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1. INTRODUCTION

In this paper we develop an asymptotic analysis of problems of approxi-
mating plane convex bodies by polygons with 7 faces. We examine criteria
for best approximation such as the Hausdorff metric on compact convex
sets and also measures of deviation defined in terms of area and perimeter
differences. The main results give sharp estimates of the order of conver-
gence of best approximations of a convex body by circumscribed and inscribed
polygons with 7 faces. Further, asymptotic characterizations of best approx-
imations are obtained and two methods are given for the construction of
asymptotically efficient approximations.

Our primary motivation for considering these problems comes from the
area of mathematical pattern analysis. Here we are concerned with set
patterns in the plane that possess *he structure of convexity. A fundamental
problem in pattern analysis is the feature-selection problem, which is con-
cerned with providing concise and precise pattern representations in terms of
simple ‘“features” of the patterns. Simple features of set patterns are derived
from a binary feature logic, which identifies a single feature with a closed
half-space F = {(x, y) & R?: ax 4 by < ¢}. Such a binary feature F' assigns
the value 1 or 0 to a set K C R? according as K CF or K L F. Conjunctions
of such features describe convex subsets of R®. In particular, a compact
convex subset K of R? can be identified with a (possibly infinite) conjunction

K~ NF,
s A
for an appropriate index set 4. A concise approximate representation of K is
provided by a finite conjunction

K*~F,, ocA

p=1
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POLYGONAL APPROXIMATION 327

Such fipnite conjunctions are identified with convex polygons (polytopes),
with n or fewer faces, that circumscribe K.

An approximate representation such as K* is concise when # is small. Tt is
precise if by an appropriate measure of deviation IX(-, -} the value of D(K, K*)
is small. The feature-selection problem is concerned with attaining these
goals, ie., with selecting a finite set of features {Fu,,5 aedy=1,.,n},
where the features I, are chosen to make IXK, K*) as small as possible.
The problem translates immediately into one of best approximation of a
compact convex set by a circumscribed polygon.

The problem may be viewed in another light. A convex set can be inter-
preted as a system of linear inequalities and a convex polygon as a finite
system of linear inequalities (see Poritsky [6]). Thus problems of best approx-
imation of convex sets by (circumscribed or inscribed) polygons admit
interpretations as problems of optimal reduction or compression of large
systems of linear inequalities.

Finally, the approximation problems bear an inherent interest within the
theory of convex sets per se. Often functionals of a convex set, such as volume
{area) or surface area (perimeter), are defined as limits as # increases of their
values for circumscribed or inscribed polyhedra with # faces (see Valentine
[7]). The asymptotic analysis that we develop is directly related to questions
of the behavior of these limits,

In the literature on convex sets there are results which are related to our
own. Dowker [2] considers the area deviation between a plane convex set and (i)
the minimal-area circumscribed polygon with » faces and (ii) the maximal-
area inscribed polygon with » faces. He shows that the area deviations are
convex functions of #. The elegant development of Eggleston [3] extends
Dowker’s results to perimeter deviations. Eggleston also shows that deviations
measured by a modified Hausdorff metric need not be convex functions of #.

The paper by Carlsson and Grenander [1] contains asymptotic analysis
of the area deviation of approximations by circumscribed polygons. The
results there are related both to a design problem in the statistical estimation
of areas of convex sets and to a pattern representation problem like the one
described above. The stochastic flavor of their arguments distinguishes their
paper from this one.

In the next section we review some preliminary results on convex sets and
formulate the approximation problems. Through the use of support-function
representations of the sets and their polygonal approximations, the problems
are translated into ones of optimal function approximation by trigonometric
splines, Section 3 states eight theorems which summarize the principal
results of the asymptotic analysis. These results describe (i) order of con-
vergence of best approximations, (ii) characterization of best approximations,
and (iti) methods of comstructing ‘“‘good”, i.e., asymptotically efficient,
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approximations. Section 4 lays the background for the proofs of these results.
We relate some general results of McClure [4] on problems of intervat
segmentation, from which the results of Section 3 will follow immediately.
Then Section 5 proves the main theorems for circumscribed polygonal
approximations by verifying the simple hypotheses of the general results on
segmentation in Section 4, Finally, Section 6 presents the similar analysis
for inscribed polygons.

Valentine’s book [7] is a valuable reference for the properties of convex
sets that we introduce in the next section.

2. PrELIMINARIES: CONVEX SETS

Symbols #, ¥,..., denote points in the plane RZ% Points in R? may be
described by their components as x = {x, , ¥,). Distances between points in
R? are defined by the standard Euclidean norm and, where topological
considerations enter, we are concerned with the topology of R? induced by
the Euclidean metric.

A set KC R is convex if for all pairs x, y € K the line segment
ax {1 — )y, for 0 < « < 1, is contained in K. A convex body is a convex
set with nonempty interior, relative to the topology of R% In the sequel it is
implicit that all the sets we consider are compact, that is, closed and
bounded in R?%; by “convex set” and “convex body” we will mean “‘compact
convex set’” and ‘“‘compact convex body”, respectively.

Let X" denote the set of convex subsets of R?:

A = {K C R*: K is compact and convex}, 2.1y

Useful representations of members of #" are provided by their support
functions. In some settings it is natural to define support functions on R?
or on the unit circle in R2 For the approximation problems, it is convenient
to identify the domain of a support function with the interval [0, 27). For
K e A define the associated support function sy by

sg(f) = r:lEe}(x(xl cos 8 - x, sin 6), {2.2)

for Q0 < 8 << 2. Support functions are continuous and 2w-periodic, when
their domain is extended.

The geometrical interpretation of a support function is illustrated in
Fig. 1. The figure also depicts a support line of K. Since K is compact there
is at least one boundary point x in K for which si{(8) = x, cos  + x, sin 0.
The line £ that passes through this point and is erthogonal to (cos 8, sin 6)
is termed a support line of K in the direction &. There is a support line passing
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2 ‘\B\

Froure 1

through every boundary point of a set K e, and, as noted in Section 1,
a member of X~ can be regarded as an intersection of half-spaces determined
by its support lines.

Define .%° as the subset of C[0, 27) whose members are support functions
of sets in ¢

F ={sp: Keid}.

The correspondence between %~ and & is one-to-one, so we can identify 5~
with &. This identification, together with its order-preserving and topo-
logical properties, is what allows our reduction of set approximation problems
to function approximation problems.

There is also an interesting algebraic property of the identification, which
we do not exploit in our problems. 'The mapping (2.2) between %" and &
preserves operations of addition and scalar multiplication. The sum of two
sets K and K, in " is defined by

K+EK={x]»vxeK ,vek,};
K, + K, is again in ¥ and
Skpirky = Sk -+ Sk -
For any nonnegative value A and a set K in £, the set AK is defined by

AK = {x: x € K}
AK is in J¢ and
S = Asg .
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The order-preserving property of the correspondence between £ and &
is more important in our discussion of circumscribed and inscribed figures.
If K, and K, are in " and K, C K, , then 5y << $g, - This follows immedia-
tely from (2.2).

There are several interesting meagures of deviation or “‘distances’ between
pairs of sets in . It is convenient for us to describe these for pairs of sets
that are ordered by inclusion, since the definitions take particularly simple
forms in this case and since the approximations we treat satisfy this constraint.
The definitions have natural extensions for sets that are not ordered (see

Eggleston [3]).

Let C, denote the circle in R* centered at the origin, with radius r > 0.
For any K in " defined K(r) = K + C, . The Hausdorff metric D, between
sets K, and K, in ¢ is defined by

D (K, K,) = rg(r)x{r: K, CK\(r)}, (2.3)
where
K CK,.
Since sg() = $x + 7, we obtain

DK, , Ky) = max(sg,(0) — sx,(0)) 24)

[0,27)

when K, C K, . A with the Hausdorfl metric is isometric to & with the
max-norm,

Dw(Kl ’ K2) = Sk, T 5xy Hm -

Let m(X) denote the area of a set K in %". The area deviation D, between
sets K and K, in J¢" is defined as

DK, , K,y = m(Ky) — m(K}), when K, CK,. (2.5)
D, is expressed in terms of support functions through the equation [7]
&) =4 [ 1530) — 530) .
We obtain
DK, KD =1 [ (50 — 500 — [0~ 20D a8 20

when K, C K, . Equation (2.7) does not describe a norm on &, but it will
relate to a weighted integral norm on % when we consider polygonal approx-
imations.
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A measure of deviation with the same geometric appeal as D, is described
by the perimeter £(K) of a convex body in 2#". The perimeter deviation D,
between bodies K, and K, in .#" is defined as

DyK,, Ky) = £(Ky) — £(K)), when K,CK,. 2.7

The perimeter £(K) is given by [7]

() = [ sxt0) b,

0
so D, is expressed as

DK, K = [ " [ 8) — 5, (6)] 9 238)

when K, C K, . Thus the perimeter deviation is identified with the L; norm
on .

Equations (2.4} and (2.8) suggest consideration of deviation measures on ¢
induced by the L, norms on %, Define the p-norm deviation D, on X" by

D}J(Kl v Kz) = H 5](2 - SKI Hp H 1 ‘~<-. P “<-. a0, (29)

where|| - ||, is the L, norm on .%. When K, C K, , DK, , K,) — Dy(K, , K,).
The metrics D, for 1 <X p < oo do not admit simple geometric interpreta-
tions,

The analysis of these distances on 2#” and their counterparts on % depends
on a special structure of support functions. One part of a representation
theorem proven by Vitale [8] shows that & is identical te the class of functions
on [0, 2r) that admit representations

s
5(6) = @ cos 6 + bsin 6 + f sin(f — A) R(dA), (2.10)
0
where a and b are constants and R is a finite measure on [0, 2#) satisfying

Zr— 2Zm—
[ cosoR@s) = [ sin 8 R(at) = 0
0 i}

R is appropriately termed the radial distribution because, when it is
absolutely continuous with respect to Lebesgue measure and R(d8) = r(6) 490,

1 Equation (2.10) gives us explicitly the identification between support functions
and measures on the unit circle that was first described by Minkowski. For a discussion
of Minkowski’s problem and its development see H. Busemann, “Convex Surfaces,”

P 60, Wiley, New York, 1938,
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then r(6) is the familiar radius of curvature function or radial density. Indeed,
if K is in 4" and s is twice differentiable, then

sg{f) =acosf +bsinf 4 JB sin(f — A) rx(A) dA; (2.11)
0
ri(6) = $x(6) + sx(t) (2.12)

describes the radius of curvature of the boundary of K at the boundary
point x € K, where

sg(f) = %, cos 8 + x, sin £,

The representation (2.10) for an n-sided polygon P, reduces to a discrete
sum of the form

sp(0) = acost - bsind 3 rosin(@ —A),, 0<6<2m (2.13)

v=1

where

0, < A
(9“")““*33—/\, 8= A

The discrete values },, v = 1,..., #, are the angles between the horizontal
axis and outward normals to the faces of P,, . We observe that sp_is a trigono-
metric spline function associated with the second-order differential operator

L

L=

+1; (2.14)
sp, is continuous on [0, 2m), §, is continuous except at the points A, , and L
annihilates s, _on open intervals between the A, .

Our asymptotic expressions for distances between a convex body K in o

and circumscribed or inscribed polygons will depend on the radial density r
and thus on the regularity of s, . In this direction, we define

F? = {re S § and § are continuous on [0, 27)}. (2.15)

Radial densities of sets K with support functions in %2 exist and are con-
tinuous on [0, 27).
Further define

P, = {P e Pisa polygon with n or fewer faces}. {2.16)

#, is identified with the trigonometric spline support functions described
above.
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The first results in Section 3 give sharp estimates for the asymptotic
behavior of

inf DK, P,) and inf D(P,, K)
Pue#, P,
KCP, PCK

for Kin % and D = D, , D, , D, and D, . Characterizations of best approx-
imating polygons follow from these asymptotic estimates.

3. Mav Resurts

All of the results in this section follow from the general results on interval -
segmentation stated in Section 4 and from properties of convex bodies and
their support functions developed in Sections 2, 5, and 6. The first theorem
describes rate of convergence of polygons that circumscribe a convex body K.

Tueorem 1. If K is a convex body in A~ with support function si in S*
(2.15) and radial density 7y (2.12), then
P i 1 1 2 1/2 £
@) lim a7 inf Do(K, Po)] =4 ([ (O] a6)
KCP,

o . . 24
i) lim 2 inf DK, P = (| (@ d0)

3
]

3
»

i) lim wing DK, P)] = 4 ([ Tra(@ do)

KCP,
2a (2p+1) /2
(iv) lim w3 inf Dy(K, P,)] = 3[B(p)]"? ( f [rx(B)]7/2p+1) d'g)
HH0 hWeEF gy 0
KcP,

Jor 1 < p << o0, where
B(p) = fn Il — i d.

Thus all of the deviations considered are of order 72, and sharp estimates
of rates of convergence are provided by the integral expressions in Theorem 1.
The other results are concerned with characterizing best approximations and
prescribing methods of constructing good approximations.

Each face of a polygon that circumscribes a set K is a segment of a support
line of K. A circumscribing polygon is uniquely determined by specifying
the directions of these support lines, say 0 <8 <0, < --- << 0, << 2=
(see Fig. 2). This specification of a polygon in terms of the directions of its
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iy}

Ficure 2

faces is equivalent to specifying the spline support function (2.13) of the
polygon in terms of the locations of its knots, The condition that a polygon
P, circumscribes a convex body K is equivalent to the conditions that s,
interpolate the values of s at the knots of s, and sp 2= 5¢ .

It is easily argued that best approximations of K exist in 2, under all of
the measures of deviation we consider. The deviations D(K, P,), where P,
circumscribes K, depend continuously on the directions (4, ,..., 8,,) of the
faces of P, . Thus the minimum of D{K, P,) is attained for some values
0O CO* < £ 8,% <2 Let P,* denote the circumscribing
polygon with z (or fewer) faces in directions 8,%,..., #,*; then

D(K, P,*) = inf D(K, P,). (3.1)
Ecp,

As in problems of variable-knot approximation, there is no guarantee that
a best approximation P * will be unique, but unique asymptotic characteriza-
tions can be obtained in terms of the distributions of the values (8,*,..., 8, %).
Define the empirical distribution functions

G, () = u ' card{f,*: 6,* < 6} for 0 << 8 < 2m; (3.2)

card denotes the cardinality of the indicated set. Note that 8,* depends
implicitly on #; in order to avoid cumbersome notation, we do not explicitly
denote this dependence. G,* describes the distribution of optimal face
directions.

The limiting behavior of G, is stated in terms of distributions related to
the integral expressions of Theorem 1. G.* depends on the particular
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measure of deviation D) with respect to which P, * is a best approximation. We
define the following distribution functions on [0, 2#] associated with a
fixed convex body K, having continuous radial density ry:

FORI) e ) ( ) el de) (3.3)

FOR f [rx( dr) ( [ e dr) (3.4)

(
GA8) — ( f et de) (] " el dr) (3.5)

Gol8) — ( raeiprer dr) (| U ) ()
for 0 < & <{ 2.

TreOREM 2. Let K be a convex body in A~ with support function sy in 9
and radial density ry . Let P * be a best circumscribing approximation of K in
P, relative to the measure of deviation D (3.1) and define G* by (3.2).

() If D=D,, then

lim G, *(8) = G.(6);

(i) if D=D,, then
lim G, () = G.(6);

(i) i D =D,, then
lim G, *(6) = G0); anl

(iv) if D=D,, then
lim G,*(8) = G,(6),

Jor all 8 in [0, 2ar].

One construction of asymptotically efficient approximations is based on
establishing sufficiency for asymptotic optimality of the distribution char-
acterizations in Theorem 2. We construct polygons from a specified distribu-
tion of face angles.

Let f be a positive, bounded, piccewise continuous function on [0, 2+],
which is normalized so that ,[u flr)dr = 1. Let F denote its integral;
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F(6) = J‘z f{7) dr. For any = = 3, define an n-point partition of [0, 2#] by
inversion of F' at equally spaced ordinates;

0, = F1[y{(n + 1), forr=1,..., n. (3.7}

Let P, be the unique polygon in &, that circumscribes K and whose faces
are in the directions §, of (3.7).

The following theorem describes the convergence of P,F to K and states
sufficient conditions for constructing asymptotically efficient approximations.

TreoreM 3. Let K be a convex body in 24 with support function sy in F?
and radial density ry . Let P,T be the polygon in P, that circumscribes K and
whose faces are in the directions 8, of (3.7). Suppose f = dF|d0 is strictly positive,
bounded, and piecewise continuous on [0, 2w). Under these conditions

(i) lim »2D (K, P,F) = e?s é‘aup(% F e,
0.27]

(ii) lim n*D (K, P.F) = 5 f:ﬂ [rx (@)} [ (BY2 b,

27
i)y Tim DK, PRy = L [ v (6) [0 db, and
no 0

1/p

2u
() lim nD,(K, P,y = HBEY ([ a0 /O] 6)

In particular, if (i) ry is sirictly positive on [0, 2], () F =G, , G,, G; or
G, ((3.3)(3.6)) according as D =D, D,, D,, or D, and (iii) P,* is an
optimal circumscribing approximation of K in 2, relative to D, then

lim D(K, P, *}/[{K, P,y =1.
The approximations P T are asymptotically efficient.

An alternative to this “density approach” for constructing good many-
sided approximations is based on a notion of balancing local errors of approx-
imation. Consider a decomposition of X and a circumscribed polygon P, as
depicted in Fig. 3. Compare this to Fig. 2. We have partitioned the combined
figure by drawing rays from an interior point of K to points of contact
between K and each face of P, . Denote the compoenents of the partitioned
sets K and P, by K* and PY;

7 n
K=|JK"” and P,=|JPY
¥=1

=1
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Ficure 3

PY circumscribes X, and the support functions of P’ and K™ coincide
with the support functions of P, and X on [6, , 8,,,], where 8, is identified
with 4, .

The deviations D(K, P,) are easily related to the values of D(K®, PI).
Indeed,

Do(K, Py) = max Do(KY, PY),

n
DA(K! Pﬂ) - Z DA(K(V)s Pf‘lv))!

v=1

DAK,P,) = ¥ DAK®, PP,

v=1

and

DK, P,y =Y DK"Y, PY).
v=1

From remarks in Section 4, it follows that optimal approximations in the
Hausdorff metric balance the values of the local error D (K%, P¥); that is,
if P ¥ minimizes D (K, P,) over polygons P, e &, , KCP,, then

DK%, P¥y = D (K, P,*}) forv=1,.,n.

Polygons which balance the local errors measured by the other deviations
also yield asymptotically efficient approximations.

Because of the continuous dependence of D(K, P,.) on the face angles
{0y yoy 0y) of Py and from the remarks on this point in Section 4, it follows
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that we can define a polygon P, in 2, by the error-balancing condition
DK®, Py = DIKYY, PYYy  forv = 1,,n — 1, (3.8)
whete D == D, , D,, or D, , and P, circumscribes K.

"The following theorem describes the convergence of P, .

TuroreM 4. FLet K be a convex body in A~ with support function si in 57
and radial density ry . Let D denote any of the measures of deviation D, , Dy,
or D, . Let P, * be a best circumscribing approximation of K in &, (relative to D),
and let P, in P, circumscribe K and satisfy (3.8). Then

lim K, P,*)!D(K, P,) = 1.
The approximations P, are asymptotically efficient.

Analogous results are obtained for the problem of approximating a convex
body by an inscribed polygon. These differ slightly in detail and development
from the theorems above.

Tueorem 5. If K is a convex body in & with support function sy in 52 and
radial density ry , then

27
0 bt -4 ([ o)
P,cK

2
»

Am 3
@ tim ¥ nf D, K= 3 ([ el ).
P.CK
rwr . - 1 2w 3
(i) lim winf Di(Pa. K)] =5 ( J'ﬂ [ d8), and
P.CK
. NP
(v) lim ¥ inf, Dy(Pn, K]
PoCK
2w (2pH1) /p
= [1/82p + DV ([ [re@rrersn do)
1}

Again, all the deviations considered are of order »~2, and the integral
expressions of Theorem 3 give precise estimates of the asymptotic deviations.

Inscribed polygons are not as neatly characterized as are the circums-
scribed polygons in terms of directions of their faces. There need not exist
a polygon P, that inscribes a set K and has faces in specified directions.
Therefore, it is convenient to characterize inscribed polygons in terms of
their vertices, which lie on the boundary of K (see Fig. 4). We can para-
metrize the vertices of the inscribed polygon in terms of the directions of
support lines of K at the respective vertices; say these directions are

0<61<62<<0n<2ﬂ'.




POLYGONAL APPROXIMATION 339

FIGURE 4

The specification of an inscribed polygon in terms of the angles 8, ,..., 4,
at its vertices is equivalent to the specification of its spline support function
(2.13} in terms of the points where it interpolates values of s and § . If
P, inscribes K then sp < sx, sp (0) = sx(8,), $p (0,) = $x(0,) and sp has
exactly one knot 5, in each open interval (4, , 8,,,). The second-order inter-
polation of sx by s, at the points §, follows from the regularity of sp
between knots and the properties

sp, <8 and  sp (6,) = sg(6,).

As for the case of circumscribed polygons, best approximations by inscribed
polygons always exist. For any measure of deviation D, the values (P, , K)
depend continuously on the parameters (0, ,..., 8,) of P, . The minimum
of (P, , K) is attained for some values @ < 8,* < -~ < 0,* < 27. If P, *
denotes the inscribing polvgon with n (or fewer) vertices associated with the
parameters (&, %,..., 8,%), then

D(P,*, K) = inf D(P,, K). (3.9)
PCE

The best approximations P, * are characterized in terms of the asymptotic
distribution of the parameters (6,%,..., 6,*). In analogy to the previous devel-
opment, define the empirical distribution of these vertex parameters on

[0,2%]:
Vo *(0) = n! card{8,*: 6,* < 8} for 0 << € < 2m; {(3.10)

card means ‘“‘cardinality.” Recall that the values 6,* depend implicitly
on n.
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The necessary condition on the limiting behavior of V,* parallels the
result of Theorem 2.

Turorem 6. Let K be a convex body in 3 with support function sy in 57°
and radial density ry . Let P,* be a best inscribing approximation of K in &,
relattve to the measure of deviation D (3.9} and define V., * by (3.10). G, , G4,
G, , and G, are defined by Egs. (3.3}{3.6).

(iy If D=D,, then
lirg V. *(0) = G.(8);

(iy fD=D,, then
lirg V.5(0) = G(0);

(i) #f D=D,, then

lim V,*(6) = G,(0); and
(ivy if D=D,, then
lim V7, *(6) = G,(0),
Jor all 8 in [0, 27].

Constructions of asymptotically efficient approximations follow from a
theorem on the sufficiency of the limiting distribution characterizations in
Theorem 6.

Let f be positive, bounded, and piecewise continuous on [0, 2#] and let

o7 f(r)dr = 1. Define F(8) = [of(r)dr and partition [0, 2] at points
& ,..., 8, by setting

8, =Fujn +1)] forv=1,.,n (3.11)

Then let P,F be the polygon in %, that inseribes K and has vertices at the
points on the boundary of K where the support lines are in the directions
8, . The convergence of P.F to K is described in the next theorem.

THeorREM 7. Let K be a convex body in 2" with support function sy in 5
and radial density ry . Let P,F be the polygon in &, that inscribes K and whose
vertices are identified with the parameters 0, of (3.11). Suppose f = dF[d0
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is strictly positive, bounded, and piecewise continuous on [0, 2n]. Under these
conditions

N0

() Hm 22D (P,F, K) = esig glip(g ),
() lim DR, K) = [ IO 7O a5,
(i) lim DR, K) =& [ rel6) F@) 2 dO, and

N 1 2 1/
() lim DR, K) = gompiy (| UlO1? [7@2 do)

In particular, if (i) ry is strictly positive on {0, 27], (i) F = G, G,, G, , or
G, ((3.3)-(3.6)) according as D =D, , D,, D,, or D, and (iii) P,* is an
optimal inscribing approximation of K in P, relative to D, then

lim D(P,*, K)/D(P,", K) = 1.
The approximations P.F are asymptotically efficient.

Finally, the ‘“balanced-error” approach to constructing asymptotically
efficient approximations carries over to the present context.

Consider a decomposition of K and an inscribed polygon P, as depicted
in Fig. 5. Compare this to Fig. 4; see also Figs. 2 and 3. Rays have been drawn
from an interior point of P, to its vertices. Let K and PY’ denote the sepa-
rate components of the two partitioned sets. P} inscribes K%, and the sup-
port functions of P and K™ on [6, , 8,.,] coincide with those of P, and K,
respectively.

As related above, a best approximation in the Hausdorff metric is a
balanced-error approximation; that is, if P,* minimizes D(P, , K) among
polygons P, e #, , P, C K, then D(P*", K*) is independent of v. We can

FIGURE §
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define inscribing polygons by this balancing condition for any of our mea-
sures of deviation. Let P, inscribe K and satisfy

D(PY, KY) = DP¥ Kby forv=1,.,n—1, (3.12)

where D =D, ,D,,or D,.
The last theorem describes the convergence of P, .

THEOREM 8. Let K be a convex body in A~ with support function si in 572
and radial density ry . Let I} denote any of the measures of deviation D, , D, ,
or D, . Let P,* be a best inscribing approximation of K in &, (relative to D)
and let P, in P, inscribe K and satisfy (3.12). Then

lim D(P,*, K)/D(P, , K) = 1.

The approximations P, are asymplotically efficient.

Remark 1. All of these theorems have direct translations into results on
the convergence, characterization, and construction of best function approx-
imations by variable-knot interpolating splines. 'These translations can be
inferred from the isometries we have noted between 4~ and % and from the
analysis of Sections 5 and 6.

Remark 2. Inaddition to the convergence results stated in these theorems,
one can easily deduce bounds on the deviations IXK, P,) for fixed sets K
and P, . These are reflected in the remainder expressions of Sections 5 and 6.

4. INTERVAL SEGMENTATION

The partitions of sets K and P, introduced in Section 3 and depicted in
Figs. 3 and 5 allow us to decompose the global measures of deviation D(K, P,)
into expressions that reflect “local” deviations between components K
and PY. Consider again the case of 2 circumscribing approximation P, of
K and introduce the partitions

P,={JPY and K= k"
v=1 =1

described after Theorem 3. For decompositions of the area, perimeter, and
p-norm deviations we obtain the expressions

DK, Py =Y DK"Y, P¥), (4.1)

v=1




POLYGONAL APPROXIMATION 343

DAK, P,) =Y D(KY, PY), (4.2)
v=1
and
DK, P,) =Y DAKY, PY). (4.3)
v=1

These global deviations are expressed as sums of local deviations. The expres-
sion for the Hausdorff metric takes a different form:

D.(K, P,) = max DK"Y, P8, (4.4)
SUEn

Similar expressions are obtained for the decomposed inscribed figures; the
order of the arguments of the deviations is reversed to be consistent with
our earlier definitions.

This process of partitioning sets is equivalent to a process of partitioning
or segmenting the interval [0, 2#) at the points (4, ,..., 0,) that parametrize
the circumscribed (inscribed) polygon. Indeed, from the correspondence
between support functions observed in Section 3, each of the local deviations
D(K™, P¥)in (4.1)(4.4) only depends on s and sp, on the interval [4, , 6,,,].
From the relationships between sy and s, , e.g., sx < sp_, 5x(8) = 52 (6,),
and Ls, = 0, we can express 5, in terms of sk to say further that the local
deviation DK™, P) is some "functional e(, ', ) of sx and the interval
{ov 4 6v+1]'

These observations fit the polygon-approximation problems intc a general
framework of interval segmentation problems described in McClure [4].
Other references to earlier work and to additional applications of these
problems and methods are described in [4]; the references there by Sacks
and Ylvisaker motivate some of the general results, and their work also
represents a very nice application of this approach to asymptotic analysis.
We will give separate consideration to additive functionals like (4.1)-(4.3)
and to functionals of the distinct form (4.4).

Let f be a real-valued function on an interval [a, ] and let T, denote a
partition of [a, ] of the form T, == (#y, #; ,..-s fn , Tnyy), Where

a—=1Iy <t <" <<ty <lpyq =0
Consider a functional E(f, T,)) that admits a decomposition of the following
additive form, relative to T,:
”n

E(f, Ty = 3 elfity s tua)- (4.5)

v=U
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This compares with (4.1)4.3) when we associate f with sz, [a, b] with [0, 27],
and T, with (¢, ,..., 0,).

In the approximation problems and the theorems for them cited in Section 3
we are concerned with E(f, T,) for a prescribed partition 7, and also with

E(f) = int K(f, T.). *6)

E,( f) identifies with the minimum deviation D(K, P, *) (Egs. (3.1) and (3.9))
between a convex body K and a best approximation of K in 2, .

Three assumptions on the terms &(f; £, , t,,4) that contribute to E(f, T,)
suffice to obtain results like those in Section 3. These will follow in the present
specific context from the assumption that s, is in 52, In other problems these
are commonly satisfied by imposing regularity conditions on f.

Al. For any (=, 8) satisfying a < o« <C 8 < b, e(f; o, B) 2 0. Further,
e(f; -, *) is subadditive over contiguous subintervals of [a, b]; that is, if
a<a<<f<<ys=bthen

e(fi o, B) +- el fi B y) < elf; a, y)-

A2, There is a function Jf on [a, b], associated with f, and a constant
m > 1 such that (i) Jf is nonnegative and piecewise continuous on [a, ],
admitting at worst a finite number of jump discontinuities, and (if)

lim e(f; @, o -+ WY/ = Jf(a-+).

This limit is uniform in that the difference | Jf(a+) — e(f; o, « + AY/A™ |
can be made uniformly small when {«, « + /&) is contained in an interval
where Jf is continuous.

A3, e(f; o, B) depends continuously on (x, 8).

Assumption Al implies that E{(f, T) is nonnegative. The subadditivity
assumption is equivalent to the assertion that finer partitions of [, b] reduce
E(f, T).

In applications of the general results that follow it is usually easy to verify
assumptions Al and A3. More work is involved in verifying A2 since the
form of Jf and the value of m must be deduced, This is what we develop in
Sections 5 and 6.

We now relate several results concerning the asymptotic behavior of
E.(f) (4.6) and E(f, T,) (4.5). Only the first lemma is proved here. The
other results are developed in [4]. We offer a new proof of the first result
since it is based on somewhat weaker assumptions than those used in [4],
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Lemma 1. If assumptions A1-A3 hold for e(f; o, B), then

lim inf w125, f) 2 (| (o ) (4.7)

Proof. Fix f and let Jf denote its image in PC+[a, b] (nonnegative,
piecewise continuous functions on [a, ]).

By the continuity assumption A3, the functional E(f, T,) is continuous
in the variables (¢, ,..., .} over the compact region a < t; < = <<, < b
Thus the minimum of E(f, T,) is attained; there is an optimal #-point parti-
tion T.* satisfying

En(f) - E(f! Tﬂ*)'

Denote T, * = (#5, ty yuey £y » Tp41), Where the dependence of £, on 7 is not
explicitly noted, but will be implicit in context.

We first prove that E,(f) is of order n1™ by bounding it above
by a particular value E(f, -) of this order. Let {r,,..., 7} be the fixed
discontinuity points of [f in (a, ). Let U,_, denote the uniform partition of
[a, 5] with the # — & interior points #, = a + w(b — a){{n — & + 1), for
v = 1,..., n — k. The partition S, = U,_; U {ry,..., 7} comprises no more
than » interior points of [a, b]. By the optimality of T,*, therefore,

Ef) < E(f, Sa)

Straightforward calculation, based on assumption A2, shows

lim i 3E(, S,) = [ L] (6 — a2 ds,
and thus
tim sup #m 1E,(f) < [ LIF(9)] (b — ayn ds, (4.8)

or E.(f) = O(ni—™).

From this order of convergence, we can conclude that certain distinguished
subintervals of the partition T, * become arbitrarily small as » increases.
Denote

Ft={te[a, b]: Jf{t) > 0}
and
F, = {te[a, b]: ]Jfis continuous at ¢}.

Let A,(t) be the length of the interval [¢,, f,,) of T,* that contains r. If
teFtnF,, then lim, . A,(t) = 0. Otherwise, there is a positive value
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h, such that for some =, + < ¢ << 7+ h,;, Jf is continuous and positive
on [r, v + k) and, for a subsequence of the partitions 7%,

St by Kty
But, by Al and A2, then
o{fi by baa) 2 e(fimo 7+ B} > 0.
In turn, this would imply
WAE(f) 2 el fi 1 byer) 3 A lelf 7, 7+ )

The right side diverges as u increases, contradicting (4.8).
We can now separate E(f, T,,*) into parts where assumption A2 can or
cannot be invoked. Define the set K,.* associated with T,,* by

K'n* = U {[tv 3 tv+1): {tv bl tv+1} g Tn*a [tv H tv-Hl) Q‘F+ nFc}'

=0

By the definition of K *, the asymptotic expression in assumption A2 can be
used on the subintervals of 7, * that comprise K, * Now on K, * define a
step-function approximation [, * of Jf by

efit,, it
]n*(t) = éi__i#;? for t, ‘~<-. t < tv+1 * [tv ’ tv+1) g Kn*:
r41 v,

and let J,*(f) =0 for t ¢ K *. By the argument that /() - O fort e F+* NF,,
it follows that every ¢ in F+ N F, is eventually in a set K%, for # sufficiently
large. The indicator functions Iy . of K, * converge pointwise to Jpiqp .
Also, from A2, lim,,_., [, *(f) = Jf(t) for teF+ N F, . Since F+ N F, differs
from F+ by a set of measure zero, together these observations yield

lim I (1) 50 = J/(@) ace. (4.9)

Also, the uniform convergence assumption in A2 implies that the functions
Ja* are uniformly bounded on [a, 4].

Now separate the terms in the sum E(f, T,*) for which [¢,,1,,,) € K%,
and let the summation symbol 3> * denote the sum over the values v,
0 < v <, for which [, £,,) C K, *:

Ef) = E(f, Tw*) 2 1" elfi 1,5 t0)s
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by Al. Apply assumption A2 to the terms in the reduced sum to write

Ef) = 2" Jo* ) b

where k, = t,,; — £, . By Holder's inequality,
1/m (1) /m
S Unr el b < (XF L)) (501)

< (T Ty nm) " minnim,
Equivalently,
THJaA) B (T e hy)m _m ( f: oo} - a&)m‘
Thus,

() 2 ([ Lol U6 &)

By the bounded convergence theorem and (4.9),

tim inf wm1E,(f) > ([ (fym ds)

the proof is complete.
We can actually conclude that

lim 771E,(f) = (f: UFsym as)”

This is established as the main convergence result in [4]. An easier way to
draw this conclusion is based on a construction of z-point partitions T, for
which E(f, T,,) converges to a limit arbitrarily close to the lower bound (4.7).
Such partitions are described by density functions on fa, 8].

Let g be a strictly positive, bounded, piecewise-continuous function on
[e, b], which is normalized so that _[: g(s)ds = 1. Let G denote its integral,
Gty = J'; 2(s) ds. For any integer u 2> 1, define an n-point partition T,(g)
of [a, b] by

Tog) =f{t, el bl: G(t,) =v(n + 1)y =0,1,.,n + 1}.  (4.10)

The points ¢, of T,(g) are uniquely defined through inversion of the distribu-
tion function G.
The following result is quoted without proof from [4].
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LeMMa 2. Suppose assumptions A1-A3 hold for e(f; o, B). Let {74 ..., Tn}
be the discontinuity points of Jf in (a, b). Let g be a positive, bounded, piecewice-
continuous density on [a, b] with associated distribution G. For the partitions

Tn - Tﬂ—k(g) v {Tl PR ] Tk} deﬁne‘i by (410)
lim w7 E(/, T,) = | 176 P . @11)

By a simple variational argument on g in (4.11) the minimum value of the
limit 1s obtained to prove that the lower bound in (4.7) is attained.

CoroLLArY 2.1. If assumptions A1-A3 hold for e(f; u, B), then
b m
lim amE,(f) — ([ (F@)Hmds) (4.12)

When Jf is strictly positive on [a, ], Lemma 2 provides a method for
constructing asymptotically efficient partitions.

CoroLLARY 2.2, Suppose assumptions Al-A3 hold for e(f, «, B} and that
Jf és strictly positive on {a, b). Let {r, ..., 7} be the discontinuity points of Jf
n (a, b) and set

&) = row ([ repmas)”
The partitions T, = T, _(g;} {7y ,..., 71} are asympiotically efficient; that is,
tim wB( T — ([ Uy as)’”

The result follows from substitution of g, for g in (4.11).

This last result provides sufficient conditions for specifying asymp-
totically efficient partitions in terms of a distribution function defined by Jf.
A converse result that characterizes the optimal partitions T,* introduced
in Lemma 1 is also proven in [4].

Let {T,*} be a sequence of optimal partitions; E,(f) = E(f, Tn*).
Define the empirical distribution G,* of the points in T,* by

G.*(t) =~ (n 4+ 2y Lcard{t, e T, %1 ¢, <<t} fora <t < b. (4.13)
Define also the distribution function G, by

Gt) = (Lt (Jrsym ds) ( f: (JFsim ds)_l fora<t<b  (414)

The optimal partitions T, * are characterized by the following result.
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LemMa 3. Suppose assumptions A1-A3 hold for e(f; o, B). Let T, * be an
optimal n-point partition; E.( f) = E(f, T,,*). Define G,* and G, by (4.13) and
(4.14). If Jf is not identically zero on [a, b], then

lim G, *(t) = G(7)
for all t in [a, b).

The proof in [4] appeals to Helly's selection theorem on compactness of
proper distribution functions.

In addition to such density and distribution descriptions ef optimal and
efficient partitions as Lemmas 2 and 3 provide, other results in [4] relate
optimal partitions to so-called “balanced-error partitions.” A ‘“‘balanced-
error partition” is one for which the separate local terms e(f; ¢, , £,,,) con-
tributing to E(f, T') assume the same value. From Lemma 3 it can be shown
that optimal partitions tend to balance these terms as n increases (see [4]).
In the reverse direction, we show that partitions prescribed by this balancing
condition are asymptotically efficient.

When assumptions Al and A3 hold for e(f; «, 8), it is easily argued [4]

that an n-point partition T, exists that satisfies
T, ={telabdlity=aty, =bande(f t.,y, ) =elf; t,, 1)

forv = 1,..., n}.

(4.15)

For such a partition, E(f, T,) = (n + 1) e(f; £,, £,.,). In [4] the following

result is proved.

Lemma 4. Suppose assumptions A1-A3 hold for e(f; o, B). The partitions
T, defined by (4.15) are asymptotically efficient; that is,

tim w8, T) = ([ Uroy )

These results provide powerful tools for the asymptotic analysis of
functionals expressed in the additive form (4.5). Analogous results, which
are easier to prove, hold for the forms which arise in the consideration of
sup-norm approximations. In this case, global error functionals admit
descriptions in the form

E(f, To) = max e(fitys toi) (4.16)

and optimization with respect to the partition T, = (#y, £, ,..., &, , 1,.4) points
to consideration of the value

Ealf) = min max e(fit,, ta)

n VEM
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Compare (4.16) and (4.4). The results of [4] concerning &(f, 1',) are related
here.
We impose the following assumptions on the “local” terms e(f; «, §) in

(4.16).

Bl. For any («, B) satisfying e =l & << 8 < b, e(f; o, 8) 2= 0. Further, if
a < o<<fB<<y<b then

max{e(f; «, B), e(f; B, v); < e % ¥)-

B2. Same as A2, but replace the condition m > 1 with m > 0.
B3. Same as A3.

Under these assumptions, optimal n-point partitions T,* exist; that is,

Ef) = U, Tn*)-

Further, the min—max description of &,( f) implies that optimal partitions are
balanced partitions. If T,* = (#y, #; ,.os tn 5 fupa), then

E(f, T, *) =e(fit,, t,1) forv = 0,..., n.

In analogy to the lemmas above, we obtain the following results.

Lemma 5. If assumptions B1-B3 hold for e(f; o, ), then
b m
lim 76 (f) = (| (JFG)m ds) .

LeMMA 6. Suppose assumptions B1-B3 hold for e(f; «, B). Let T,* be an
optimal n-point partition; &,( ) = E(f, To,*). Define G.* and G, by (4.13}
and (4.14). If Jf is not identically zero on |a, b, then

lim G, (1) = G/(t)
for all t in [a, b].

Finally, there is an analog of Lemma 2 that describes the efficiency of
partitions defined by a density.

Lemma 7. Suppose assumptions B1-B3 hold for e(f; o, 8). Let {ry ,..., T4}
be the discontinuity points of [f in (a, b). Let g be a positive, bounded, piecewsise-
continuous density on [a, b] with associated distribution G. For the partitions
Tp = Tusg) V{71 ..., T} defined by (4.10),

lim #wm&(f, T,) = es[s sup g™ Jf.
a,

nIL ]|
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CoroLLARY 7.1. Suppose assumptions B1-B3 hold for e(f; «, B) and that
Jf @5 strictly positive on [a, b]. Let {ry ..., 7} be the discontinuity points of Jf
in {a, b) and set

8 = ey (| Urepm )

The partitions T, = T,_ (g} {71 yo.-r Tx} are asymptotically efficient; that is

tim wé (£, ) — (| Uy )"

The nature of these results and the assumptions on which they are based
point the direction for our analyses of the convex-set approximation problems
in the following two sections.

5. CIRCUMSCRIBED POLYGONS

Let K be a fixed convex body with support function sg in &% In this
section P, will refer to a member of &7, that circumscribes K. Recall the
parametric representation (&, ..., 8,) of P, described before Theorem 2 in
Section 3 and the decompositions of X and P, into components K and
P described after Theorem 3.

Three conditions completely characterize the spline support function
Sp, in terms of the support function sg:

se(0) << sp (0, 00 << 2n (5.1)
sp(0) =s(8), v=1..,n (5.2)
Lsp (0) =0, 6=-8,. (5.3)

{See (2.14).) These conditions are easily applied, in turn, to deduce the asymp-
totic behavior of D(K, P,).

We refer to Eqs. (4.1}-(4.4) and the discussion immediately following these.
In a manner consistent with the notation of Section 4, define

ex(sx3 0, 6,11) = Do(KY, P,
esse; 8, ,0,1) = DA(KM: sz")),
er(sx 0,5 0,11) = DK"Y, P,
exlsii 8, , 6,10) = DKV, PY),

(5.4)

and

Apart from their interpretations as distances between convex sets, the terms
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e(sg; -, ) may be viewed as distances between an arbitrary function sy in %
and a function sp_defined by (5.2) and (5.3); sp,_ is in the null space of L (5.3)
and interpolates the values of s at 4, .

We adopt this latter view in carrying through the asymptotic analysis of
efsx; 0,,8,,,) as 6,,, — 8, goes to zero. This local asymptotic analysis is
directed at assumptions A2 and B2 of Section 4. The other assumptions there
follow at once from the interpretation of e(sg; ¢, °) through (5.4).

A powerful tool in the evaluation of e(sy; 6, , 0,,,) is Pélya’s mean value
theorem [5]. This analog of the familiar mean value theorem for the derivative
says simply that

SP,.(G) - SK(B) = [Lsx(f)] U(B)! 8, <08, (5.5)

where
LU= —1 on [é,, 8.1, (5.6)
ue,) = U6, =0, (57

and £ is an intermediate point 8, < £ < 6,,4; the conditions for (5.5) are
sp 7% Eqgs. (5.2) and (3.3), and 6,,, — 8, < .

Equation (5.5) reduces the asymptotic analysis of e(sy; 6, , 8,.,) to the
simpler analysis of the function I/ prescribed by (5.6) and (5.7). Indeed, from

(5.5), the continuity of ry = Lsg , and the intermediate value theorem,

ulsys 0, 0,is) = re(d) max  U(O), (5.8)
o BBy == ril®) [ UIE) d, (5.9)
and ’
exloxi B Ouet) = oD | " ey . (5.10)

The corresponding expression for the local area deviation requires one initial
simplification. For D (K@, P¥"), the limits on the integral (2.6) become 6,
and 6,,, . By integrating the portion [§; — $x%] by parts and using (5.2) and
(5.3), this integral reduces to

8y

easxiO,,6,0) =3 f " (50.(0) — 5x(8)) 1l8) db.

BV
From the remainder expression (5.5), this becomes
Iy

ealsxi 0+ Br) — Hrk(OF [ U(O) db. (5.11)

Oy
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Note that £ is an intermediate point, 8, << £ < 6,,, , so that continuity of
rg implies

r(€) = rl8,) + o(1).

It only remains to pive the asymptotic form of the L, -norms of U on
{6,,6,.,]. For convenience, assume ¢, =0 and 6,,; = 4 > 0. From (5.6)
and (5.7)

U(E’):—l—i—cose—}—l—;f-%ﬂsinﬂ, 0<<8<h

Change variables to write U(8) = u;(r), where & = br and

—cos k

e sin(hT), 0= 1.

1
w{t) = —1 + cos(hr) +
It is easily shown that u,(7)/h® converges uniformly to % +{1 — 7) on [0, 1]
as k goes to zero, From observing this convergence, we obtain
A% max : Uy =ht max w(r) — %

[Bu'9y+1

and
ev+1 1 L
A1 J' [T(6Y] 4B = L [()/F2]? dr — 27 J'o [«(1 — )7 dr

as h— 0.

These limits and Eqs. (5.8)-(5.11) yield
€alSxs O, 1 8,09) = dr&(6,} A* + o(h®), (5.12)
er(sx; 0, , 6,.4) = 45 7x(6,) B + o(#®), (5.13)

e{sk; 0, 5 B,00) == 277[rg(6,)]* fol [(1 — 7)}7 dr A27+1 4 o(h294),  (5.14)

and
ealsgs Oy s By11) = ¢ [rx0)]F B2 - o(A%), (5.13)

where A = 8,,; — 0, . The precise asymptotic forms supposed in assumptions
A2 and B2 of Section 4 are given by these last four equations. Theorems 14
follow at once from the general results of Section 4 and the sets of equations
(3.12)(5.15), (5.4), and (4.1){4.4).

Error bounds for an approximation are easily deduced from Egs. (5.8)-

G.11).




354 MCCLURE AND VITALE
6. InscrIBED PoLYGONS

The local error analysis for inscribed polygons is slightly more compli-
cated than the corresponding analysis for circumscribed polygons in Section 5.
This occurs because the parameters (#, ,..., #,) that describe the inscribed
figure do not coincide with the knots of its spline support function,

Let K be a fixed convex body with support function sg in &% P, will refer
to a member of &, that inscribes K. Recall the parametric representation
(8y ,.., B,) of P, described after Theorem 5 in Section 3 and the decomposi-
tions of K and P, into components K® and PY’ described after Theorem 7.

The parameters 6, of P, are associated with vertices. The knots », of
sp , however, identify with faces of P, . This means that the knots %, and
p::rameters 8, are related by inequalities

gv < M < 0v+1 " (6'1)
Since P,, C K,
sp.(0) <5, 0<O<2m (6.2)
and, since P, inscribes K,
sp_(8,) = s¢(6.), v o= l,.., " (6.3)

Equations (6.2) and (6.3) and the continuity of §p on intervals (n,,,7,)
imply, in addition,

$e,{8,) = x(0,)- (6.4)
The last three equations, together with
Lop (8) =0, 6+, (6.5)

completely characterize sp_in terms of sz . The double interpolation condi-
tions (6.3) and (6.4) will allow us to invoke Pélya’s theorem, as in Section 5.
Refer to Eqs. (4.1)(4.4) and the discussion following them. Define

eulsi Oy s B,a) == D(Py, K,
ealse; 6,,0,,,) = DA(P}:), K(")),
e(sxs B, 4 0,.1) = DAPY, KV,

e,(5x: 0, 5 0,.1) = D,"(PY, K*).

(6.6)

and

We follow the pattern set in Section 5 and regard the terms e(sg; -, °) as
distances between an arbitrary function s; in .9 and a function sp defined
by (6.3)(6.5). The analysis is directed at the verification of assumptions A2
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and B2 of Section 4. The other assumptions in that section follow readily
from the interpretation of e(sg; -, -) through (6.6).

Now sp_is twice continuously differentiable on [8,, 5,) and on (», , 6,,4].
From Pélya’s mean value theorem [5} we obtain two remainder expressions,

k() — 52, (0) = [Lsx(E)] Un(6), 6, <O <,

d 6.7
an x0) — 5o (6) = [Lsxlf)] Un()y 7 <0< b,y (6.7)
where

LU =1 on 8:; s Nyl
1 [9, , m,] (6.8)
LU, =1 on  [n,0.l
U(6) = Uy(6,) = 0,
(0 = U,(6,) )

U2(99+1) = U2(9u+1) =0,

and £, and £, are intermediate points, 8, <{ §, < 9, < £ << 6,,; - The condi-
tions for (6.7) are sy € %2, Egs. (6.3)46.5), and 6,,, — &, < #.

From the remainder expressions (6.7), the continuity of rip =Lsg, and
the intermediate value theorem, we obtain

eulsii 0, 02) = 7€) max{max Uy(0), max  Uyf0)], (6-10)
Ty 7S]
erlsgs 00 Oar) = (&) ([ Gx0) @0 + [ Us0) 0) (6.11)

efexi 0, 00) = IO ([ 10O @0+ [ U007 d0): (6.12)

£ is an intermediate point, 8, < £ < 6,,, . The local area deviation is simpli-
fied by performing the integration by parts indicated in Section 5. Since 7,
is a point of discontinuity of $p_, we obtain

esg; 0,,0,.4)
= %f: (sx(8) — sp,(0)) 74(6) d + H[sx(n.) — s (7.} B, (1)-
This reduces to
ealsx; 6., 0,.1)

= ra@F ([ Va0 + [ U6)d8) + Hsxn) — se, )] dip )
(6.13)

Afpn(q,) is the jump in the derivative $p, At 7, .
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The asymptotic forms of the L -norms of U and U, on [f,, 5] and
[%,, 8,,4] are obtained from explicit representations of these functions. For
convenience, set 8, =0, %, =&y ,and 8,;, — 1, =k, . Let

h:h1+h2 :9v+1'
From (6.8) and (6.9)
Ufth =1—cos b, 0o hy

and a similar expression holds for ¥U,. Change variables to write
Uy(6) = uy (), where 6 = hyr and

u, (1) = 1 — cos(fy7), 0Lr< L.

The quotient u,, (7)/A)? converges uniformly to 7°/2 on [0, 1] as A, goes to zero.
From this uniform convergence and the parallel development for U,, we
obtain

Bl max U =k maxu — L
v Uilf) = A maxun(n) = 4

. e
P i VD = et ) &

hl_zUl(nv) = hl_auhl(l) - %,

TPV 1
hy "“‘L [Uy(8)]? 46 = fu [un (), ") dr — [(2p + 1) 27] 7,
and

Byt J. rel [UL(6)]” d8 — J‘l [ukz(-;-)/h:]” dr —>[(2p + 1) 27
n 0

v

as b, — 0 and A, — 0.

In addition to these expressions, we also need asymptotic estimates of
Bk and hyfk in order to determine the exact order in & of (6.10)-6.12) and
we need an estimate of 44, (»,) for (6.13). These estimates are deduced from
the conditions (6.3)-(6.5) that define s, and from the fact that sp is at least
continuous at v, . Explicitly, " "

5.(0) = sx(B,) cos(f — 6) + §x(8) sin(6 — 6), 7, <O <,
The continuity of sp_at », gives us the equation

sx(6,) cos by - §x(6,) sin by = sx(8,,,) cos By — §5(0,,4) sin A, .
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Express hyand by as by = ahand by, = (1 — o) /, forsome «, 0 <C o << 1, and
rewrite the last equation as

§x(8,.1) sin(l — o) & 4 $x(8,) sin(ah) = sx(8,,,) cos(l — ) b — 5x(8,) cos(aht).
By equating terms of order A4* in this equation, we obtain
0 = 4rg(6)) 2e — 1] 2% + o(#?),

which implies & = } 4~ o(1) or
limn(h/A) = Lim(hy/h) = 3, (6.14)

when 7(f,} > 0. Similar analysis based on the explicit expression for sp_
yields

Asp () = rx(6,) k +- oh). (6.15)

By using (6.14), (6.15), and the asymptotic expressions for the L -norms
of U, and U, in Eqs. {6.10)—(6.13), we arrive at the following estimates:

ealsi: 8, 0,.1) = Lril0,) B 4 o(kP), (6.16)

e{(sK; 8» 3 9v+1) = % rK(Bv) B? + O(ha)' (6'17)

eplsg 8., 0,44) = % REPHL L o(hAPeT), (6.18)

and
eslsis 0, 0,50) = 35 [r(6)P B + o(h?), (6.19)

where & = #8,,; — 0,. Here we have also invoked the continuity of ry to
write 7(&) = rp(8,) + o(1); recall 8, < £ <L 8, + A

The precise asymptotic forms supposed in assumptions A2 and B2 of
Section 4 are given by these last four equations. Theorems 5-8 follow by the
results of Section 4 and the sets of equations (6.16)-(6.19), (6.6}, and (4.1}~
(4.4).

Error bounds for an inscribed polygonal approximation are deduced from

Egs. (6.10)-(6.13).

Note added in proof. The limit given in Theorem 5 for the Hausdorff metric is
equivalent to a result of Fejes Toth, Approximation by polygons and polyhedra,
Bull, Amer. Math, Soc. 54 (1948), 431-438. It is derived there by different methods
and under slightly different assumptions. Fejes Téth pursues other interesting problems
in his paper.
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