “surface” is a closed set S ⊂ Rn with Hk(S) < ∞. A closed set

B ⊂ S is called the boundary if an appropriate relationship in terms of Čech homology

groups holds. Reifenberg proved that, given the boundary B, a set S∗ which minimizes

Hk(S) exists. Moreover, S∗ is topologically a k-dimensional spherical ball in a neighborhood

of Hk - almost every nonboundary point x ∈ S∗. Such points have the property that the

lower density does not exceed 1.
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There were no earlier results to guide Reifenberg in this effort. His methods had to be

invented “from scratch” and required remarkable ingenuity. For example, to prove that S∗

is locally a topological k-ball (Hk - almost everywhere), Reifenberg constructed sequences of

homeomorphisms from a ball
∑
⊂ Rk into Rn, which tend to limits which he showed to also

be homeomorphisms [Re60, Lemmas 8 and 9]. These results were immediately of interest

in the GMT community, and also to C.B. Morrey. He included Reifenberg’s solution to the

Plateau problem as the last chapter of his book [MC66].

Oriented Plateau problem.

Another formulation (often called the oriented Plateau problem) is in terms of integral

currents. In this formulation, a rectifiable current B of dimension k−1 with ∂B = 0 is given.

The problem is to find an integral current T ∗ which minimizes the mass (or k-area) M(T )

among all integral currents T with ∂T = B. Since M(T ) is weakly lower semicontinuous, the

existence of a minimizing T ∗ is immediate from the weak compactness property mentioned at

the end of Section 3(d). There remained the difficult task of describing regularity properties

of T ∗. This is the topic of Section 7.

In [FF60, pp. 518-9] the following monotonicity property was proved, which has had quite

a useful role in later developments. Let T ∗ be mass minimizing, and x ∈ spt T ∗− spt B.

For r > 0, let T ∗r denote the part of T ∗ in the ball Br(x) with center x and radius r. Then

r−kM(T ∗r ) is a nondecreasing function of r. Another useful concept introduced in [FF60,

Sec. 9] is that of tangent cones to mass minimizing integral currents.

Another formulation of the higher dimensional Plateau problem is in terms of Whitney’s

flat chains, with coefficients in a finite group G. When G = Z2 this is called a “nonoriented”

Plateau problem. Existence of a mass minimizing flat chain A∗ with given boundary follows

by similar arguments. Another formulation which also disregards orientations is in terms of

Almgren’s varifolds (Section 8).
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7 Regularity results, Bernstein’s Theorem.

For the oriented Plateau problem as formulated in Section 6, there remained the notoriously

difficult “regularity problem.” This is to prove smoothness of spt T− spt ∂T for an integral

current T which minimizes k-area, except at points of a singular set of lower Hausdorff

dimension. We begin with some examples which show that, for 1 < k < n− 1, the singular

set can have Hausdorff dimension k − 2.

Example. [FF60, Remark 9.15]. Let k = 2, n = 4 and T = T1 + T2 with

spt T1 = π1 ∩ B, spt T2 = π2 ∩ B

where B = B1(0) is the unit ball in R4 with center 0 and π1, π2 are mutually orthogonal

planes in R4 which intersect at 0. The singular set consists of the single point 0.

The result in [Fe65] about mass minimality of complex subvarieties, mentioned at the

end of Section 4, provides a rich class of examples in which spt T−spt∂T can have Hausdorff

dimension k − 2. In these examples, k = 2`, n = 2m and the Kähler manifold is complex

m dimensional space Cm, identified with R2m. The subvarieties corresponding to locally

area minimizing integral currents are obtained by setting a finite number of homomorphic

functions on Cm equal to 0. For instance, the equation z1z2 = 0 in C2 gives an example of

the type just mentioned.

A profound difficulty is that it is not known in advance that spt T− spt ∂T is locally

the graph of a function, even if the singular set is avoided. Hence, the regularity problem

is not just a question about smoothness of solutions to a system of nonlinear PDEs which

describe locally necessary conditions for minimum k-area. Entirely new methods had to be

developed.

Early results. In the early 1960s, De Giorgi and Reifenberg proved what are called “almost

everywhere regularity” results in which the singular set was shown to have zero k-dimensional
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Hausdorff measure. De Giorgi’s result [DG61b, Thm. VII] is for dimension k = n− 1. It is

stated in terms of “reduced boundaries” of sets of finite perimeter (also called Caccioppoli

sets). Techniques used for this result appeared in a companion paper [DG61a]. By using

an argument in [Fl62, Sec. 3] De Giorgi’s result implies a corresponding almost everywhere

regularity result about integral currents in Rn which minimize (n − 1)-dimensional area.

However no regularity results about the oriented Plateau problem were known at that time

for k ≤ n− 2.

As mentioned in Section 6, Reifenberg showed in [Re60] that the minimizing set S in

his solution to the Plateau problem is locally a topological k-disk near Hk-almost every

nonboundary point x ∈ S. In [Re64b] this result was strengthened to show that these disks

are smooth manifolds. The key to the proof is an “epiperimetric inequality” in [Re64a]. This

inequality also became a useful tool in later work by other people.

Almgren’s work on regularity. Beginning in the 1960’s, Almgren was a leading contribu-

tor of results on regularity. His paper [AF68] represented a major advance. In it he obtained

almost everywhere regularity results not only for the Plateau problem in all dimensions, but

for a much broader class of geometric variational problems in which the integrand satisfies

a suitable ellipticity condition.

Almegren’s results were formulated in terms of varifolds. In [AF68], a surface S is a

compact k-rectifiable set, with boundary B a compact (k-1)-rectifiable set. “Boundary” is

defined in terms of relative homology groups. In [AF68, Section 4] the excess E(S) for

surfaces S lying over a unit disk is defined. It equals the k-area of S less the k-area of

the covered disk. A key result is [AF68, Thm. 6.9]. It states that, for an elliptic varitional

integrand F , a F -minimal surface S which lies near a k-disk has interior first and second

order derivatives bounded by a constant times E(S)
1
2

Almgren continued to wrestle with the regularity problem for several years. After persis-
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tent, courageous efforts he produced a massive manuscript often called his “Big Regularity

Paper.” In it he showed that singular sets for the higher dimensional oriented Plateau prob-

lem indeed have Hausdorff dimension at most k − 2. If Σ denotes the singular set, this

means that Hk−2+ε(Σ) = 0 for any ε > 0. It remained an open question whether Hk−2(Σ) is

finite. The Big Regularity Paper has appeared in book form [AF00]. An essential feature is

Almgren’s use of multivalued functions, called by him Q-functions, which are interpreted as

taking values in the space of integral currents of dimension 0. Almgren then introduced, in

very sophisticated ways, nonparametric variational problems related to k-area minimization.

In particular, regularity properties of Q-valued functions which minimize Dirichlet’s integral

are described [AF00, Sec. I.7].

The task of reading and assimilating all of the details of [AF00] seems to be a daunting

one. In recent papers [DLS11) and [DLS13a], DeLellis and Spadaro began their study of

Almgren’s multiple valued functions and their links to integral currents. These papers are

followed by [DLS13b,c,d], which provide substantially shorter alternatives to many of the

arguments in [AF00].

Simon’s paper [SL93] is another major contribution to the regularity problem. In it,

more precise information about the structure of singular sets is obtained. A notion of strat-

ification of singular sets by tangent cone type is used, originally introduced by Almgren in

[AF00]. Among the results obtained is the (k − 2)-rectifiability of the interior singular set

in the nonoriented (mod 2) case, and the local finiteness of the Hk−2-measure of the “top

dimensional part” of this singular set.

Regularity results for k = n− 1.

It seemed at first that (n− 1)-dimensional area minimizing integral currents might have no

singular points This was proved in [Fl62] for n = 3. Closely related to the regularity question

in dimension n − 1 is the question of whether the only cones in Rn which locally minimize
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(n − 1)-area are hyperplanes. Using this connection, De Giorgi [DG65], Almgren [AF66]

and Simons [SJ68] showed that there are no singular points for n ≤ 7. However, Bombieri,

De Giorgi and Giusti [BDG69] gave an example of a cone in R8 which provides a seven

dimensional area minimizing integral current with a singularity at the vertex. This example

(due to Simons) is as follows. Write R8 = R4 × R4 and x = (x′, x′′) with x′, x′′ ∈ R4. The

cone satisfies |x′| = |x′′|. Its intersection with any ball Br(0) in R8 with center 0 defines a 7

dimensional integral current, which is shown in [BDG69] to be area minimizing. The vertex

0 is a singular point. Federer [Fe70] showed that this example is generic in the following

sense: if k = n−1, then the singular set for the oriented Plateau problem can have Hausdorff

dimension at most n − 8. For the nonoriented Plateau problem, he also showed in [Fe70]

that the singular set has Hausdorff dimension k− 2, for arbitrary n and k < n. The method

of [Fe70], now called Federer dimensional reduction, has proven to have wide applicability,

not only to other area minimizing problems but also to energy minimizing harmonic maps

and other systems of elliptic PDEs.

Boundary regularity. Let T minimize (n − 1)-area among all integral currents with

∂T = B, where spt B is a smooth oriented (n − 2)-dimensional manifold. In Allard’s 1968

PhD thesis, he considered the regularity of spt T near points of spt B. The main results were

announced in [AW69]. Regularity of spt T is proved near any boundary point x where the

density of the total variation measure is 1/2. Sufficient geometric conditions for boundary

regularity to hold at all points of spt B were also given. Later, Hardt and Simon [HS79]

obtained regularity at all boundary points without these geometric conditions on spt B.

The restriction n ≤ 7 for everywhere interior regularity is not needed for these boundary

regularity results.
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Bernstein’s Theorem

The classical Bernstein Theorem is as follows. Let f be a smooth, real valued function which

satisfies the minimal surface PDE for all x ∈ R2. Then f is an affine function (equivalently,

the graph of f is a plane.) A GMT proof of this well known result was given in [Fl62]. It

used the monotonicity property (Section 6) and the result [Fl62, Lemma 2.2] that cones in

R3 which locally minimize area must be planes. An interesting question was whether the

corresponding result about smooth solutions f to the minimal surface PDE in all of Rm must

be true. This was proved by De Giorgi [DG65] for m = 3. In his proof, he showed that

falsity of the Bernstein Theorem for functions on Rm would imply the existence of non-planar

locally area minimizing cones in Rm of dimension m− 1. For m = 3, this allowed De Giorgi

to use the same result as in [Fl62] about 2 dimensional locally area minimizing cones in R3.

Making use of the same idea, Almgren and Simons then proved the Bernstein Theorem for

4 ≤ m ≤ 7. However, the Bernstein Theorem is not correct for m ≥ 8.

I was visiting Stanford in the Spring of 1969 when the startling news about this negative

result arrived there. D. Gilbarg (an authority on nonlinear PDEs) was perplexed. It was

unheard of that a result about PDEs should be true in 7 or fewer variables, but not in

more variables. However, Gilbarg wisely observed that the Bernstein Theorem is really a

geometric result, not a result about PDEs.

8 Geometric variational problems, generalized surfaces,

varifolds.

A real-valued function F = F (x, α) is called a geometric variational integrand if F is con-

tinuous and satisfies the homogeneity condition

F (x, cα) = cF (x, α), if c ≥ 0.(8.1)
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In (8.1), x ∈ Rn and α is any k-vector (not necessarily simple). Given F we can consider

the problem of minimizing

J(T, F ) =

∫
K

F (x, τ(x))Θ(x)dHk(x)(8.2)

among all integral currents T with given boundary B = ∂T . In (8.2), K, τ(x),Θ(x) are as

in (3.1). In particular if F (x, α) = |α| then by (3.2) J(T, F ) = M(T ) is the mass (or k-area)

of T .

If J(T, F ) ≥ kM(T ) for some k > 0 and J is a lower semicontinuous function of T

under weak convergence, then the Closure Theorem implies that the minimum is attained.

However, lower semicontinuity requires that F (x, ·) has some additional property.

As in [Fe69, Sec. 5.1.2], F is called semi-elliptic if the following holds. For fixed x, let

Fx(α) = F (x, α). Then for any oriented polyhedral convex cell σ,

J(Tσ, Fx) ≤ J(T, Fx)(8.3)

for any integral current T such that ∂T = ∂Tσ, where Tσ is the integral current corre-

sponding to σ. Semi-ellipticity holds if F (x, ·) is a convex function. By [Fe69, Thm. 5.1.5]

semiellipticity implies weak lower semicontinuity.

When F is not semielliptic then we can seek what Young called a “generalized solution”

to the problem of minimizing J(T, F ) for given F , subject to given boundary conditions. His

work on generalized curve solutions for one dimensional problems [Y69] and two dimensional

nonparametric problems in the calculus of variations [Y48a,b] suggest a solution in which

(8.2) is modified such that F (x, τ(x)) is replaced by an integral of F (x, ·) with respect to

a measure on the Grassmanian Gn
k of possible oriented tangent k-planes at x. This kind of

result has not yet been proved. However, some related results and conjectures are given in

Appendix C.

As mentioned in Section 2(vi), Young defined a generalized surface to be a nonnegative
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linear functional L on the space of all parametric integrands F . In particular, if T is any

rectifiable current, then corresponding generalized surface L(T ) satisfies L(T )(F ) = J(T, F )

as in (8.2). See Appendix C.

Young’s original method for proving the existence of a minimizing generalized curve

proceeded as follows. Consider a minimizing sequence of ordinary curves, of bounded lengths

and given endpoints defined parametrically by mappings from an interval I ⊂ R1 into Rn.

By choosing arc length as the parameter, a subsequence converges to a generalized curve

solution to the minimum problem.

Unfortunately, this idea is too simplistic in the context of finding generalized surface

solutions to multidimensional versions of this problem. Let Tj be a minimizing sequence for

the problem of minimizing J(T, F ) subject to ∂T = B. Let Lj = L(Tj) be the corresponding

generalized surfaces. If Tj tends weakly to T and Lj tends weakly to L as j →∞, then L can

be regarded as a generalized surface solution to the minimum problem. Weak convergence

of Lj to L does not exclude the possibility that L has a “singular part” Ls, which has no

geometric interpretation. This is discussed in Appendix C.

Varifolds. By the Riesz representation theorem, with any generalized surface L is asso-

ciated a measure on Rn×Gn
k . There is a formal similarity with Almgren’s theory of varifolds.

A varifold is defined as a measure Rn × G̃n
k , where G̃n

k is defined similarly to Gk
n without

considering orientations. Almgren envisioned varifold theory as a way to study a wide range

of problems in mathematics and its applications in the physical sciences and biology. It

has become an important tool in GMT. See, for instance, [AF66] [SL83]. Taylor [T74] gave

varifold solutions to some nonelliptic variational problems which arise in crystallography.

In [AF68] existence and almost everywhere regularity results were given for a varifold

version of the problem of minimizing J(T, F ), with given boundary conditions. Boundaries

were defined in terms of singular homology groups [AF68, pp 334-335]. Another goal was the
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study of varifolds which are minimal (not necessarily area minimizing) in the sense that first

order necessary conditions for minimum k-area are satisfied. Allard’s paper [AW72] was an

important contribution in that direction. He considered the first variation δV of an integral

varifold V , which can be represented in terms of mean curvature and exterior normals at

the boundary if V is a smooth manifold. In [AW72, Section 6] a compactness result about

integral varifolds was proved. In this result, the bound on M(∂T ) for the corresponding

compactness result about integral currents (Section 3(d)) is replaced by a bound on the

norm of δV .

Despite the formal similarity in the definitions of Young’s’ generalized surfaces and Alm-

gren’s varifolds few connections between these two theories seem to have been made.

See end of Appendix C for further comments.

Part II - Remembrances

9 Brown University Mathematics Department in the

1960s.

When I came to Brown in 1958, teaching loads in the Mathematics Department were high

(3 courses per semester). The Department was located in an old house at 65 College Street.

Office furnishing were austere. Telephone service was state of the art for the year 1908.

However, none of that mattered very much. Most importantly for me, Herb Federer was

at Brown. The winter of 1958-59 was when we did most of the work which resulted in

our Normal and integral currents paper [FF60]. Nearly all Math Department faculty

were young, and an atmosphere of excitement about mathematics abounded. My algebraist

colleague Dave Buchsbaum and I talked often about our work. I still remember the name

of one of his nice theorems “Every regular local ring is a unique factorization domain” (but

don’t ask me to explain it). Brown students, at both undergraduate and graduate levels
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were good. One of my courses in 1958-59 was real analysis, which I had never taught before.

Fred Almgren and Bill Ziemer were among the students in this course.

10 Graduate students and visitors in GMT.

During the 1960’s there were six PhD students in geometric measure theory at Brown. Their

names and year of completion of the PhD are as follows:

Federer’s PhD students: Frederick Almgren (1962), John Brothers (1964), Lawrence

Ernst (1970) and Robert Hardt (1971).

Fleming’s PhD students: William Ziemer (1961) and William Allard (1968).

The fact that this number of PhDs is not larger can be attributed partly to the relatively

small size of Brown’s Math PhD program compared to state universities such as Berkeley and

Michigan, and also to the demanding nature of research in GMT. In the 1960s, the students

who chose to work in GMT were entering a field which was just being invented. There was

a chance to contribute something really new, not just to add a few more bricks to a long

standing mathematical edifice. The number of “mathematical descendents” of our small

program in GMT is much larger. As of March 2014, the Mathematics Genealogy Project

website listed 156 students and “grandstudents” of the six former Brown PhD students listed

above.

Both Federer and I encouraged regular discussions with students. A great deal of learning

happened in one-on-one conversations with faculty, other students and former students in

GMT. The task of mastering a difficult mathematical field is challenging, and at times

discouraging. I told Bill Ziemer to start by reading both [FF60] and Whitney’s book [WH57].

An unnamed source told me (much later) that while struggling with this assignment, Bill

occasionally wondered whether some other career (such as construction worker) might be
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better than life as a mathematician. However, he overcame the difficulties admirably. His

thesis was published as [Z62]. It was the beginning of the theory of flat chains over a finite

coefficient group, with applications to the nonoriented Plateau problem.

Bill Allard’s thesis topic was boundary regularity for the oriented Plateau problem

[AW68]. A short version of the results appeared in [AW69]. This topic seemed scary to

me, with either total success or nothing as possible outcomes. I hinted that he might try

something safer, but Bill didn’t agree to this. I also remember his attitude that “there is no

such thing as a dumb question.” That is an efficient way to learn the math which you need.

All of our graduate students had duties as teaching assistants. Several of them also gave

Federer and me substantial help with book projects. During the writing of the first edition of

my textbook [Fl77], several students read various chapters. John Brothers carefully read the

entire manuscript and furnished many improvements to it. This book (in its second edition)

is still in print nearly 50 years later.

Our students also read parts of the manuscript for Federer’s book [Fe69], and Allard read

all of it. The introduction to [Fe69] says: “William K. Allard read the whole manuscript

with great care and contributed significantly, by many valuable queries and comments, to

the accuracy of the final version.”

Some remembrances of Fred Almgren are included in Section 11.

Visitors. Among visitors to Brown in the field of GMT were E.R. (Peter) Reifenberg in

the summer of 1963 and Ennio De Giorgi in the spring semester of 1964. I had met both of

them in August 1962 at a workshop in Genoa, Italy. That workshop was unusually lively and

productive. Someone described the language of the workshop as “lingua mista” – a mixture

of English, Italian and bad French.

Other visitors included J. Marstrand, J. Michael and Bill Ziemer (summer 1963). Ubiritan

D’Ambrosio came as a postdoc starting in January 1964, and later returned to Brazil for
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a distinguished career in math education. D’Ambrosio was fluent in Italian, and was quite

helpful during DeGiorgi’s seminar talks at Brown. Harold Parks was a junior faculty member

at Brown during the 1970s.

11 Remembrances of leaders in GMT (Almgren, De

Giorgi, Federer, Reifenberg, Young.)

The focus of this section is on my personal remembrances of these five deceased leaders

in GMT. The parts about Almgren and De Giorgi are rather brief. Readers may consult

more detailed scientific obituary articles and selected papers volumes cited in the references.

Young was my PhD advisor and later mentor. The part about him is written from that

perspective. Federer initiated the offer to me of a faculty position at Brown, which led to

my arrival in 1958. I was privileged to be part of the excitement in GMT in the years which

followed. I am deeply indebted to both Young and Federer. My remembrances of Reifenberg

are from the all too brief period 1962-1964 of our friendship. His untimely death in 1964

was a great loss to mathematics.

Frederick J. Almgren, Jr. (1933-1997)

Fred Almgren was an Engineering undergraduate at Princeton, followed by three years

as a US Navy pilot. He then came to Brown as a graduate student in 1958, and completed

the PhD in 1962 under Herbert Federer’s supervision. Fred then moved to Princeton, where

he remained until his death in 1997.

Dana Mackenzie’s obituary article [MD97] is a moving account of Fred’s professional

and personal life. In 1998, an issue of the Journal of Geometric Analysis was dedicated

to Fred Almgren. This issue includes papers by Brian White [WB98] which summarizes

Almgren’s mathematical contributions, and by Frank Morgan [MF98] with recollections of

his life. Reference [AF99] contains selected papers by Almgren.
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Fred Almgren was a person with boundless energy and good cheer. He had many inter-

ests, and was an avid sailor. His enthusiasm for mathematics and ability to locate beautiful

problems which were “ready to be solved” attracted many students. See list of names at

the end of [WB98]. Besides Almgren’s profound contributions to GMT mentioned in earlier

sections of this article, he did (with coauthors) important work on such other topics as cur-

vature driven flows, liquid crystals, energy minimizing maps and rearrangements. Almgren

was one of the founders of the Geometry Supercomputer Project in Minneapolis.

The following statement by me is excerpted from [MF98]:

Fred Almgren and I arrived at Brown at the same time (fall 1958), he as a beginning

graduate student and I as a new assistant professor. Fred took my real analysis course.

While it was clear from the start that Fred had an excellent intuition and original ideas, he

was not yet trained to think like a mathematician.

Fred’s PhD thesis was a brilliant one. In his excellent article, Brian White mentioned the

curious episode in which the Brown Graduate School hesitated to accept it, on the grounds

that the thesis had already been accepted by the journal Topology. A very firm stand by

Herb Federer persuaded the Dean to withdraw his objection.

My thesis advisor L.C. Young had expressed the need for a kind of Morse theory in terms

of multivariable calculus of variations. Soon after the thesis, Fred provided such a theory in

terms of what he called varifolds. Varifolds are very similar to Young’s generalized surfaces,

but the name varifold is much more appealing.

A lot was happening in geometric measure theory during the years 1958-62 when Fred

was at Brown. He and I ate lunch regularly in the cafeteria. During these lunches, Fred

found out more or less all I knew and of course I learned a great deal from him in return. It

was clear even then that the regularity problem for varifolds which minimize k-dimensional

area (or some other geometric variational integral) was going to prove extremely difficult in
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codimension more than one. I have the greatest admiration for Fred’s determination and

persistence in wrestling with these regularity problems through many years, culminating in

his massive three-volume regularity proof.

After Fred left Brown we saw each other only occasionally. One such occasion was in

summer 1965 when we were both visiting De Giorgi at the Scuola Normale in Pisa. A photo

of Almgren, De Giorgi and me taken during this visit appears on page 2 of [MF00]. I still have

very pleasant memories of excursions with Fred to Lucca and Siena, which are interesting

towns nearby. He knew how to enjoy life during the times when he was not immersed in

mathematics.

We were very pleased to have Fred as an honored guest at the 1988 Brown Commence-

ment, when he received a Distinguished Graduate School Alumnus Award. Each year this

award is given to two or three of Brown’s most distinguished former PhD graduates.

Ennio De Giorgi (1928-1996)

De Giorgi studied in Rome with M. Picone. After one year 1958-59 at the Università

di Messina, he moved to the Scuola Normale Superiore, (SNS) in Pisa, and remained there

for the rest of his life. Besides his many contributions to GMT, De Giorgi is renowned for

his work on PDEs (including the De Giorgi-Nash a priori estimates in the 1950s), gamma

convergence and other topics. Among the honors which he received as the prestigious Wolf

Prize, awarded in 1990. The book of Selected Papers [DG06] includes a biography of De

Giorgi in Chapter 1 and an account of his scientific contributions in Chapter 2. Chapter 3

contains a selection of his papers, with translations from Italian into English. [AL99] is an

obituary article, written in Italian.

In Pisa De Giorgi lived in simple accommodations in a residence along the Arno River

which belonged to the SNS. He had a wide circle of friends, and he enjoyed good food,

conversation and mountain walks.
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Beginning in 1988, De Giorgi spent long periods in Lecce, which was his boyhood home

and still the home of his extended family. He established mathematical ties in Lecce, and

the Mathematics Department at Università di Lecce is now named after him.

Besides his contributions to mathematics, De Giorgi was deeply involved with charitable

and human rights issues. He was a devout Christian, with nuanced views about relationships

between science and faith.

The following passage was included in my lecture at a conference in De Giorgi’s memory,

held at the SNS in October 1997. The attendance at this conference was very large, which

is an indication of De Giorgi’s iconic status among mathematical analysts in Italy.

1. Geometric measure theory. During the 1950s and 1960s both De Giorgi and I

were working in what is now called geometric measure theory. These remembrances

concern mostly some memories of De Giorgi and his brilliant work during that time

period. Geometric measure theory provides class of objects, which I will call in an

imprecise way “surfaces” of arbitrary dimension k in some euclidean space. They were

called “generalized surfaces” by L.C. Young, “varifolds” by F. Almgren and “integral

currents” by H. Federer and myself. For De Giorgi, the objects were portions of the

reduced boundary of a set of finite perimeter, in codimension 1, and later a particular

class of what is called “correnti quasinormali” in arbitrary codimension. Of course, the

objects are not really smooth surfaces in a classical sense, but it happens that they

coincide approximately (in a suitable measure theoretic sense) with finite unions of

surfaces of class C1. The theory provides compactness of sequences of surfaces with

bounded k dimensional area and boundaries with bounded (k − 1)-dimensional area.

Another important property is that versions of the classical theorems of Gauss-Green

and Stokes remain true.

Geometric multidimensional problems of the calculus of variations provided an im-
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portant motivation for geometric measure theory. A famous example is the Plateau

problem, which is to find a k-dimensional surface with least k-dimensional area, among

all surfaces with the same boundary. Geometric measure theory provides immediately

the existence of an area minimizing surface. However, the problem of regularity of

area minimizing surfaces turned out to be quite complicated. The most which can

be expected is regularity except at points of some lower dimensional singular set. In

codimension 1, the singular set is empty in low dimensions. However, the famous 1969

Bombieri-De Giorgi-Giusti paper (which will be mentioned again later) shows that this

is false in higher dimensions.

2. Sets of finite perimeter. I first heard about De Giorgi in 1956 or 1957 when the

French mathematician C. Pauc urged me to read De Giorgi’s important new papers

in the Annali di Matematica and Richerche di Matematica, on sets of finite perimeter

(also called at that time Caccioppoli sets). From the Annali paper I first learned about

the “slicing formula” which equates the total gradient variation of a function and an

integral of the areas of level sets. This formula was used by De Giorgi to show that his

definition of set of finite perimeter was equivalent to another definition of Caccioppoli.

The slicing formula anticipated the so-called coarea formula, of which it is a particular

case.

3. First main regularity theorem. In 1961 De Giorgi published two seminal papers in

a Seminario di Matematica della Sculoa Normale Superiore di Pisa series, which was

not I think widely available. This work provided the first big regularity result for the

Plateau problem in codimension 1. The proof of this result is an amazing “tour de

force.” Starting with a locally area minimizing surface, which is not even known to be

locally the graph of a function, De Giorgi managed to prove that the surface is smooth

near any point at which it is measure theoretically close to some approximate tangent
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plane.

4. Genova workshop. In August 1962 J.P. Cecconi hosted a workshop at the Università

di Genova, at which I first met De Giorgi. In addition to several other Italian mathe-

maticians, E. Reifenberg, from England also attended. Reifenberg had recently written

an important 1960 Acta Mathematica paper on the Plateau problem. This workshop

had a fundamental role in stimulating further work in geometric measure theory. As

Reifenberg said, it was conducted in a kind of “lingua mista.” Despite some language

difficulties, many interesting ideas were circulated and taken home for further study.

5. Visit to the USA. In 1964 De Giorgi visited Brown and Stanford universities. He

came by ship (the Cristoforo Colombo), and I met him in New York. There was a delay

of several hours waiting for the passengers to disembark, because of a dock workers

strike. During the auto trip from New York to Providence, De Giorgi told me that

he had just proved a striking result call the Bernstein theorem for minimal surfaces of

dimension 3 in 4 dimensional space. However, there was no mathematics library on the

Cristoforo Colombo, and he wished to be certain about the strong maximum principle

for elliptic PDEs which he needed in the proof. I assured him that what he needed is

OK. We will return to the Bernstein problem in a moment.

During his stay at Brown, DeGirogi gave a series of lectures on what he called “correnti

quasi-normali.” His approach provided an alternative to the one taken by Federer and

myself for normal currents. De Giorgi’s method has the advantage that no use was

made of a difficult measure theoretic covering theorem of Besicovitch.

6. Minimal cones and the Bernstein problem. In 1969, Bombieri, De Giorgi and

Giusti published a truly remarkable paper on area minimizing cones and the Bernstein

problem. The results were unexpected and at least for some analysts contrary to
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intuition. Speaking only of the Bernstein problem, the question is as follows. Let f

be a smooth function of m variables which satisfies the minimal surface PDE in all of

m-dimensional Euclidean space. Must f be a linear function? This was known for a

long time to be true if m = 2. It was proved by geometric measure theory methods

by De Giorgi for m = 3, then by Almgren for m = 4 and by J. Simons for m = 5, 6, 7.

However, Bombieri, De Giorgi and Giusti showed that the result is false for m ≥ 8.

7. Further remarks. After the 1960s De Giorgi’s work and mine took different direc-

tions. However, we kept up a lifelong friendship and saw each other from time to time,

both in Pisa and elsewhere. Communication became easier as De Giorgi’s English

improved and I learned a little Italian. (The other choice was bad French which we

mutually decided against early on.) Besides his mathematical work, De Giorgi told me

about his trips to Eritrea and his work for Amnesty International. Our last meeting

was in 1993 at the 75th birthday conference for Cecconi in Nervi.

Ennio De Giorgi was a mathematician of extraordinary depth and powerful insights.

There is a great Italian tradition in the calculus of variations, and among the world

leaders in the first part of the 20th century was L. Tonelli. De Giorgi was in every

sense a worthy successor to Tonelli. There is a plaque on a wall in the old Università di

Pisa building complex concerning Tonelli. While I don’t remember the exact wording,

it says in effect that Tonelli was both an excellent mathematician and outstanding

citizen. The same can be said about De Giorgi, although his good citizenship was

shown perhaps in a different style from Tonelli’s.

We miss him very much.
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Herbert Federer (1920-2010)

These remembrances of Herbert Federer’s career are based to a considerable extent on

references [P12] and [FZ14]. Many of Federer’s contributions to GMT have been discussed

in earlier sections, and will not be repeated here. There is an overview of his contributions

to surface area theory, written by W.P. Ziemer, in [P12] and also in [FZ14].

Federer was born in Vienna, Austria in 1920 and immigrated to the United States in

1938. His education in the US began at a teachers college which later became the University

of California, Santa Barbara. His exceptional mathematical talent was quickly recognized,

and he soon transferred to the University of California, Berkeley. He received his PhD in

mathematics in 1944, under the supervision of A.P. Morse. During 1944-1945, Federer served

in the U.S. Army at the Ballistics Research Laboratory in Aberdeen, MD. In the fall of 1945,

he joined the Department of Mathematics at Brown University, where he remained until his

retirement in 1985. Another major event in Federer’s life was his marriage to Leila Raines,

in 1949. Mathematics and his family were Herb’s two great loves. He was devoted to Leila

and their three children.

Among the honors which Federer received was a Steele Prize from the American Math-

ematical Society (AMS). He was a fellow of the American Academy of Arts and Sciences,

and a member of the National Academy of Sciences. At the 1977 summer AMS meeting, he

was the Colloquium Lecturer.

Federer is remembered for his many deep and original contributions to the fields of surface

area and geometric measure theory (GMT). It is difficult to imagine that the rapid growth

of GMT (beginning in the 1950s), as well as its subsequent influence on other areas of

mathematics and applications, could have happened without his groundbreaking efforts.

A characteristic of Federer’s work was his dedication to learning many different kinds of

mathematics. When he became interested in a new subject (e.g., algebraic topology, differ-
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ential geometry or algebraic geometry), he would first spend many weeks reading classical

and modern books on it. He would then teach a graduate course on the topic and produce a

large collection of lecture notes. One of his principal points of advice to graduate students

was indicated by the only sign on his office door. It was a long, vertically stacked series of

small stickers that said “Read, Read, Read, ...”

Federer set very high standards for his mathematical work and expected high-quality

research from his students; he supervised the PhD theses of 10 of them. In addition to

Federer’s own work, the contributions of his many mathematical descendents (PhD students,

“grandstudents” and “greatgrandstudents”) continue to have a major impact on GMT. While

some students found Federer’s courses daunting, he was very welcoming to anyone who was

deeply committed to mathematics and who took the trouble to get to know him. The sections

of [P12] written by Allard, Hardt and Ziemer, are eloquent testimonials to the great regard

and esteem which former students have for Federer.

Federer was fair-minded and very careful to give proper credit to the work of other

people. He was also generous with his time when serious mathematical issues were at stake.

He was the referee for John Nash’s 1956 Annals of Mathematics paper “The imbedding

problem for Riemannian manifolds,” which involved a collaborative effort between author

and referee over a period of several months. In the final accepted version, Nash stated, “I

am profoundly indebted to H. Federer, to whom may be traced most of the improvements

over the first chaotic formulation of this work.” This paper provided the solution to one of

the most daunting and longstanding mathematical challenges of its time.

Despite the many advances in GMT after it was published in 1969, Federer’s authoritative

book Geometric Measure Theory [Fe69] is still a classic in the field. In [P12], Bob Hardt

said: “Forty years after the book’s publication, the richness of its ideas continue to make it

both a profound and indispensable work. Federer once told me that, despite more than a
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decade of his work, the book was destined to become obsolete in the next 20 years. He was

wrong. The book was just like his car, a Plymouth Fury wagon purchased in the early 1970s

that he somehow managed to keep going for almost the rest of his life. Today [May 2012],

the book Geometric Measure Theory is still running fine and continues to provide thrilling

rides for the youngest generation of geometric measure theorists.”

I first met Herb Federer at the summer 1957 AMS Meeting at Penn State. Afterwards,

he suggested to the Mathematics Department at Brown that I might be offered an assistant

professorship. An offer was made, which I accepted. Upon our arrival in Providence in

September 1958, my wife Flo and I were warmly welcomed by Herb and Leila Federer. The

academic year 1958-1959 was the most satisfying time of my career. Our joint work on

normal and integral currents was done then. This involved many blackboard sessions at

Brown, as well as evening phone calls at home (no Skype in those days). Herb undertook

the task of organizing our results into a systematic coherent form, which appeared as [FF60].

In later years, after our research paths had taken different directions, Federer and I didn’t

often discuss mathematics. However, we always brought each other up to date about family

news.

E.R. (Peter) Reifenberg (1928-1964)

Peter Reifenberg was a student of A.S. Besicovitch at Cambridge University. After a

postdoctoral position at Berkeley, he joined the Mathematics Department at the University of

Bristol. During the 1950s, he wrote a series of papers on surface area theory, including [Re55].

He then produced the remarkable Acta Mathematica paper [Re60], which was the first major

work on the higher dimensional Plateau problem. There followed a paper [Re64a] on his

important “epiperimetric inequality” and the sequel [Re64b] which used the epiperimetric

inequality to obtain the regularity result for the Plateau problem mentioned in Section 7.
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I first met Peter in Italy during August 1962. He and his wife Penny met my wife Flo

and me at Milan airport. We followed them in a rented car to Genoa to participate in a

very productive workshop on GMT organized by J.P. Cecconi. We met Ennio De Giorgi for

the first time at this workshop. After the workshop, Flo and I met the Reifenbergs again at

Zermatt, just after they had climbed the Matterhorn.

My friendship with Peter continued through mail correspondence and his visit to Brown

during the summer of 1963. During the summer of 1964 we got news of his death while

climbing with Penny in the Dolomites. It was caused by falling rock, and not at all due to

carelessness on Peter’s part. A few months after his death, Penny Reifenberg sent to me his

handwritten notes concerning regularity for the Plateau problem. I shared them with Fred

Almgren. Those notes were too fragmentary to determine what new results Peter Reifenberg

had obtained.

Peter was fearless in his approach to mathematics. He could be undiplomatic, which

sometimes led to worthwhile mathematical outcomes. On one hot, humid Friday afternoon

during Peter’s 1963 visit to Brown, I outlined at the blackboard a possible method to prove

the main result of [Fl66]. Peter’s skepticism was probably intended as friendly advice, but

was expressed in a negative way. I worked intensively over the following weekend, and had

verified the essential details of my argument by the following Monday.

Peter Reifenberg was surely destined for a brilliant future in mathematics. His premature

death was a great loss to GMT, as well as to his family and friends.

Laurence C. Young (1905-2000)

These remembrances of Laurence Young are, in part, adapted from the obituary article

[FW04] and from remarks which I made in May 2005. The occasion was a Mathfest at the

University of Wisconsin in honor of Young’s 90th birthday.

42



Young came from a mathematical family. Both parents, William H. and Grace C. Young,

were distinguished English mathematicians, whose research was at the forefront of real anal-

ysis in the early 20th century. L.C. Young began his study of mathematics at Trinity College,

Cambridge in 1925, and became a Fellow in 1931. He interspersed his studies at Cambridge

with extended stays in Munich, where the great Greek mathematician Carathéodory became

a mentor. From 1938 to 1948, Young was Professor and Head of the Mathematics Depart-

ment at the University of Capetown, South Africa. He then moved to the University of

Wisconsin Mathematics Department where he remained until his retirement in 1976.

Starting in the 1930’s L.C. Young made major contributions to several areas of mathemat-

ical analysis, especially in integration theory and the calculus of variations. His imagination

and vision provided a key to bringing the calculus of variations to its present form, with

applications in geometric measure theory, control theory, partial differential equations and

material science.

Young initiated in 1963 the “Wisconsin Talent Search” for discovering talented students

among Wisconsin’s high schools. This program still thrives today. In addition, he was

completely fluent in at least four languages and had a working knowledge of several others.

He was an accomplished pianist and a champion chess player.

In the calculus of variations, Young introduced two radically new ideas which had a

fundamental and lasting impact. The first of these was the notion of generalized curve,

which he introduced in the 1930s. The second idea was that of generalized surface as a

linear functional, introduced in [Y51]. I regard this paper as seminal for the development of

what came to be known soon after as geometric measure theory.

In 1948, Young extended the idea of generalized curve to nonparametric double integral

problems in the calculus of variations [Y48a,b]. He obtained “generalized solutions” in

the form of a pair of functions f, µ on a region D in R2. For (u, v) ∈ D, f(u, v) is real
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valued and µ(u, v) is a probability measure on a space of possible gradient vectors (called a

Young measure). Young measures later provided the basis for the study of minimum energy

configurations in solid mechanics. The Tartar-Murat method of compensated compactness

makes essential use of Young measures. Subsequently, they were also applied to problems in

such diverse areas as hyperbolic PDEs, microstructures and phase transitions.

Reference [FW04] gives a more thorough review of Young’s life and mathematical career,

with a complete list of his publications. During the 1940s and early 1950s, he worked on

surface area theory and two-dimensional generalized surfaces defined in terms of parametric

representations. He considered an alternative to the Lebesgue definition of area, similar to

the definition given by Besicovitch [B45].

Young continued his work on generalized surfaces into the 1960s. Reference [Y59] con-

cerns what he called a partial area formula and its applications. This formula is very similar

to Federer’s coarea formula. In [Y62] Young studied variational principles using what he

called a theory of contours, related to slicing for integral currents.

During the 1970s, Young developed his own approach to stochastic integration. This

work is in a spirit similar to his early work on Stieltjes integrals during the 1930s. It is

elementary that the Stieltjes integral
∫
fdg over a compact interval I on the real line exists,

provided that one of the functions of f, g is continuous and the other is of bounded variation.

Young replaced this asymmetric condition on f, g by more symmetric conditions which also

guarantee that the Stieltjes integral exists. For instance f can have bounded pth power

variation and g bounded qth power variation, where p−1 + q−1 > 1.

I first heard about Young’s generalized surfaces in a seminar lecture which he gave in the

spring of 1950. Later that year he became my PhD thesis advisor. He was not a “hands on”

kind of thesis advisor, providing detailed suggestions in regular meetings with me. However,

at a more fundamental level, Young’s guidance was excellent. In the autumn of 1950, he
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mentioned to me an interesting research problem. Young intended to work on this problem

himself, and later (jokingly) said that “I stole his problem.” This problem was the basis for

my PhD thesis, which later appeared in revised form as [FY54]. In the spring of 1951, I gave

a first draft of my thesis to Young. He pronounced it “unreadable,” which was certainly

true. The process of revision extended into the hot, humid summer of 1951. My wife, Flo,

typed the thesis, without the aid of modern text processing technology. Our departure to

begin my new job at the RAND Corporation in Santa Monica, California was delayed until

late August.

Young later invited me as a visitor to the University of Wisconsin Mathematics Depart-

ment and Mathematics Research Center for extended periods, during 1953-54, summer 1955

and academic year 1962-63. Flo and I always remember the warm hospitality which the

Young family showed us on many occasions at their home on the shore of Lake Mendota.

The kindness of his wife Elizabeth Young when our oldest son Randy was born in February

1954 was particularly appreciated.

Both Young and I attended a conference on partial differential equations at Berkeley in

June 1955. My family were returning by car to the Midwest, to begin my new job at Purdue

in September. After the conference, Young rode with Flo, one year old Randy and me as far

as Denver. He enjoyed the chance to see more of the American West during this auto trip

including rustic overnight accommodations at Lake Tahoe. Afterward, Young commented

that, in former times, an English gentleman usually traveled accompanied by a trunk to hold

the clothing which he was expected to have available.

Appendix A

Notations and Definitions

I. Rn is euclidean n-dimensional space, with elements denoted by x or y.

Br(x) = {y ∈ Rn: |x− y| ≤ r}

45



is the ball with center x and radius r.

For 0 ≤ k ≤ n, Hk(K) is the Hausforff k-dimensional measure of a set K ⊂ Rn

π denotes a k-dimensional plane in Rn, if 1 ≤ k ≤ n− 1.

II. Exterior algebra (also called Grassmann algebra). We use the notations and def-

initions in the textbook [Fl77]. For a more compete development, see [Fe69, Chap.

1].

α denotes a k-vector, k = 1, . . . , n.

α ∧ β is the exterior product of a k-vector α and `-vector β. Note that β ∧ α =

(−1)k`α ∧ β.

α is a simple k-vector if α = v1 ∧ · · · ∧ vk with v1, · · · , vk ∈ Rn.

The norm |α| of a simple k-vector α is the k-area of the parallelopiped

P = {x = c1v1 + . . .+ ckvk, 0 ≤ cj ≤ 1, for j = 1, . . . , k}.

Orientations. Any k-plane π has the form

π = {x = x0 + c1v1 + . . .+ ckvk}

with x0, v1, · · · , vk ∈ Rn, c1, · · · , ck ∈ R1 and v1, · · · , vk linearly independent. If α =

v1 ∧ · · · ∧ vk, then τ = |α|−1α has norm |τ | = 1. This k-vector τ assigns an orientation

to π, with −τ the opposite orientation.

Gn
k is the set of all simple k-vectors τ with |τ | = 1. Alternatively, one can think of Gn

k

as the set of all oriented k-planes π which contain the point x0 = 0. Gn
k is called the

oriented Grassmannian.

k-covectors and differential forms. A k-covector ω is defined similarly as for k-

vectors, with the space Rn of 1-vectors replaced by its dual space of 1-covectors. The

dot product of ω and α is denoted by ω · α.
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A differential form ω of degree k is a k-covector valued function on Rn. The norm (or

comass) of ω is

‖ ω ‖= sup{ω(x) · α, x ∈ Rn, α ∈ Gn
k}.

III. Exterior differential calculus and currents. For any smooth k-form ω, the exterior

differential is a (k + 1)-form denoted by dω. It has the property d(dω) = 0. Let Dk

denote the space of all k-forms ω which have compact support and continuous partial

derivatives of every order. A current T of dimension k is a linear functional on Dk,

which is continuous in the Schwartz topology on Dk. The boundary ∂T is the current

of dimension k − 1 defined by formula (2.6):

∂T (ω) = T (dω) for all ω ∈ Dk−1.

Note that ∂(∂T ) = 0.

The mass of T is

M(T ) = sup{T (ω): ‖ ω ‖≤ 1}.

Let N(T ) = M(T ) +M(∂T ).

The support spt T of a current T is the smallest closed set Γ ⊂ Rn such that T (ω) = 0

whenever ω(x) = 0 for all x in some open set containing Γ.

A smooth function f from Rm into Rn induces a mapping f# of differential forms. The

corresponding mapping f# of currents is defined by

f#(T )(ω) = T (f#ω), ω ∈ Dk.

If N(T ) is finite, then f#(T ) is defined for f locally Lipschitz by approximating f

uniformly on compact sets by smooth mappings. See [FF60, Defn. 3.5].
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Types of convergence for sequences of currents. A sequence of currents T1, T2, · · ·

converges to T weakly if

T (ω) = lim
j→∞

Tj(ω), for all ω ∈ Dk.

Strong convergence of Tj to T means that M(Tj − T ) → 0 as j →∞.

Convergence of Tj to T in the Whitney flat distance is defined in the way indicated

below in Part IV.

Gauss-Green Theorem. The Gauss-Green (or divergence) Theorem (2.1) can be

rewritten in the form (2.6) with k = n−1. This is explained in [Fl77, Sec. 7.8]. In (2.6)

let T = TB, where the smooth boundary B of the set E is oriented by choice of exterior

(rather than interior) unit normal vector ν(y) for y ∈ B. The unit tangent (n − 1)-

vector τ(y) is adjoint to ν(y) in the sense that ν(y), τ(y) gives positive orientation to

Rn. The 1-vector ζ(y) in (2.1) is adjoint to the (n − 1)-vector ω(y), where ω is the

differential form in (2.6).

IV. Flat chains and currents. Let G denote a group, which will be either the real

numbers R1, the integers Z or Zp (the integers modulo a prime p).

Pk(G) is the set of polyhedral chains P of dimension k, with coefficients in G. Flat

chains are W -limits of polyhedral chains (Section 4). The Whitney distance between

flat chains A1, A2 is W (Az − A2), where

W (A) = inf
Q,R
{M(Q) +M(R):A = Q+ ∂R}

and Q,R are flat chains for dimensions k, k + 1 with coefficient group G.

For G = R1, flat chains with N(A) = M(A) + M(∂A) finite correspond to normal

currents. If G = Z, such flat chains correspond to integral currents.
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Appendix B: Abstracts

The following abstracts appeared in the Notices American Math. Society, Volume 6

(1959). They announce preliminary versions of results in [FF60].

Abstract No. 557-73, page 280, W.H. Fleming, Weak limits of chains. Let Ωk denote

the space of all k forms with continuous bounded coefficients in euclidean N -space RN(k ≤

N). A Lipschitzian mapping g from a Borel set A in Rk (A not necessarily bounded) defines

in the usual way by integration a linear functional c on Ωk, provided the classical k-area

integral of g over A is finite. We call c a σ-Lipschitz k-chain of finite mass.

Theorem. Suppose c = weak lim cn, where for n = 1, 2, . . . , cn is a polyhedral k-chain

in RN with integer coefficients such that the sum of the elementary k-mass of cn and the

elementary (k − 1)-mass of the boundary bcn remains bounded,. Then c is a σ-Lipschitz

k-chain of finite mass. This result can be restated in terms of L.C. Young’s generalized

surfaces. (Received March 3, 1959).

Abstract No. 559-126, page 515, Herbert Federer, A functional isoperimetric inequal-

ity. It is shown that if f is a real-valued Lipschitzian function on Euclidean n-space with

compact support and q = n/(n− 1), then (
∫
|f |q)1/q ≤ n−1α−1/n ·

∫
|gradf |, where the inte-

grals are taken with respect to Lebesgue measure over n-space and α is the measure of the

unit ball. Through regularization this inequality may be extended to those Schwartz distri-

butions whose partial derivatives are representable by Randon measures; such distributions

are shown to be representable by q′th power summable functions. (Received May 18, 1959).

Abstract No. 559-126, Page 515: Herbert Federer, An approximation theorem concern-

ing currents of finite mass. For each infinitely differentiable k-form w of Euclidean n-space

En, associating the k-covector w(x) with x in En let ‖ w ‖ be the supremum of |w(x)|. For

each k-dimensional current T , let ‖ T ‖ be the supremum of |T (w)| where ‖ w ‖≤ 1; call T

“integral” if ‖ T ‖ + ‖ ∂T ‖< ∞ and T, ∂T are Lipschitzian images of Borel subsets of Ek,
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Ek−1. Let C(e) be the usual cubical subdivision of En with side length e.

Theorem: There is a constant Qn such that if ‖ T ‖ + ‖ ∂T ‖< ∞ and e > 0, then

there exist currents U, V,W for which T = U + ∂V +W , U is a chain of C(e), ‖ U ‖≤ Qn(‖

T ‖ +e ‖ ∂T ‖), ‖ ∂U ‖≤ Qn ‖ ∂T ‖, ‖ V ‖≤ Qne ‖ T ‖, ‖ W ‖≤ Qne ‖ ∂T ‖ and the

supports of U, ∂U, V,W are within e of the supports of T, ∂T, T, ∂T ; if T is integral, so are

U, V,W ; if ∂T is polyhedral, so is W .

Applications: (1) A converse of W.H. Fleming’s theorem 557-73,. (2) The integral

homology groups of any compact Lipschitz neighborhood retract X in En are isomorphic

with the groups obtained using integral currents with support in X; each homology class

contains a T with minimal ‖ T ‖. (3) Each integral k-cycle T bounds an integral current V

for which ‖ V ‖k/(k+1)≤ Qn ‖ T ‖. (Received June 10, 1959).

Appendix C

Generalized Surfaces

This Appendix is concerned with L.C. Young’s generalized surfaces, and their role as

solutions to geometric problems in the calculus of variations. It includes a concise summary

of concepts and results as well as several conjectures. The appendix continues the discussion

in Section 8.

Let Ek denote the space of all continuous functions F = F (x, α), where x ∈ Rn and α is

a simple k-vector, such that F satisfies the homogeneity condition (8.1). Such a function F

is called a geometric variational integrand. Equivalently, F can be regarded as an element

of C(Rn ×Gn
k), where Gn

k is the oriented Grassmanian (Appendix A).

In [Y51] Young defined a generalized surface of dimension k as any nonnegative linear

functional L on Ek, such that L has compact support. The restriction of L to the linear

subspace Dk ⊂ Ek is a current of dimension k, denoted by T (L). The boundary bL is the

(k − 1)-dimensional current ∂T (L).
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Decompositions of generalized surface measures. By the Riesz representation

theorem, a generalized surface L corresponds to a nonnegative measure mL on Rn×Gn
k with

compact support. The mass M(L) is defined to be

M(L) = mL(Rn ×Gn
k) = L(F0),

where F0(α) = |α|. Of interest are decompositions of mL in terms of a measure µ on Rn and

a family of measures λx on Gn
k , such that for all F ∈ Ek

(C.1) L(F ) =

∫
Rn

Λx(F )dµ(x)

(C.2) Λx(F ) =

∫
Gn

k

F (x, α)dλx(α).

Let µL denote the projection of mL onto Rn, namely µL(A) = mL(A × Gn
k) for every Borel

set A ⊂ Rn. One can think of µL(A) as the mass (or k-area) of the part of L in A. The

decomposition (C.1)-(C.2) is not unique. However, it becomes unique if we choose µ = µL.

In that case, λx(G
n
k) = 1 for µL-almost all x. In the terminology of [FY56a, Sec. 2], Λx is a

microsurface. If F (x, α) = ω(x) · α, then Λx(F ) = ω(x) · λ̄x, where

(C.3) λ̄x =

∫
Gn

k

αdλx(α).

With any current T of finite mass M(T ) is associated a measure µT on Rn, called the total

variation measure. See [FF60, Sec. 2.4], where µT is denoted by ‖ T ‖. Now let T be

rectifiable, with associated rectifiable set K, integer valued multiplicity function Θ(x) and

approximate tangent k-vector τ(x) ∈ Gn
k for Hk-almost all x ∈ K. See (3.1). For x /∈ K, let

Θ(x) = 0. Then for any Borel set E ⊂ Rn

(C.4) µT (E) =

∫
E

Θ(x)dHk(x).

Let L(T ) be the generalized surface defined by L(T )(F ) = J(T, F ) for all F ∈ Ek. See (8.2).

Thus,

(C.5) L(T )(F ) =

∫
Rn

F (x, τ(x))Θ(x)dHk(x).
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In the decomposition (C.1)-(C.2) of L(T ), we take µ = µT = µL(T ) and λx is the Dirac

measure at τ(x).

Generalized surface solutions to geometric variational problems. Let F1 be a geo-

metric variational integrand, which satisfies for some constant k1 > 0

(C.6) F (x, α) ≥ k1|α|.

Given a boundary B, which is an integral (n − 1)-dimensional current with ∂B = 0, we

consider the following problem: minimize L(T )(F1) = J(T, F1) subject to the boundary

condition ∂T = B. It can be shown that the infimum of J(T, F1) among all such T equals

the infimum with the additional restriction spt T ⊂ Br(0) for some fixed r (sufficiently large).

Let

(C.7) ΓB = {L(T ):T an integral current, ∂T = B, spt T ⊂ Br(0)}

and c`ΓB the weak closure of ΓB. Since the semi-ellipticity condition (8.3) is not assumed,

L(T )(F1) = J(T, F1) may not have a minimum on ΓB. We look instead for a generalized

surface solution L in c`ΓB. Condition (C.6) implies that M(T ) ≤ k−1
1 J(T, F1). Hence, for

the minimization problem we can consider only T such that M(T ) ≤ b1, for some b1. Since

L(F1) is a weakly continuous function of L,

(C.8) inf
ΓB

J(T, F1) = inf
ΓB

L(T )(F1) = min
c`ΓB

L(F1).

Denote the right side of (C.8) by `0, and choose L ∈ clΓB such that L(F1) = `0. Let Tj

be a sequence of integral currents such that Lj = L(Tj) is in ΓB and tends weakly to L as

j → ∞. By the Closure Theorem, for a subsequence of j, Tj tends to an integral current

limit T . Note that T (L) = T and ∂T = B.

Lemma 1 µT ≤ µL ≤ c1µT for some c1 > 1.
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A proof of Lemma 1 is sketched later in this Appendix. Lemma 1 implies that µL is absolutely

continuous with respect to µT , and that the Radon-Nikodym derivative ψ(x) satisfies 1 ≤

ψ(x) ≤ c1. Let K, Θ(x), τ(x) be as above, with Θ(x) = 0 for x /∈ K. We then have:

Theorem 1 Let L ∈ clΓB with L(F1) = `0 and L = L(T ) as above. Let µ = µT . Then the

decomposition (C.1)-(C-2) has the form

(C.9) L(F ) =

∫
Rn

Λx(F )Θ(x)dHk(x)

and the measure λx satisfies Hk-almost everywhere in K

(C.10) λx(G
n
k) = ψ(x), λ̄x = τ(x).

The function ψ can also be defined pointwise using covering and differentiation theorems

of Besicovitch and A.P. Morse. See [FF60, Sec. 8.7] [Fe69, Secs. 2.8 and 2.9].

For L to give the minimum in (C.8), Λx should also be a solution of what we will call a

local minimization problem. To explain this idea, we first introduce what are called shape

measures.

Shape measures. We first define the shape measure λP of an integral polyhedral chain

P = σ1 + . . . + σm, where σ1 . . . , σm are oriented polyhedral convex k-cells in Rn (Section

2(vii)). Assume that ∂P = ∂σ0, where σ0 is another oriented polyhedral convex k-cell. Let

ai = M(σi) and τi the unit tangent k-vector to σi for i = 0, 1, . . . ,m. Then M(P ) =
∑m

i=1 ai.

Let λi = ai/a0 and δi the Dirac measure at τi. The shape measure of P is

(C.11) λP =
m∑

i=1

λiδi.

The condition ∂P = ∂σ0 implies

(C.12) τ0 =
m∑

i=1

λiτi = λ̄P ,
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which agrees with (C.3) with λx replaced by λP . To see that (C.12) holds, let αi = aiτi. In

(2.6), let T = P and ω(x) = ω any covector (not depending on x.) Then α0 = α1 + . . .+αm,

which is equivalent to (C.12). Since M(σ0) ≤M(P ),

|λP | =
m∑

i=1

λi ≥ 1.

We call τ0 the base tangent k-vector of the shape measure λP .

Note that λP is invariant under translations and rotations in Rn, and also under changes

of scale with x replaced by cx(c > 0).

Definition. A nonnegative measure λ on Gn
k is a shape measure with base tangent k-

vector τ if there exists a sequence Pj of integral polyhedral chains with base σ0j such that

λPj
tends weakly to λ and τ0j tends to τ as j →∞.

For any shape measure λ, we have (as in (C.12)) λ̄ = τ with λ̄ as in (C.3). Let

A(τ) = {all shape measures λ: λ̄ = τ}

A1(τ) = {all nonnegative measures λ: λ̄ = τ}

Evidently, A(τ) ⊂ A1(τ). For k = 1 and k = n− 1 it can be shown that A(τ) = A1(τ). To

do this, it suffices to show that λ ∈ A(τ) if λ is any “molecular” measure:

λ =
m∑

i=1

λiδi,

with δi the Dirac measure at some τi and with λ̄ = τ . For k = 1, τ = v is a vector in Rn

with |v| = 1. By induction on m, λ = λP for some polygon P with ∂P = ∂σ0 and σ0 is a

line segment with direction v. Hence λ ∈ A(v).

For k = n − 1, one can show that A(τ) = A1(τ) by an argument involving induction

m, similar to one used in [Y48a, p. 101] and [Y51, p. 71] for k = 2, n = 3. Note that any

(n − 1)-vector α can be identified with its adjoint vector v ∈ Rn. See [Fl77, Sec. 7.8], also

Appendix A. In particular, every (n− 1)-vector α is simple.
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It is not clear (at least to me) whether A(τ) = A1(τ) when 1 < k < n−1. Perhaps there

are counter examples.

Local minimum problem. For λ ∈ A(τ), let Λ denote the corresponding microsurface:

(C.13) Λ(F ) =

∫
Gn

k

F (α)dλ(α), for all F ∈ C(Gn
k).

The local minimum problem is: given F1 find Λ which minimizes Λ(F1) among all λ ∈ A(τ).

If F1(α) ≥ k1|α| as in (C.6), then the minimum is attained.

Conjecture. Let L ∈ c`Γβ be minimizing in (C.8). Then λx ∈ A(τ(x)) and Λx is a

solution to the local minimum problem for Hk - almost all x ∈ K, with F1 = F1(x, α).

The following Theorem 2 implies that for the local minimum problem, it suffices to

consider measures λ which are “molecular” in the sense that spt λ is a finite set. A measure

λ ∈ A1(τ) is called irreducible if there does not exist λ′ ∈ A1(τ) with 0 ≤ λ′ ≤ λ and

λs = λ− λ′ 6= 0.

Given τ1, . . . , τm let < τ1, . . . , τm > denote the set of all convex combinations

θ =
m∑

i=1

θiτi, θi ≥ 0,
m∑

i=1

θi = 1.

Theorem 2 Let k = 1 or k = n− 1. Then:

(a) A(τ) = A1(τ).

(b) There exists a measure λ which solves the local minimum problem, such that spt λ is

a finite set with m elements τ1, . . . , τm where m ≤ n+ 2.

(c) λ is irreducible and 0 /∈ 〈τ1, . . . , τm〉 .

A proof of Theorem 2 is sketched below.

Example. (L.C. Young). Let k = 1, n = 2 with e1 = (1, 0), e2 = (0, 1) the standard basis

for R2. Let σ be the line segment from 0 to e1, with B corresponding to the initial endpoint
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0 and final endpoint e1. Let K = [0, 1]× {0}, Θ(x) = 1, τ(x) = e1 for x ∈ K, and

λx = λ = 2
1
2 (δ+ + δ−)

v± = 2−
1
2 (e1 ± e2) .

where δ± is the Dirac measure a v± This generalized curve L is the weak limit as j →∞ of

Lj, where Lj = L(Pj) and Pj is a “sawtooth shaped” polygon with endpoints 0 and e1 and

with j teeth. Each tooth is an isocoles right triangle with hypotenuse on K. Let

F1(x, v) = g(x · e2)h(v),

where g(0) = 0, g(u) > 0 for u 6= 0, h(v±) = 0, and h(v) > 0 for v 6= v+ or v− (|v| = 1).

Then L(F1) = 0 and hence L is minimizing.

If F1 is a convex function of α, then in Theorem 2 we can take m = 1. Since F1 has the

homogeneity property (8.1), (C.12) implies

a0F1(τ0) = F1(α0) ≤
m∑

i=1

F (αi) =
m∑

i=1

ai(F (τi).

for any polyhedral chain with ∂P = ∂σ0. The measure λ = a0δ0 minimizes Λ(F1), where δ0

is the Dirac measure at τ0.

Sketch of proof of Lemma 1.

(a) For the left hand inequality, it suffices to show that, for every nonnegative continuous

function g ∈ C(Rn), 〈g, µT 〉 ≤ 〈g, µL〉, where 〈g, µ〉 is the integral of g with respect to

µ. From [Fe60, Sec. 2], or from (3.1),

〈g, µT 〉 = sup
ω
{T (ω): |ω(x)| ≤ g(x) ∀x ∈ Rn} .

Since T = T (L),

T (ω) = L(Fω) ≤ 〈g, µL〉 ,
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where Fω(x, α) = ω(x) · α and

|Fω(x, α)| ≤ |ω(x) · α| ≤ g(x)|α|.

(b) To prove the right hand inequality, it suffices to show that µL(I) ≤ c1µT (I) for every

n-dimensional cube I such that µL(frI) = 0 with frI the topological boundary of I.

It then follows that µL(A) ≤ c1µT (A) for every open set A ⊂ Rn, and hence for every

Borel set.

Weak convergence of Tj to T and ∂Tj = ∂T = B imply convergence in the Whitney

metric. Hence Tj − T = ∂Rj where Rj is an integral current of dimension k + 1 and

M(Rj) tends to 0 as j →∞. For ρ > 0, let Iρ denote the ρ-neighborhood of I. Since

I is convex, it is a set of positive reach in the sense of [Fe59]. The theory of slicing of

integral currents can be applied [Fe65] [Fe69, Sec. 4.3]. The part T ∩ E of a current

T of finite mass is defined in [Fe60, Sec. 2]. If T is rectifiable, then T ∩ E has the

representation (3.1) with K replaced by K ∩ E , and M(T ∩ E) = µT (E).

Let Rj(ρ), Tj(ρ), T (ρ) denote the parts of Rj, Tj, T in Iρ respectively. Fix δ > 0 and

choose ρj ∈ (0, δ) such that

∂Rj(ρj) = Tj(ρj)− T (ρj)−Qj,

where M(Qj) tends to 0 as j →∞. Here, an inequality due to Eilenberg [FF60, Cor.

3.10] is also used. Let

T̃j = Tj − Tj(ρj) +Qj + T (ρj)

= Tj − ∂Rj(ρj)

Since ∂(∂Rj(ρj)) = 0, ∂T̃j = ∂Tj = B. Since Tj is a minimizing sequence in ΓB,

J(Tj, F1) = J(Tj(ρj), F1) + J(Tj − Tj(ρj), F1)
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which tends to `0 as j →∞. Moreover,

`0 ≤ J(T̃j, F1) ≤ J(T (ρj), F1)

+ J(Tj − Tj(ρj), F1) + εj

where εj → 0 as j →∞. We subtract to obtain

(C.14) J(Tj(ρj), F1) ≤ J(T (ρj), F1) + εj.

Since F1 satisfies (C.6)

k1M(Tj(ρj)) ≤‖ F1 ‖M(T (ρj)) + εj

with ‖ F1 ‖ the sup norm in C(Br ×Gn
k), where spt Tj ⊂ Br = Br(0). Hence

µTj
(I) ≤ c1µT (Iδ) + εj

with c1 = k−1
1 ‖ F1 ‖. Since Lj = L(Tj), Lj → L as j →∞ and µL(frI) = 0,

µL(I) ≤ c1µT (Iρ).

Let δ → 0 to obtain µL(I) ≤ c1µT (I). �

Proof of Theorem 2 (sketch). Part (a) was discussed before the statement of

Theorem 2. Part (b) can be proved by the following argument, borrowed from the

theory of relaxed optimal controls [Bk74, Sec. 4.3] [BM13, Sec. 3.2]. The minimum of

Λ(F1) on A1(τ) equals the infimum of Λ(F1) over molecular measures λ ∈ A1(τ). For

any such λ,

(C.15) cλ =
m∑

i=1

θiδi

with δi the Dirac measure at τi and

cλi = θi, c = |λ|−1
1 |λ|1 =

m∑
i=1

λi.
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Moreover,

cτ =
m∑

i=1

θiτi

cΛ(F1) =
m∑

i=1

θiF1(τi).

Hence

(cτ, cΛ(F1)) ∈ 〈ξ1, . . . , ξm〉 ,

where ξi = (τi, F1(τi). Recall that for k = n− 1, the k-vector τi can be identified with

its adjoint vector in Rn. Hence, ξi is in a Euclidean space of dimension n + 1. By

a theorem of Carathéodory [Fl77, p. 24], there exists a subset J of {ξ1, . . . , ξm} with

m ≤ n+ 2 such that

(cτ, cΛ(F1)) ∈ 〈J〉 .

The set of all molecular measures λ ∈ A1(τ) with m ≤ n+2 and with |λ|1 ≤ k−1 ‖ F1 ‖

is weakly compact. Hence, the infimum of Λ(F1) among all molecular measures inA1(τ)

is the same as the minimum of Λ(F1) among such measures satisfying m ≤ n+ 2.

To prove part (c), the irreducibility of λ is immediate from the definition and condition

(C.6). Suppose that 0 ∈ 〈τ1, . . . , τm〉 . Then

0 =
m∑

i=1

ζiτi

with ζi ≥ 0 and ζ1 + . . .+ ζm = 1. Let

λs = β
m∑

i=1

ζiδi, β > 0.

For β small enough, λ = λs + λ′ with λs 6= 0 and λ′ ∈ A1(τ). This contradicts the

irreducibility of λ. �

Singular generalized surfaces. We conclude this Appendix with some concepts

and results from early work on generalized surfaces. The notion of singular generalized
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surface had an important role in [Y51] and also [FY56a,b]; L is called a singular

generalized surface if the current T (L) = 0. This implies that the boundary bL = 0 if

L is singular. It can be shown that L is singular if and only if, in (C.3), λ̄x = 0 for

µ-almost all x.

Example. Let T be a rectifiable current, with associated rectifiable set K, Θ(x) = 1

and approximate tangent k-vectors τ(x). Then −T has the opposite orientation −τ(x),

and T + (−T ) = 0. The generalized surface L = L(T ) + L(−T ) is singular. In (C.1)

-(C.2) we have

µL(E) = 2µT (E) = 2Hk(K ∩ E)

for any Borel set E, and

λx =
1

2

(
δ+
x + δ−x

)
where δ±x is the Dirac measure at ±τ(x).

An important class of singular generalized surfaces is obtained as follows. Let Uj, Rj be

a sequence of integral currents such that Uj = ∂Rj, M(Uj) tends to a positive limit a

and M(Rj) tends to 0 as j →∞. For a subsequence of j, the generalized surface L(Uj)

tends weakly to a limit Ls as j → ∞ with M(Ls) = a. Ls is a singular generalized

surface.

For k = 2, n = 3 one can think (for instance) of Rj as a thin, tentacle-like body.

Another possibility is that Rj is composed of thin platelets, or of many small bubbles

lying close to some 2-dimensional surface.

Singular parts. Let L be a generalized surface with boundary bL = B 6= 0. A

generalized surface Ls 6= 0 is called a singular part of L if Ls ≤ L. Then

(C.16) L = Ls + L′
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where L′ is also a generalized surface and bL = bL′. It is not difficult to show that

either L has no singular part or else there is a singular part of largest mass M(Ls).

The following questions are interesting. Suppose that L ∈ c`ΓB, where B is an integral

current. As in a previous discussion, L is the weak limit of Lj = L(Tj), where Tj is an

integral current tending to T as j →∞ and ∂Tj = ∂T = B. Let Ls, L′ be as in (C.16)

with M(Ls) maximum among singular parts of L.

Question 1. Does L′ have a representation of the form (C.9)-(C.10)with ψ a µT -

integrable function on Rn?

Question 2. If the answer to Question 1 is “yes,” is L′ ∈ c`ΓB?

A proof that Question 2 has a positive answer would require some kind of “chattering

lemma” in the terminology of relaxed optimal control theory [Y69] [Bk74] [BM13].

“Abstract” minimization problems. A different approach to generalized solu-

tions of geometric variational problems was considered in [FY54] [FY56 a,b]. In this

approach, all generalized surfaces L with given boundary B are considered. Let

(C.17) ∆B = {all L: bL = B}.

The “abstract” minimization problem is to find a generalized surface which minimizes

L(F1) among all generalized surfaces in ∆B.

If B is an integral current, let 〈ΓB〉 be the weak convex closure of ΓB. Since L(F1) is

a linear, weakly continuous function of L, the minimum in (C.8) is also the minimum

of L(F1) on 〈ΓB〉. It is no less than the minimum of L(F1) on ∆B, since 〈ΓB〉 ⊂ ∆B.

Conjecture. If k = n− 1, then 〈ΓB〉 = ∆B.

In [FY56b] this conjecture was proved to be correct if n = 3 and B is an “elementary

boundary,” consisting of a finite number of closed oriented curves C1, . . . , Cm. However,
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for k = 2, n = 4 an example was given in [FY56b, Thm. 1] in which 〈ΓB〉 is a proper

subset of ∆B. This example is based on a Klein bottle, embedded as a polyhedral

2-manifold in R4.

When 〈ΓB〉 = ∆B, the minimum of L(F1) on ∆B is attained at an extreme point L of

∆B, with L ∈ c`ΓB. Further information about such a minimizing extreme point L is

contained in [FY56b, Thm. 7]. When restated in the language of currents, it says that

T (L) is an integral current. Included in this statement is a precursor of the Closure

Theorem in [FF60], for k = 2, n = 3.

By considering this “abstract” version of the minimum problem, functional analysis

methods are available to derive necessary and sufficient conditions that L should mini-

mize L(F1) on ∆B. See, in particular, the use of the Hahn-Banach Theorem in [FY54,

Sec. 5].

“Nonoriented” versions of geometric variational problems. If F1 satisfies the

symmetry condition

(C.18) F (x, α) = F (x,−α),

then it is of interest to consider a “nonoriented” version of the problem of minimizing

L(F1) among all L ∈ c`ΓB. This version can be formulated in terms of varifolds. Let

Ẽk = {F ∈ Ek:F satisfies (C.18)}

The restriction of a generalized surface L to Ẽk defines a varifold V, in Almgren’s

terminology. Let G̃n
k denote the “unoriented” Grassmannian, in which simple k-vectors

α and −α are identified. The Riesz representation theorem gives a corresponding

measuremV on Rn×G̃n
k , with compact support. The measuremV can be decomposed in

a way similar to (C.1)-(C.2). However functions F in Dk, of the form F (x, α) = ω(x)·α,

do not belong to Ẽk, and (C.3) does not have a varifold counterpart.
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We offer only a few comments and suggestions about how the method outlined above

could be adapted to the nonoriented version. It is natural to replace integral currents

by rectifiable flat chains A over the group Z2 with N(A) = M(A) + M(∂A) finite

(Section 5). Associated with A should be a rectifiable set K, unoriented approximate

tangent k-vectors τ(x) and a measure µA such that µA(E) = Hk(K ∩ E) for every

Borel set E ⊂ Rn. In analogy with (C.5), define the varifold V (A) by

(C.19) V (A)(F ) = J(A,F )

=

∫
Rn

F (x, τ(x))Θ(x)dHk(x),

for every F ∈ Ẽk, where Θ(x) = 1 for x ∈ K, Θ(x) = 0 for x 6∈ K.

As in (C.7), given a rectifiable flat chain B with ∂B = 0, let

(C.20) FB = {V (A):A a flat chain over Z2, ∂A = B, spt A ⊂ Br(0)}.

As in (C.8), the infimum of V (A)(F1) over FB is attained at some varifold V ∈ c`FB,

where as before c` denotes weak closure. The counterpart of Lemma 1 should be

true, by an argument similar to that sketched above. Note the use of slicing and the

Eilenberg inequality in [Fl66, Theorems 5.6 and 5.7]. This provides a representation

for the minimizing varifold V similar to (C.9), with Θ(x) = 1 for x ∈ K and Θ(x) = 0

otherwise.

Shape measures can be defined in a way similar to the oriented case. However, the

set Ã(τ) of shape measures corresponding to base tangent k-vector τ must be defined

differently, since the condition λ̄ = τ cannot be used in the nonoriented case. A suitable

analogue of Theorem 2 also needs to be formulated.
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