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Abstract

Mean field game (MFG) theory generalizes classical models of interacting particle systems by
replacing the particles with rational agents, making the theory more applicable in economics
and other social sciences. Intuitively, (stochastic differential) MFGs are infinite-population
or continuum limits of large-population stochastic differential games of a certain symmetric
type, and a solution of an MFG is analogous to a Nash equilibrium. This thesis tackles
several fundamental problems in MFG theory. First, if (approximate) equilibria exist in the
large-population games, to what limits (if any) do they converge as the population size tends
to infinity? Second, can the limiting system be used to construct approximate equilibria for
the finite-population games? Finally, what can be said about existence and uniqueness of
equilibria, for the finite- or infinite-population models?

This thesis presents a complete picture of the limiting behavior of the large-population
systems, both with and without common noise, under modest assumptions on the model
inputs. Approximate Nash equilibria in the n-player games admit certain weak limits as n
tends to infinity, and every limit is a weak solution of the MFG. Conversely, every weak
MFG solution can be obtained as the limit of a sequence of approximate Nash equilibria
in the n-player games. Even in the setting without common noise, a new solution concept
is needed in order to capture all of the possible limits. Interestingly, and in contrast with
well known results on related interacting particle systems, empirical state distributions of-
ten admit stochastic limits which are not simply randomizations among the deterministic
solutions.

With the limit theory in mind, the thesis then develops new existence and uniqueness
results. Using controlled martingale problems together with relaxed controls, a general
existence theorem is derived by means of Kakutani’s fixed point theorem. In the common
noise case, a natural notion of weak solution is introduced, and the existence and uniqueness
theory is designed in perfect analogy with weak solutions of stochastic differential equations.
An existence theorem for weak solutions is proven by a discretization procedure, and a
Yamada-Watanabe result is presented and illustrated under some stronger assumptions which
ensure pathwise uniqueness.
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Chapter 1

Introduction

Large systems of interacting individuals are central to countless areas of science; the individ-
uals may be people, computers, animals, or particles, and the large systems may be financial
markets, networks, flocks, or fluids. Mean field theory (an enormously broad term) was orig-
inally developed to study particle systems and has since emerged as the most widespread
mathematical foundation for studying a broader class of these systems. The key insight of
this approach is that the infinite-population (continuum) limit of the right kind of finite-
population model can effectively approximate macroscopic and statistical features of the
system as well as the behavior of a typical or average particle. Applications of mean field
theory beyond its traditional domain of statistical physics, though plentiful, are often criti-
cized, particularly in the social sciences, for their inability to model individuals as rational.
Indeed, the so-called individuals of classical mean field theories behave according to exoge-
nous laws of motion and are thus best understood as particles.

The young theory of mean field games directly addresses this criticism and fundamentally
generalizes traditional mean field theory by granting individuals choice. Each individual
is allowed to optimize some criterion, as an investor maximizes wealth, a manufacturer
chooses how much to produce, or a driver avoids traffic. Mean field game (MFG) theory
again facilitates succinct descriptions of the behavior of a representative agent as well as
the distribution of states across the population and over time. The distribution of states
could variously represent, for example, the income distribution in a given country or the
distribution of fish in a school. In contrast with classical mean field theory, the dynamics of
the system emerge endogenously in a (typically) competitive equilibrium. Because equilibria
of large competitive systems are usually difficult to analyze, MF'G theory again seeks more
tractable infinite-population limits that retain important statistical features of finite systems.

MFG theory has the potential to advance research on a number of problems of intellec-
tual and practical importance, from financial market stability to the dynamics of the income
distribution. However, incorporating choice naturally renders MFG models much more com-
plex than their classical mean field counterparts. As a result, the demands of applications
far exceed their as yet underdeveloped theoretical foundations. The original developments
around 2006 (see the work of Lasry and Lions [91, 89, 90] and Huang et al. [67, 68]) painted
a broad picture of the possibilities of MFG theory and its applications. Subsequent research,
however, has focused largely on theoretical questions of existence and uniqueness of solu-
tions for the equations governing the particular class of MFG systems that warrants the more
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specific title of stochastic differential mean field games. This thesis deepens the analysis of
these two questions but also investigates the under-emphasized problem of rigorously justi-
fying the mean field limit. The goal of the thesis is to study the following three problems,
in the context of stochastic differential mean field games:

(1) What is the precise nature of the mean field game limit? More specifically, can we
identify all of the possible limits of n-player approximate Nash equilibria as n — oo
with a sensible mean field game equilibrium concept? This “limit” should at least
capture the behavior of the distribution of state processes.

(2) When does there exist an (approximate) Nash eqiulibria for the finite games, and when
does there exist an equilibrium for the mean field game?

(3) When is the solution of the mean field game unique?

A good equilibrium concept for the mean field game would render the set of MFG equilibria
precisely equal to the set of limits of approximate Nash equilibria. In this case, the two
questions of point (2) are equivalent, and uniqueness results for the MFG immediately imply
that there is a unique limit to which any n-player approximate Nash equilibria converge.
This thesis presents some solutions to these problems, rigorously proving the correspondence
between the finite-population game and a new “weak solution” concept for the mean field
game. Moreover, under various assumptions on the model inputs, several existence and
uniqueness results for this notion of weak solution are derived, along with their implications
for the limit theory.

Throughout the thesis, special attention is paid to models with common noise, also known
as aggregate uncertainty. These models, though largely neglected in the extant literature,
are important for applications due to their ability to model certain types of macroscopic
sources of noise which persist in the mean field limit.

The rest of this introductory chapter describes mean field game theory in more detail and
summarizes the known results on the foundational questions outlined above. Some time is
spent first on background material from the theory of McKean-Vlasov limits of interacting
diffusions, which can be seen, in contrast with mean field games, as zero-intelligence models.

1.1 From particle systems to mean field games

1.1.1 Interacting diffusion models

Let us begin by describing the interacting particle systems on which stochastic differential
mean field games are based. These systems are by now well understood and serve as a chief
source of intuition when studying their competitive game counterpart.

Imagine n particles are moving in d-dimensional space continuously in time, and the
position of particle ¢ at time ¢ is denoted X;. The particle system evolves according to a
system of stochastic differential equations (SDEs) of the form

{dXz' = b(XE )t + o (XL )WY, =1, L)

Hn _ 1 n
Hy =Dk 5)(5-



There are several important structural features of this model that warrant discussion. First of
all, the driving noises W!,..., W™ are independent Wiener processes, and we note that par-
ticle i is influenced directly only by W*. We assume also that the initial positions Xj, ..., X7
are i.i.d. The drift and volatility functions b and o are the same for each particle, but for
particle 7 these functions are evaluated at the particle’s own position X, as well as the em-
pirical distribution of the n particles’ positions. To be clear, the arguments of the functions b
and o are a spatial variable and a probability measure. If the Wiener processes Wt, ..., W"
are correlated, we have a common noise model; we postpone the discussion of such models
to Section 1.2.

A typical special class of this model arises when the drift (and volatility, though we will
typically take this to be constant for simplicity) is of the form

b(x, 1) = / b(z, y)p(dy),

for a function b taking two spatial variables as arguments. The SDEs above then takes the
form
R ‘
dXi=— > (X, X )dt + od W
i=1
This model was introduced by McKean in [93], building on some ideas of Kac [72], in an
effort to rigorously derive certain reduced equations (e.g., Burger’s or Boltzmann’s) from
finite-particle models. The more general form is discussed in the monograph of Sznitman
[104].

One reason these particle systems admit tractable limits as n — oo is their symmetry. Of
course, the particles are exchangeable in the sense that the distribution of (X7 ... X7™)
is the same for any choice of permutation 7 of {1,...,n}, at least when the SDE system
is well-posed. Moreover, when n is large, the influence of a single paricle on the empirical
measure 1" is small; since this is the only source of coupling or interdependence between the
particles, we expect intuitively that some asymptotic independence should arise as n tends
to infinity.

Particle systems of this form are quite natural starting points for many scientific models,
and understanding their limiting behavior is often an important tool in their analysis. On the
other hand, in some applications the limiting system is the starting point (e.g., an idealized
physical model), and the finite particle system is used primarily for the purpose of simulation
and numerical approximation [21, 84].

1.1.2 The McKean-Vlasov limit

A well known heuristic argument allows us to identify the candidate mean field limit of the
system (1.1). Suppose for the moment that (/i})¢cpo,r converges to a deterministic measure
flow (ptt)cor)- Then, if b and o are suitably continuous, the limiting dynamics of a single
particle should become

-t

dylzf = b(Xtv :ut)dt + 0-(717 p“t)thi'



That is, X* should converge to X in some sense. Then, for continuous functions f, we
i

should have both E[f(X})] — E[f(X,)] and E[f(X})] =E [ fdj; — [ fdpu for each i, and

so uy should actually agree with the law of 7;. In other words, the X* should converge in a
sense to independent copies of the solution of the McKean-Viasov equation

dX; = b(X;, Law(X}))dt + o( Xy, Law(X3))dW;. (1.2)

Alternatively, the dynamics of (jut):cjo,7] can be described by a nonlinear Kolmogorov forward
equation for p, which may be written (assuming p; has a smooth density)

Ot = Lt = 0, (bl () + 50200 e, 1)pe()), (13)

where L7, is the adjoint of the operator L,, given by (assuming the particles live in one
dimension)

L) = b, 1) () + 00, ) (),

This partial differential equation (PDE) is also sometimes called the McKean-Vlasov equa-
tion, and it may be derived directly from the n-particle model (again heuristically) by ap-
plying It6’s formula to ¢(X7), for smooth ¢:

n L - i an RS i i i
d/@dut = EZdW(Xt) = (/ Lut<pdut) dt + ﬁZcp’(Xt)a(Xt,pt)th. (1.4)
=1 =1

Since W* are independent, the last term should vanish as n tends to infinity, and the equation
which results is simply a weak form of the equation (1.3).

More precisely, when the McKean-Vlasov equation admits a unique solution, it has been
shown rigorously in many settings that the n-particle empirical measures converge in some
sense to this unique solution. This type of result is known as propagation of chaos, a term
coined by Mark Kac. On the other hand, when multiple solutions of the McKean-Vlasov
equation exist, then typically all one can say is that 4" admit limits in distribution, and
every such limit is (a stochastic measure flow) concentrated on (i.e., supported by) the set
of solutions of the McKean-Vlasov equation.

This McKean-Vlasov limit and many variations have been studied thoroughly in the
past several decades, using a wide range of techniques. For the basic form of the model
outlined here, there are two dominant strategies for rigorously deriving this limit. The
first and more widely applicable technique is weak convergence arguments. By placing the
empirical measures (/17 ):>0 in a good topological space, proving the relative compactness of
this sequence typically requires only modest assumptions on the data b and o. Either of
the above heuristic arguments may then be made rigorous in order to characterize the limit
points. See [96, 53, 58] for implementations of this strategy.

A second technique, often called trajectorial propagation of chaos, tends to yield stronger
convergence results but only under accordingly stronger assumptions (e.g., Lipschitz coeffi-
cients). These assumptions also yield uniqueness of the McKean-Vlasov equation. The idea
is to construct an explicit coupling between the limiting process and the n-particle models,
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by building independent copies of the unique solution X of the McKean-Vlasov equation on
the same probability space as the finite-particle system and driven by the same Brownian
motions. An advantage of this approach is that it permits good estimates of the rate of
convergence to the limit. See [104] for details of this approach.

The non-unique regime, in which the n-particle system admits multiple limits, is empha-
sized in this thesis for a number of reasons. First of all, uniqueness of Nash equilibria is rare
in game theory, and mean field games are no exception. This should not to be seen as a
nuisance or a pathology, but rather as a fact of life and a potentially useful modelling tool.
For example, the existence of both “good” and “bad” equilibria is a critical feature of the
seminal Diamond-Dybvig [11] model of bank runs. Even in the particle models described
above, non-uniqueness can be exploited to model phase transitions and quantum tunneling,
as in a series of papers of Dawson and Gértner [12, 11, 13].

1.1.3 Mean field games

Let us now return to the setup of the n-particle model (1.1) and bestow upon the particles
some capacity for choice. This will turn the model into a stochastic differential game, and
we take care to design the general model so as to preserve the system’s symmetry. To reflect
their new-found rationality, we will now refer to the “particles” instead as “agents,” and
the process X is called the state process of agent i. The game takes place on a fixed finite
time horizon T' > 0. Agent i chooses a control process o = ()e(o,r), which influences the
evolution of the state process according to the following dynamics:

s = % ZZ:1 5)(5-
This is the same SDE as before, except that now the dynamics of the state process of each

agent depends additionally on the agent’s own control. Agent ¢ will seek to maximize a
certain objective, of the form

(1.5)

T
Jah,...a") =E [ | r b+ o6 )
0

Note that the running objective f and the terminal objective g are the same for each agent.
Because the data (b, o, f, g) depend on the empirical measure ", these optimization problems
are coupled. The optimal strategy of a single agent ¢ depends through /™ on which controls
the other agents choose, but note that this dependence is anonymous, in the sense that agent
1 does not care which agent chooses which controls. This is indeed a very particular class
of games, and Section 1.3 will discuss some interesting extensions of this most basic class of
model.

To simultaneously resolve these optimization problems, we will look for Nash equilibria.
Somewhat more generally, we say that (a', ..., ") is an e-Nash equilibrium (or more vaguely
an approximate Nash equilibrium) if

Jiah, . o) +e> Ji(at, . o B et L at)
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for each admissible alternative strategy 8 and each ¢+ = 1,...,n. While there are of course
many more refined concepts of equilibrium, the Nash equilibrium is the prototypical compet-
itive equilibrium. Working at this stage with a cooperative type of equilibrium (e.g., Pareto)
leads to an entirely different mean field theory, which is carefully contrasted with the mean
field game paradigm in [34].

As is the case in the analogous particle models, understanding the mean field limit of these
games can be useful in different ways. First, it could be the case that a continuum model
is convenient or tractable to work with but should still be rigorously grounded in a more
realistic or tangible finite-population system; this is much in the spirit of Kac’s influential
work on the Boltzmann equation [72]. On the other hand, it is clear that n-player stochastic
differential of this form tend to be quite intractable, especially when n is large. Closed-form
solutions of such n-player games are almost never available, with the possible exception of
sufficiently simple linear-quadratic models. Numerical analysis would presumably go through
a system of n coupled Hamilton-Jacobi-Bellman (HJB) PDEs (see [12]) which describe the
value functions of the n agents, but common finite-difference schemes naturally suffer from
the curse of dimensionality.! With this in mind, one may hope to find a simpler system by
passing to the limit n — oo. Although the literature is limited so far [2, 1, 27, 28, 87, 80],
some numerical methods have been developed for certain types of mean field games, and this
paves the way for approximate solutions of otherwise intractable n-player models.

In fact, it is difficult even to abstractly establish the existence of equilibria for n-player
stochastic differential games. While existence theorems abound for two-player zero sum
stochastic differential games, there are not nearly as many results for nonzero-sum games or
games with more than two players; some work in this direction is by PDE methods [12, 13],
BSDE methods [62, (2], and relaxed control arguments [20]. A key point of MFG theory,
as we will soon discuss in more detail, is that solutions of the limiting equations may be
used to construct approximate equilibria for large-population games, for which existence of
equilibria can be hard to prove directly.

Let us now describe the limiting MFG system on an intuitive level. If the number of
agents n is large, then a single representative agent has little influence on the empirical
measure flow (4})icpo,r), and this agent expects to lose little in the way of optimality by
ignoring her own effect on the empirical measure. If there were a continuum of agents,
then each agents’ influence on this empirical measure would be null, and the optimization
problems of the agents would be decoupled and identical. This line of reasoning leads to the
following mean field notion of equilibrium:

For a fixed (deterministic) measure flow p = (fi¢):ej0,77, consider the following stochastic
optimal control problem:

®.) sup, B [ 3 FOXE s )t + g(X, pur)]
s.t dthha = b(Xf’a,/Lt,ozt)dt—l—U(Xf’a,ut,ozt)th.

IThis approach through HJB equations is preferred for closed-loop equilibria, while a Pontryagin-type
maximum principle is more appropriate for open-loop. The latter approach leads to an equally intractable
n-dimensional system of forward-backward SDEs. This thesis works exclusively with open-loop equilibria.



A deterministic measure-valued function ¢ — p; is called an equilibrium or a MFG solution
if 11, = Law(X/®") for each ¢ € [0, T7], for some control a* which is optimal for the problem
(P,).

Intuitively, the state process of (P,) is that of a single representative agent, and s
represents the distribution of an infinity of agents’ state processes. The representative agent
cannot influence u; and thus considers it as fixed when solving the optimization problem. If
each agent among the infinity is identical and acts in the same way, then the law of large
numbers suggests that the statistical distribution of the representative’s optimally controlled
state process at time ¢ must agree with . For this reason, the equation p; = Law(X}' ’O‘*) is
often called the consistency condition.

A somewhat more mathematical heuristic argument is as follows. Assume that we are
given for each n a Nash equilibrium (a!,..., a") for the n-player game, and assume also
that that there exists a single deterministic function &, independent of n and i, such that
ol = a(t,X}) for each 1 < 4 < n. (This is a huge assumption, but the symmetry of the
system and the weakness of the coupling for large n suggest that it may not be far from
reasonable.) If & is sufficiently well-behaved, then the state process empirical measure should
converge to a McKean-Vlasov limit (as discussed in Section 1.1.1), i.e. " — p for some
deterministic measure flow p. The state process X! of agent 1, controlled by o', should also
converge as n — oo to the solution X*“ of the state equation of the mean field problem
(P,) with a; = &(t, X;""). On the other hand, suppose agent 1 in the n-player game chooses
to use an alternative control 3, while the other agents stick with o'; then as n — oo the
corresponding empirical measure should be close to the original ", since only one player
has changed strategy, and thus this new empirical measure should converge to the same pu.
Similarly, the new state process of agent 1 (controlled by ) should then converge to the
state process X*? of the mean field problem (P,). The Nash equilibrium assumption on
(al,...,a™) provides an inequality which, when n — oo, implies that « is superior to 3 in
the limiting control problem (P,). Since § was arbitrary, this yields the optimality condition
of (P,). Making this argument rigorous turns out to be a highly nontrivial task, and the
interaction between the optimization and the n — oo limit is subtle.

1.1.4 Convergence to the mean field game limit

The first question raised by such an optimistic, informal derivation of the MFG system is,
of course: Does the MFG system actually describe the the limit as n — 0o, in some rigorous
sense? In the literature, this is most commonly answered by using a solution of the MFG
to construct €,-Nash equilibria for the n-player games, where ¢, — 0. More specifically,
suppose i is a MFG solution, and the corresponding optimal control may be written in
feedback form of = a(t, X}' ’a*), for some nice function &. Then, if each agent ¢ uses the
control o = &(t, X}), then the heuristic argument of the previous paragraph can be adapted
to prove rigorously that we have an €,-Nash equilibrium for some €, — 0. Following [67, 32],
most of the probabilistic work on MFGs adopts this strategy, it is by now indisputable that
MFG solutions are useful in constructing approximate equilibria for n-player games.

Little is known, however, regarding the opposite and arguably more direct convergence
problem, and a thorough study of this problem is one of the main contributions of this
thesis. Namely, if we are given for each n an approximate Nash equilibrium, then what
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can be said about the n — oo limit? Thinking cautiously that the MFG solutions may
not be unique, one might guess from the McKean-Vlasov theory that limits of the empirical
measures exist and are concentrated on the set of MFG equilibria. We will see, however,
that this is not the case, and the full story of MFG limits is more subtle. A genuinely
stochastic notion of equilibrium is required for a full description of the limits of n-player
equilibria, and these stochastic equilibrium are not necessarily just randomizations among
the family of deterministic equilibria. As a consequence, the (deterministic) solution concept
considered thus far in the literature on mean field games does not fully capture the limiting
dynamics of n-player equilibria. This thesis studies this point in some detail, proving some
admittedly difficult-to-apply results which nevertheless shed some light on this phenomenon:
The fundamental obstruction is the adaptedness required of controls, which renders the class
of admissible controls quite sensitive to whether or not (ju)cjo,7] is stochastic. In short, a
stochastic equilibrium (or weak MFG solution) requires that the stochastic measure flow
is independent of the noise W, and the consistency condition reads p, = Law(X** | FM),
where F}' is the filtration generated by pu.

The early work of Lasry and Lions [91, 89] first attacked the direct convergence problem
rigorously using PDE methods, working with an infinite time horizon and strong simplifying
assumptions on the data, and their results were later generalized by Feleqi [19]. Bardi and
Priuli [7, 8] justified the MFG limit for certain linear-quadratic problems, and Gomes et al.
[54] studied models with finite state space. Substantial progress was made in a recent paper
of Fischer [51], which deserves special mention also because both the level of generality and
the method of proof are quite similar to ours; we will return to this point shortly.

With the exception of [51], the aforementioned results share the important limitation
that the agents have only partial information: the control of agent i may depend only on
her own state process X* or Wiener process W¢. The results of this thesis allow for arbi-
trary full-information strategies, partially resolving a conjecture of Lasry and Lions (stated
in Remark x after [91, Theorem 2.3] for the case of infinite time horizon and closed-loop
controls). Combined in [91, 89, 19] with the assumption that the state process coefficients
(b,0) do not depend on the empirical measure, the assumption of partial information leads
to the immensely useful simplification that the state processes of the n-player games are
independent.

Fischer [51], on the other hand, allows for full-information controls but characterizes
only the deterministic limits of (fi})icjo,r] as MFG equilibria. Assuming that the limit is
deterministic implicitly restricts the class of n-player equilibria in question. By characterizing
even the stochastic limits of (/i}).c(o,71, Which we show are in fact quite typical, we impose
no such restriction on the equilibrium strategies of the n-player games. This not to say,
however, that our results completely subsume those of [51], which work with a more flexible
notion of local approximate equilibria and which notably include conditions under which the
assumption of a deterministic limit can be verified.

The proof of our main limit theorem works by studying the full joint distribution of those
processes (ji", WY oV, XY) directly relevant to a representative agent U, with U chosen
uniformly at random from {1,...,n}. Randomly selecting the representative agent injects
some important symmetry, since equilibrium controls are non necessarily symmetric (see
Section 2.3.3 for some discussion of this point). Deriving the correct limiting state process
dynamics is fairly routine once adequate estimates on the state processes are established,
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and the needed moment bounds on the control processes come from a crucial coercivity
assumption on the objective functions. A key technical difficulties is specifying the right
class of admissible controls in the limit, and this leads to a notion we call compatibility; this
notion is introduced in Section 3.1.

1.1.5 Existence

Again, the more common way to justify the MFG system is by using its solution to construct
approximate equilibria for the n-player games. When this is possible, the next natural
question is how to solve the MFG. This has been done primarily in one of two ways, using
either PDEs or FBSDEs.

Numerous conditions are known under which the value function v(t,z) of the optimal
control problem (P,,) can be expressed as a (viscosity) solution of a Hamilton-Jacobi-Bellman
equation, of the form

(1.6)

—0p(t,z) — sup, [L% v(t,z) 4+ f(z, p,a)] =0, on (0,T) x RY,
U(Ta 33') = g(xmuT)'

Here we define the generator L% on smooth test functions (again assuming the dimension of
the state process is one) by

1
Lip(t ) = blw, m, a)dpp(t, ) + 50 (2, m, ) 0p(t, ).

On the other hand, if the optimal control is of the form af = a(t, X/**") for a nice function
&, the fixed point condition p; = Law(X/"" ) implies (written assuming p; has a smooth
density) that the Kolmogorov forward equation for p is

{@Mt(iv) = =0, (b(x,m, &(t, ) pu(2)) + 50% (o(x,m, &(t, 7)) () |
Lo = Law/(Xj).

Coupling this Kolmogorov equation with the HJB equation summarizes the important fea-
tures of the MFG problem. This PDE system has been the subject of much analysis, be-
ginning with the work of Lasry and Lions [91] and surveyed in [24, 55], with the chief
difficulty stemming from the opposing directions of time in the two equations. On the
one hand, PDE techniques typically require strong simplifying assumptions on the struc-
ture of the data; for example, typically b(z, u,a) = a, o is constant, and f is of the form
flz,p,a) = fi(z,a) + fo(z, ). On the other hand, PDE methods are powerful in their
ability to handle local mean field interactions, meaning that coefficients depend on (x, u)
through the density du/dxz(z). In this thesis, we only consider nonlocal smoothing interac-
tions, meaning the dependence of the coefficients on the measure argument is continuous
with respect weak convergence, or more generally a Wasserstein metric.

An alternative approach, pioneered by Carmona and Delarue [32], uses the stochastic
(Pontryagin) maximum principle to reduce the MFG problem to a forward-backward SDE



of McKean-Vlasov type as follows: Let
H(x,y,m,a) =b(z,m,a)y + f(x,m,a),

and suppose &(x,y, m) maximizes H(x,y, m,a) over a, for each z,y, m. Fix a measure flow
1= (f1¢)ejo,r), and suppose (X,Y, Z) solves the FBSDE

dXt = b(XtJ}/tJOA{(Xh}/t?Mt))dt+Uth7
dx/;f = _8J:H<Xta}/;aluta&(Xt)}/t)Mt))dt+ thVVtv (17)
Xo =& Yp=0,9(Xr, pr)

According to the well known maximum principle (see e.g. [98, Theorem 6.4.6]), under
appropriate differentiability and convexity assumptions, the control & (X, Y, p;) is optimal
for the problem (P,). Thus, to solve the MFG, it suffices to find p and a solution (X,Y, Z)
to the above FBSDE such that p; = Law(X;) for all ¢.

In a select few cases, the PDE and FBSDE systems above (and thus the MFG prob-
lem) can be solved fairly explicitly. While several examples are provided in [01], very few
stochastic control problems admit explicit solutions beyond simple linear-quadratic models.
A linear-quadratic control problem is one in which b and ¢ are affine in the state and control
arguments (x, a), and the objectives f and g are quadratic in (z,a). A linear-quadratic mean
field game typically involves an affine function of the mean [ yu(dy) in the state dynamics
and a quadratic function of the same term in the objectives. Generally, linear-quadratic
control problems and MFGs can be reduced to certain Riccati differential equations [15, 31],
which occasionally themselves admit explicit solutions [35]. Beyond the linear-quadratic
case, explicit solutions of MFGs are typically unavailable, and it is nontrivial to prove that
a solution exists. Both the PDE and FBSDE have been the basis for well-posedness studies,
and in both cases a key difficulty comes from the forward-backward natu