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1 Introduction

I wish to thank the organizers for inviting me to speak at this event in memory
of De Giorgi. With great regret, I am unable to attend due to an illness during
the summer. Instead, I have prepared this historical article, which my friend
Tullio Zolezzi has kindly agreed to present at the conference. One of my main
goals is to outline some of De Giorgi’s seminal contributions to geometric
measure theory during the 1950s and 1960s, specifically his theory of sets
of finite perimeter and contributions to the Plateau (least area) problem in
higher dimensions. These contributions have had a profound effect on the
field. The great originality and depth of his work remain absolutely amazing
until this day. The papers of De Giorgi which I cite in the list of references
were written in Italian (except for the joint paper [3] with Bombieri and
Giusti). English translations of them are available in the selected papers
volume [9].

2 Geometric measure theory.

Geometric measure theory (GMT) is concerned with a theory of k-dimensional
measure and integration in euclidean R

n, for any nonnegative integer k < n.
The name GMT was probably first used by my colleague at Brown University
Herbert Federer. His 1969 book [11] with the same title remains a classic in
the field. A more detailed historical account of early developments in GMT
than is presented here appears in my recent article [17]. This article has not
yet been published. However, it is easily accessed by Googling the title “Geo-
metric measure theory at Brown in the 1960s.” F. Morgan’s Beginner’s Guide
[18] is an excellent introduction to GMT, including the topics in Sections 4
to 7 of the present survey.

Among the important aspects of GMT are the following:

a) Theory of k-dimensional measures in R
n, for dimensions k < n. Among

several possible definitions, the one due to Hausdorff is most widely
used. Let Hk(K) denote the Hausdorff k-measure of a set K ⊂ R

n.
For k = n, Hn is Lebesgue measure on R

n. If k < n, then among
the sets K with 0 < Hk(K) < ∞, there is the important class of sets
called k-rectifiable. Roughly speaking, K is k-rectifiable if K differs
in arbitrarily small Hk-measure from a finite union of pieces of C1-
submanifolds of R

n.
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b) Theories of k-dimensional integration without the usual smoothness
assumptions. Included are versions of the classical theorems of Gauss-
Green and Stokes. See Sections 3 and 4.

c) Applications to geometric problems in the calculus of variations, and
to the higher dimensional Plateau problem in particular. See Sections
5-7.

3 Sets of finite perimeter.

Let us begin with the case k = n−1 (co-dimension 1) and De Giorgi’s theory
of sets of finite perimeter in the fundamental papers [4] [5]. These papers
were influenced by related work of R. Caccoppoli.

The classical Gauss-Green (divergence) Theorem says the following. Let
E ⊂ R

n be a bounded open set with smooth boundary B, and let ζ be any
smooth R

n-valued function. Then

(3.1)

∫
E

divζ(x)dHn(x) =

∫
B

ζ(y) · ν(y)dHn−1(y),

where ν(y) is the exterior unit normal at y. Choosing the exterior (rather
than the interior) normal vector amounts to choosing an orientation for B.
De Giorgi addressed the question of how to make sense of the right side of
(3.1) without any smoothness assumptions on the topological boundary B of
the set E. His program was as follows:

(a) Require only that E is a “set of finite perimeter” P (E).

(b) In (3.1), replace B by a set Br ⊂ B called the “reduced boundary.”

(c) Show that Br is a k-rectifiable set and that there is an “approximate
normal” unit vector ν(y) at each y ∈ Br.

As an example, think of a “Swiss cheese” E ⊂ R
2 with an infinite number

of holes. The holes are bounded by curves C1, C2, · · ·. If the sum of the
lengths of these curves is finite, then E has finite perimeter and Br = C1 ∪
C2 ∪ · · · ∪ C where C is the outer boundary of the cheese.

To define sets of finite perimeter, let E ⊂ R
n be a bounded, Lebesgue

measurable set. Let 1E denote its indicator function. In the style of Schwartz
distribution theory, think of ζ in (3.1) as any smooth R

n-valued test function.
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Let Φ = −grad 1E in the Schwartz distribution sense. De Giorgi called E a
set of finite perimeter if Φ is a measure. This is equivalent to saying that 1E

is a bounded variation (BV) function of n variables.
An important part of his theory involves approximations of E by se-

quences Ej of sets with piecewise smooth boundaries Bj , and in particular by
polygonal domains with piecewise flat boundaries. The convergence of Ej to
E as j → ∞ is in Hn-measure and the perimeter of Ej is P (Ej) = Hn−1(Bj).
If P (Ej) is bounded, then the corresponding measures Φj converge weakly
to Φ as j → ∞. Another characterization of the perimeter P (E) is as the
lower limit of P (Ej) as j → ∞, among all such sequences Ej of polygonal
domains.

In [5] De Giorgi defined in an elegant way the reduced boundary Br and
approximate normal vectors ν(y). He then showed that (3.1) remains correct,
with B replaced by Br. See [5, Theorem III]. The definitions of Br and ν(y)
are natural intuitively, but the proof of this version of (3.1) is subtile. For
y ∈ Br, let I(y, ρ) denote the spherical ball in R

n with center y and radius
ρ. Then the ratio of Hn(E ∩ I(y, ρ)) to Hn((Rn\E) ∩ I(y, ρ)) tends to 1
as ρ → 0. Let µ denote the total variation measure of the vector-valued
measure Φ. At any point y ∈ Br, the approximate normal vector ν(y) is the
pointwise derivative of Φ with respect to µ and µ(K) = Hn−1(K) for any
Borel set K ⊂ Br.

These results pertain to measures and integrals in the highest dimensions
n and n − 1. However, a few years later they significantly influenced the
theory of integral currents of any dimension k < n (Section 4). For example,
the “slicing formula” which De Giorgi used to show that his definition of
set of finite perimeter was equivalent to another definition by Caccoppoli
anticipated the “coarea” formula in GMT, of which is a particular case.

4 Rectifiable and integral currents.

In 1960 these concepts were introduced by Federer and myself [13]. Only
a very concise summary of these ideas is given in this section. A quick
summary of basic definitions and notations is included in the Appendix. In
1955, de Rham [22] introduced a definition of currents, in a way quite similar
to the definition of Schwartz distributions. A current T of dimension k is a
linear functional on a space Dk of smooth differential forms ω of degree k.
We consider only currents of finite mass M(T ) and compact support spt T .
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The boundary of a current T is (by definition) the current ∂T of dimension
k − 1 such that

(4.1) ∂T (ω) = T (dω) for all ω ∈ Dk−1

where dω denotes the exterior differential of ω.

Example. Let M be a smooth (class C1) submanifold of R
n, oriented

by a continuously vaying unit tangent k-vector τ (y) for y ∈ M. We call a
bounded subset S ⊂ M a smooth, oriented k-cell if S has piecewise smooth
boundary C . To S corresponds the k-dimensional current TS such that

(4.2) TS(ω) =

∫
S

ω =

∫
S

ω(y) · τ (y)dHk(y), ω ∈ Dk.

Moreover, M(TS) = Hk(S). If C is given an orientation consistent with that
of S, then a k-dimensional version of Stokes formula implies that TC = ∂TS.

The class of k-rectifiable T is characterized by the following property: for
every ε > 0 there exists a k dimensional current Tε which is a finite sum of
oriented k-cells such that M(T − Tε) < ε.

Any k-rectifiable current has a representation similar to (4.2), involving
a k-rectifiable set K and a positive integer valued multiplicity function Θ(x).
See Appendix (A.2). The mass M(T ) of a k-rectifiable current is also called
the k-area of T .

If Tj is k-rectifiable for j = 1, 2, · · · and M(Tj − T ) tends to 0 as j → ∞,
then T is also k-rectifiable. This is called strong convergence of Tj to T .
For the study of existence of solutions to geometric calculus of variations
problems, some kind of corresponding property involving weakly convergent
sequences is needed. See Section 5.

A current T is called integral if both T and its boundary ∂T are rectifiable
currents. Let N(T ) = M(T ) + M(∂T ). The desired property is contained
in the following result, called the Closure Theorem [13, Theorem 8.12]. If
Tj is a sequence of integral currents such that N(Tj) is bounded, spt Tj is
contained in a fixed compact set and Tj tends T weakly as j → ∞, then T

is also an integral current.
To connect De Giorgi’s sets of finite perimenter (Section 3) with inte-

gral currents, let E ⊂ R
n have finite perimeter P (E). Denote by U the

corresponding current of dimension n, defined as follows. For any smooth
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differential form η of degree n, η = fdx,∧ · · · ∧ dxn,

U(η) =

∫
E

f(x)dHn(x).

Let T = ∂U . Note that ∂T = ∂(∂U) = 0. Both U and T are integral
currents, with M(U) = Hn(E) and M(T ) = P (E). Let Ej be any sequence
of polygonal domains converging in Hn-measure to E with P (Ej) bounded,
as in Section 3. Let Uj and Tj = ∂Uj denote the corresponding currents.
Then Uj tends to U strongly and Tj tends T weakly as j → ∞.

5 Higher dimensional Plateau problem.

The classical Plateau problem for two dimensional surfaces in R
3 is as follows.

Find a surface S∗ of least area among all surfaces S with given boundary
C . This is a geometric problem in the calculus of variations, which has been
studied extensively. During the 1930s, J. Douglas and T. Rado independently
gave solutions to a version of the Plateau problem. Their results were widely
acclaimed. Douglas received a Fields Medal in 1936 for his work.

Douglas and Rado considered surfaces defined by “parametric represen-
tations,” which were mappings f from a circular disk D ⊂ R

2 into R
3, such

that the restriction of f to the boundary of D is a parametric representation
of the boundary curve C . The Douglas-Rado result was later extended by
Douglas and Courant to give a solution to the Plateau problem bounded by
a finite number of curves and of prescribed Euler characteristic. However, all
of these results depended on conformal parameterizations of surfaces, and are
intrinsically two dimensional. They also depend on prescribing in advance
the topological type of the surfaces considered.

For these reasons, it became clear by the late 1950s that entirely new
formulations and methods were needed to study higher dimensional versions
of the Plateau problem, for surfaces of any dimension k < n. The first major
step was the 1960 paper [19] by E.R. (Peter) Reifenberg. In his formulation,
a “surface” is a closed set S ⊂ R

n with Hk(S) < ∞. A closed set B ⊂ S is
called the boundary if an appropriate relationship in terms of Čech homology
groups holds. Reifenberg proved that, given the boundary B, a set S∗ which
minimizes Hk(S) exists. Moreover, S∗ is topologically a k-dimensional spher-
ical ball in a neighborhood of H∗ - almost every nonboundary point x ∈ S∗.
There were no earlier results to guide Reifenberg in this effort. His methods
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had to be invented “from scratch” and required amazing ingenuity. Reifenerg
also published in 1964 a paper on his important “epiperimetric inequality”
[20] and a sequel [21] in which he used the epiperimetric inequality to obtain
a regularity result for the higher dimensional Plateau problem.

I first met Peter Reifenberg at the Genova workshop on GMT in August
1962. He visited Brown University in the summer of 1963, and we corre-
sponded regularly during the year which followed. Our all-to-brief friendship
ended with his death at the age of 36 during the summer of 1964 in a moun-
taineering accident. This event was a great loss to mathematics and to GMT
in particular. Section 11 of my historical article about GMT [17] is entitled
“Remembrances of Leaders in GMT”. I included Peter Reifenberg in this
list, along with Almgrern, De Giorgi, Federer and L.C. Young.

Oriented Plateau problem. Another formulation (often called the ori-
ented Plateau problem) is in terms of integral currents. In the formulation,
a rectifiable current B of dimension k − 1 with ∂B = 0 is given. The prob-
lem is to find an integral current T ∗ which minimizes the mass (or k-area)
M(T ) among all integral currents T with ∂T = B. Since M(T ) is weakkly
lower semicontinuous, the existence of a minimizing T ∗ is an immediate con-
sequence of the Closure Theorem mentioned in Section 4. There remained
the difficult task of describing regularity properties of T ∗. This is the topic
of Section 7.

Non-oriented versions. In Reifenberg’s paper [19], orientations play no
role. Another formulation of a higher dimensional Plateau problem is in
terms of Whitney’s flat chains with coefficients in a finite group G [15] [23].
When G = Z2 this is called a “nonoriented” Plateau problem. Existence of
a mass minimizing flat chain with given boundary follows from arguments
similar to those for the oriented Plateau problem. Weak convergence for
sequences of integral currents is replaced by convergence in the Whitney flat
metric. Yet another formulation which disregards orientations is in terms of
Almgren’s varifolds.

6 Regularity results.

For the oriented Plateau problem, as formulated in Section 5, there remained
the notoriously difficult “regularity problem.” Let T be a k-area minimizing
integral current. The regularity problem is to prove that spt T -spt ∂T is
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locally a smooth manifold of dimension k, except at points of a singular
set of lower Hausdorff dimension. There are also results about regularity at
points in spt ∂T , which we will not discuss.

A result of Federer [10] about mass minimality of complex subvarieties
provided a rich class of examples in which the singular set can have Hausdorff
dimension k − 2. For instance, let (z1, z2) denote a point in the space C2 of
complex dimension 2, If C2 is identified with R

4, the equation z1z2 = 0
defines two mutually orthogonal planes which intersect at the origin. Their
intersection with the unit ball in R

4 with center 0 is area minimizing with 0
as a singular point.

Early results. In the early 1960s, De Giorgi and Reifenberg proved what are
called “almost everywhere regularity” results, in which the singular set was
shown to have Hk-measure 0. De Giorgi’s result [7, Theorem VI] is stated
in terms of sets of finite perimeter. Given an open set A and set E of finite
perimeter, E is said to have minimal boundary in A if P (E) ≤ P (Ẽ) for any
Ẽ such that Ẽ − A = E − A. Let Br be the reduced boundary of E. De
Giorgi’s regularity result says that Br ∩ A is locally a smooth hypersurface.
It provided the first big regularity result for the higher dimensional Plateau
problem. The proof is an amazing “tour de force.”

Starting with a locally area minimizing surface, which is not even known
to be locally the graph of a function, De Giorgi managed to prove that the
surface is smooth near any point at which it is measure theoretically close to
some approximate tangent plane. Traditional PDE methods become helpful
only at a very late stage of De Giorgi’s proof.

In [19], Reifenberg proved the following. Let S∗ be a set shown to mini-
mize Hk(S) in his formulation, among all S with the same boundary. Then
S∗ is topologically a K-dimensional spherical ball in a neighborhood of Hk−
almost every non-boundary point x ∈ S∗. In 1964, he proved local smooth-
ness near x using his epiperimetric inequality already mentioned in Section
5.

Almgren’s work on regularity. Beginning in the mid 1960s, Almgren was
a leading contributor of results on regularity. His results were formulated in
terms of what he called varifolds. Almgren’s paper [2] represented a major
advance. In it he obtained almost everywhere regularity results not only for
the Plateau problem in all dimensions, but also for a much broader class
of geometric variational problems in which the integrand satisfies a suitable
ellipticity condition.
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The regularity problem (in its full generality) proved to be incredibly
challenging. Almgren wrestled with it for several years. After persistent,
courageous efforts he produced a massive manuscript often called his “Big
Regularity Paper.” It has appeared in book form [1]. The task of reading
and trying to assimilate all of the details of this work is a daunting one. In a
series of recent papers, De Lellis and Spadaro provide substantially shorter
alternatives to many of the arguments in [1].

7 Regularity results for k = n − 1 and Bern-

stein’s Theorem.

It seemed at first that (n− 1)-dimensional area minimizing integral currents
might have no singular points. This was proved in [14] for n = 3. Closely
related to the regularity question in dimension n−1 is the question of whether
the only cones in R

n which locally minimize (n − 1)-area are hyperplanes,
which was shown in [14] to be true if n = 3. Using this connection, De
Giorgi, Almgren and Simons then showed that there are no singular points
for n ≤ 7. However, Bombieri, De Giorgi and Giusti [3] gave an example
of a cone in R

8 which provides a seven dimensional area minimizing integral
current with a singularity at the vertex. This example (due to Simons) is as
follows. Write R

8 = R
4 × R

4 and x = (x′, x′′) with x′, x′′ ∈ R
4. The cone

satisfies |x′| = |x′′|. Its intersection with any ball Br(0) in R
8 with center

0 defines a 7 dimensional integral current, which is shown in [3] to be area
minimizing. The vertex 0 is a singular point. Federer [12] showed that this
example is generic in the following sense: if k = n − 1, then the singular
set for the oriented Plateau problem can have Hausdorff dimension at most
n − 8.

Bernstein’s Theorem. The classical Bernstein Theorem is as follows. Let
f be a smooth, real valued function which satisfies the minimal surface PDE
everywhere in R

2. Then f is an affine function (equivalently, the graph of f

is a plane.) A GMT proof of this well known result was given in [14]. It relied
on the result that locally area minimizing cones in R

3 are planes, mentioned
above, and also on the following monotonicity property [13, pp. 518-9]: Let
T be an integral current which locally minimizes k-area, and let Tr denote
the part of T in the ball Br(x0) with center x0 and radius r. Then r−kM(Tr)
is a nondecreasing function of r. For the classical Bernstein Theorem with
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k = n − 1 = 2, let f be as above with f(0) = 0. Take x0 = 0 and T the
oriented graph of f in R

3. Then it is shown in [14] that r−2M(Tr) = π is
constant and spt T is a plane in R

3.
An interesting question was whether the corresponding result about smooth

solutions f to the minimal surface PDE in all of R
m must be true. This was

proved by De Giorgi [8] for m = 3. In his proof, he showed that falsity of the
Bernstein Theorem for functions on R

m would imply the existence of non-
planar locally area minimizing cones in R

m of dimension m − 1. For m = 3,
this allowed De Giorgi in [8] to use the same result as in [14] about 2 di-
mensional locally area minimizing cones in R

3. Making use of similar ideas,
Almgren and Simons then proved the Bernstein Theorem for 4 ≤ m ≤ 7.
However, the Bernstein Theorem is not correct for m ≥ 8, as was shown in
[3].

I was visiting Stanford in the Spring of 1969 when the startling news about
this negative result arrived there. D. Gilbarg (an authority on nonlinear
PDEs) was perplexed. It was unheard of that a result about PDEs should
be true in 7 or fewer variables, but not in more variables. However, Gilbarg
wisely observed that the Bernstein Theorem is really a geometric result, not
a result about PDEs.

8 Remembrances of De Giorgi.

I first heard about De Giorgi in 1956 or 1957 when the French mathematician
C. Pauc urged me to read his new papers [4] [5] on sets of finite perimeter.
Pauc was visiting Purdue University, where I was then a faculty member. He
and I shared an interest in BV functions on R

n. Upon reading De Giorgi’s
papers, their importance became clear. Some of his techniques were imme-
diately useful in my own work.

Soon afterward, De Giorgi learned about new work by Reifenberg, Federer
and myself on the higher dimensional Plateau problem. In 1961, I received
from him two new papers [6] [7]. As mentioned in Section 6, the second of
these remarkable papers contained the first regularity results known for the
higher dimensional Plateau problem. These seminal papers were published
in a SNS Seminario di Matematica series, which was not (I think) widely
available.

Genova workshop. In August 1962 J.P. Cecconi hosted a workshop at the
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Università di Genova, at which I first met both De Giorgi and Reifenberg.
This workshop was easily the most fruitful among many such events which I
have attended during my long career. It had an important role in stimulating
further work in GMT.As Reifenberg said, the workshop was conducted in a
kind of “lingua mista.” Despite some language difficulties, many interesting
ideas were circulated and taken home for further study.

Visit to the USA. In 1964 De Giorgi visited Brown and Stanford univer-
sities. He came by ship (the Cristoforo Colombo), and I met him in New
York. There was a delay of several hours waiting for the passengers to dis-
embark, because of a dock workers strike. During the auto trip from New
York to Providence, De Giorgi told me that he had just proved a striking
result called the Bernstein theorem for minimal surfaces of dimension 3 in
4 dimensional space. However, there was no mathematics library on the
Cristoforo Colombo, and he wished to be certain about the strong maximum
principle for elliptic PDEs which he needed in the proof. I assured him that
what he needed is OK.

During his stay at Brown, De Giorgi gave a series of lectures on what he
called “correnti quasi-normali.” His approach provided an alternative to the
one taken by Federer and myself for normal currents. De Giorgi’s goal was to
avoid use of a difficult measure theoretic covering theorem of Besicovitch. De
Giorgi lectured in English, with occasional assistance from U. D’Ambrosio
who was also visiting Brown as a postdoc.

Concluding remarks. After the 1960s De Giorgi’s work and mine took
different directions. However, we kept up a lifelong friendship and saw each
other from time to time, both in Pisa and elsewhere. Communication became
easier as De Giorgi’s English improved and I learned a little Italian. (The
other choice was bad French which we mutually decided against early on.)
Besides his mathematical work, De Giorgi told me about his trips to Eritrea
and his work for Amnesty International. Our last meeting was in 1993 at the
75th birthday conference for Cecconi in Nervi.

Ennio De Giorgi was a mathematician of extraordinary depth and pow-
erful insights. There is a great Italian tradition in the calculus of variations,
and among the world leaders in this field during the first part of the 20th
century was L. Tonelli. De Giorgi was in every sense a worthy successor to
Tonelli. There is a plaque on a wall in the old Università di Pisa building
complex concerning Tonelli. While I don’t remember the exact wording, it
says in effect that Tonelli was both an excellent mathematician and out-
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standing citizen. The same can be said about De Giorgi, although his good
citizenship was shown perhaps in a different style from Tonelli’s.

We miss him very much.
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Appendix

This Appendix gives a concise summary of notations and definitions used
in Sections 4-7. The textbook [16] gives an introduction to exterior alge-
bra (also called Grassmann algebra) and the calculus of exterior differential
forms. A more complete development is given in [11, Chap. 1].

k-vectors

α denotes a k-vector, k = 1, · · · , n.
α ∧ β is the exterior product of a k-vector α and `-vector β. Note that
β ∧ α = (−1)k`α ∧ β.

α is a simple k-vector if α = v1 ∧ · · · ∧ vk with v1, · · · , vk ∈ R
n.

The norm |α| of a simple k-vector α is the k-area of the parallelopiped

P = {x = c1v1 + · · · + ckvk, 0 ≤ cj ≤ 1, for j = 1, · · · , k}.

Orientations. Any k-plane π has the form

π = {x = x0 + c1v1 + · · · + ckvk}

with x0, v1, · · · , vk ∈ R
n, c1, · · · , ck ∈ R

1 and v1, · · · , vk linearly independent.
If α = v1 ∧ · · · ∧ vk, then τ = |α|−1α has norm |τ | = 1. This k-vector τ

assigns an orientation to π, with −τ the opposite orientation.

k-covectors and differential forms. A k-covector ω is defined similarly
as for k-vectors, with the space R

n of 1-vectors replaced by its dual space of
1-covectors. The dot product of ω and α is denoted by ω · α.
A differential form ω of degree k is a k-covector valued function on R

n. The
norm (or comass) of ω is

‖ω‖ = sup{ω(x) · α, x ∈ R
n, α simple, |α| = 1}.

Exterior differential calculus and currents. For any smooth k-form ω,
the exterior differential is a (k + 1)-form denoted by dω. It has the property
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d(dω) = 0. Let Dk denote the space of all k-forms ω which have compact
support and continuous partial derivatives of every order. A current T of
dimension k is a linear functional on Dk, which is continuous in the Schwartz
topology on Dk. The boundary ∂T is the current of dimension k − 1 defined
by formula:

(A.1) ∂T (ω) = T (dω) for all ω ∈ Dk−1.

Note that ∂(∂T ) = 0.
The mass of T is

M(T ) = sup{T (ω) : ‖ω‖ ≤ 1}.

Let N(T ) = M(T ) + M(∂T ).

The support spt T of a current T is the smallest closed set Γ ⊂ R
n such that

T (ω) = 0 whenever ω(x) = 0 for all x in some open set containing Γ.

Gauss-Green Theorem. The Gauss-Green (or divergence) Theorem (3.1)
can be rewritten in the form (A.1) with k = n − 1. This is explained in [16,
Sec. 7.8]. In (2.6) let T = TB, where the smooth boundary B of the set E is
oriented by choice of exterior (rather than interior) unit normal vector ν(y)
for y ∈ B. The unit tangent (n−1)-vector τ (y) is adjoint to ν(y) in the sense
that ν(y), τ (y) gives positive orientation to R

n. If ζ(y) in (3.1) is interpreted
as a 1-covector, then ζ(y) is adjoint to the (n − 1)-covector ω(x).

The Whitney flat distance between integral currents T1, T2 is W (T1−T2),
where

W (T ) = inf
Q,R

{M(Q) + M(R) : T = Q + ∂R, Q, R integral}.

Convergence of a sequence Tj to T in this distance means that W (Tj − T )
tends to 0 as j → ∞.

Representation formula. For any k-rectifiable current T , the following
generalization of (4.2) holds. There exists a bounded k-rectifiable set K, and
for Hk-almost all y ∈ K a multiplicity function Θ(y) with positive integer
values and an approximate unit tangent k-vector τ (y), such that

(A.2) T (ω) =

∫
K

ω(y) · τ (y)Θ(y)dHk(y), ω ∈ Dk.

(A.3) M(T ) =

∫
K

Θ(y)dHk(y).
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In view of (A.3), the mass of a k-rectifiable current T is also called the k-
area of T . Implicitly, the definition of k-rectifiable current provides consistent
orientations for the approximate tangent k-vectors.
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