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Abstract

In this paper we show results on the combinatorial properties of shifted sim-

plicial complexes. We prove two intrinsic characterization theorems for this

class. The first theorem is in terms of a generalized vicinal preorder. It is

shown that a complex is shifted if and only if the preorder is total. Building

on this we characterize obstructions to shiftedness and prove there are finitely

many in each dimension. In addition, we give results on the enumeration of

shifted complexes and a connection to totally symmetric plane partitions.

1 Introduction

A simplicial complex on n nodes is shifted if there exists a labeling of the

nodes by one through n such that for any face {v1, v2, . . . , vk}, replacing any

vi by a node with a smaller label results in a collection which is also a face.

Shifted complexes have been considered in various contexts. For example,

they are the class of complete simple games in game-theory [17].

∗The work here was done while the author was a graduate student at MIT and partially

supported by an NSF graduate research fellowship.
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A primary motivation for the study of shifted complexes is the fact that

any simplicial complex can be transformed into a shifted complex in a way

which preserves meaningful information. Shifting operations were first in-

troduced by Erdös, Ko and Rado [3] and Kleitman [9]. See [4] for a survey

on this operation in hypergraph and extremal set theory. Later, Kalai intro-

duced the notion of algebraic shifting [6] and [7]. Algebraic shifting preserves

certain properties of a complex while simplifying others. For example, shift-

ing preserves the f -vector of a complex, but the topology is always reduced

to a wedge of spheres. Shifting has proved to be a successful tool for answer-

ing questions regarding f -vectors, see for example [1] and [12]. For a survey

on algebraic shifting, see [8].

Another motivation for the study of shifted complexes is their connection

to threshold graphs. One dimensional shifted complexes are exactly the

threshold graphs. These graphs have been extensively studied [11] and this

connection provides many insights into the structure of shifted complexes.

We first extend a characterization of threshold graphs in terms of the vicinal

preorder by defining a generalized vicinal preorder for simplicial complexes

of any dimension. Our result shows that a complex is shifted if and only

if the generalized preorder is total. Building on this, we arrive at a second

characterization for shifted complexes in terms of obstructions. We give the

range of the number of nodes on which there exist obstructions to shiftedness.

In particular we show that there exists a finite number of obstructions to

shiftedness in each dimension. Next, we consider the enumeration of shifted

complexes. We provide the number of two dimensional shifted complexes by

giving a very simple bijection between these complexes and totally symmetric

plane partitions. Finally, we give the first few entries of the number of pure

shifted complexes.
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2 Definitions and Examples

Definition 1. A simplicial complex on n nodes is shifted if there exists a

labeling of the nodes by one through n such that for any face {v1, v2, . . . , vk},

replacing any vi by a node with a smaller label results in a collection which

is also a face.
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Figure 1: An example of a shifted complex.

An equivalent definition of shifted complexes is in terms of order ideals.

An order ideal I of a poset P is a subset of P such that if x is in I and y is

less than x in the partial order then y is in I. Consider the partial ordering

on strings of increasing integers where (x1 < x2 < · · · < xk) is taken to be

less than (y1 < y2 < · · · < yk) if xi ≤ yi for all i. Shifted complexes are

exactly order ideals in this poset, see Figure 1.

Let us consider some complexes that are not shifted. We can easily see

that the graphs of Figure 2 are not shifted. For example, in G1 let node a

have label 1. Then the label of c must be larger than the label of a. So we

should be able to replace c with a in the collection {c, d} and have a face

of the complex. But {a, d} is not a face. Therefore G1 is not shifted, and

we could similarly prove G2 and G3 are not shifted. These three graphs are
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actually all of the obstructions to shiftedness in dimension one. This result

is a consequence of the connection between shifted complexes and threshold

graphs.
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Figure 2: Non-shifted complexes.

3 Threshold Graphs

An independent set of a graph is a collection of nodes no two of which are

connected by an edge.

Definition 2. A graph is threshold if for all v ∈ V there exists weights w(v),

and t ∈ R such that the following condition holds: w(U) ≤ t if and only if U

is an independent set, where w(U) =
∑

v∈U w(v).

1

t = 2

2
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Figure 3: A threshold graph with threshold 2.

Threshold graphs are an extensively studied class of graphs, see for exam-

ple [5] or [11]. There are many equivalent characterizations of these graphs.

Here we will look at some of these characterizations and their generaliza-

tions due to the fact that One dimensional shifted complexes are exactly the
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threshold graphs. Hence shifted complexes are a generalization of this class

of graphs. In [5] many generalizations of threshold graphs to hypergraphs

are considered, only some of these concepts correspond to shifted complexes.

Above we claimed that G1, G2, and G3 are all the obstructions to shifted-

ness in dimension one. This statement is simply a translate of the following

result.

Theorem. [11] A graph is threshold if and only if it does not contain G1,

G2, or G3 as an induced subgraph.

Threshold graphs can also be described constructively in terms of two

basic operations. Let D stand for adding a disjoint node. Let S stand for

starring a node, namely placing a new node adjacent to all previous nodes

of the graph.

Theorem. [11] Threshold graphs are exactly those graphs formed from the

empty graph by successive applications of the operations D and S.
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Figure 4: A threshold graph with its construction.

The last characterization we look at here is in terms of the vicinal pre-

order. First, let us recall the definition of the vicinal preorder for graphs,

which we call the 1-vicinal preorder for convenience later on. For any sim-

ple graph G and any node v ∈ G, let N1(v) = {w ∈ G |wv ∈ G} and

N1[v] = N1(v) ∪ {v}. Note that N1(v) is just the usual neighborhood of a

vertex of a graph.

Definition 3. (1-Vicinal Preorder %1)

Let x %1 y if and only if N1[x] contains N1(y).
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Theorem. [11] G is a threshold graph if and only if the vicinal preorder of

G is total.

1

4 3

2

Figure 5: A threshold graph with vicinal preorder: 4 ∼1 3 ≺1 2 ∼1 1.

In the example of Figure 5, the graph has been labeled with a shifted

labeling. Notice that the shifted labeling is exactly opposite the vicinal order.

This is true in general, so once we determine the vicinal ordering of a graph,

we may obtain a shifted labeling.

4 Characterizations

First we extend the characterization of threshold graphs in terms of the

vicinal preorder. We have for any one dimensional simplicial complex K,

K is shifted if and only if the 1-vicinal preorder of K is total. In order to

generalize this result, we need the concept of a vicinal preorder for general

simplicial complexes, not just graphs. The star of a vertex v of a simplicial

complex is the set of faces of the complex which contain v. The link of a

vertex v of a simplicial complex K is the set of faces of the star(v) which

do not contain v. Namely, the link of a vertex v is equal to the set of faces

{f ∈ K | f ∪ v ∈ K and v /∈ f}. For a d-dimensional simplicial complex K,

and v a node in K, let Nd(v) = {(d − 1)-dimensional faces of the link(v)}

and Nd[v] = {(d − 1)-dimensional faces of the star(v)}. Note that for d = 1

Nd(v) and Nd[v] are the same as in the graphical case.

Definition 4. (d-vicinal preorder %d)

Let x %d y if and only if Nd[x] contains Nd(y).
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We need to check that this is a preorder, namely that it is reflexive and

transitive. Reflexivity requires that Nd[x] ⊇ Nd(x), which is true by defi-

nition. Transitivity requires that Nd[x] ⊇ Nd(y) and Nd[y] ⊇ Nd(z) imply

Nd[x] ⊇ Nd(z). Suppose yz /∈ K. Then Nd(z) ⊆ Nd(y) ⊆ Nd[x]. If yz ∈ K

then for some face f , yf ∈ Nd(z). We must show yf ∈ Nd[x]. We have

yf ∈ Nd(z)

⇒ zf ∈ Nd(y)

⇒ zf ∈ Nd(x)

⇒ xf ∈ Nd(z)

⇒ xf ∈ Nd(y)

⇒ yf ∈ Nd(x).

Theorem 1. For a pure d-dimensional simplicial complex K, K is shifted if

and only if the d-vicinal preorder is total.

Proof. (⇒) Suppose K is shifted and the d-vicinal preorder is not total.

This implies there exists nodes x, y ∈ K such that x and y are incom-

parable. Then we have Nd[x] + Nd(y) and Nd[y] + Nd(x). Hence there

exists faces f1 and f2 such that xf1 ∈ K, yf1 /∈ K and yf2 ∈ K, xf2 /∈ K.

Let l be a shifted labeling for K. Without loss of generality, we may assume

l(x) < l(y). Then yf2 ∈ K implies xf2 ∈ K, a contradiction.

(⇐) Suppose the d-vicinal preorder is total. Label the nodes of K in

non-increasing order with respect to the vicinal preorder. We claim this is

a shifted labeling. Consider any face (x1, x2, . . . , xd+1) ∈ K and any node

w such that l(w) < l(xi) for some i. Since the labeling is non-increasing,

Nd[w] ⊇ Nd(xi) implies (x1, x2, . . . , x̂i, . . . , xd+1) ∈ Nd[w] which implies

(w, x1, x2, . . . , x̂i, . . . , xd+1) ∈ K.

This is our first intrinsic look at shifted complexes of dimension greater

than one. However, it is restricted to pure complexes. It is tempting to think
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that a complex is shifted if each skeleton is shifted, where the ith skeleton is

the collection of all i dimensional faces. It is important to point out that hav-

ing all the vicinal preorders total does not imply shiftedness. For example,

consider the simplicial complex with maximal faces = {abc, ad, ae, cd, ce, de}

(see Figure 6). Both the 1 and 2 vicinal preorders are total,

a ∼1 c �1 e ∼1 d �1 b

a ∼2 b ∼2 c �2 e ∼2 d

but the complex is not shifted. On the other hand, for a complex to be shifted,

b

c

a
e

d

Figure 6: A non-shifted complex with both preorders total.

we do need that the preorders are total. What still may be missing is a single

labeling which is a shifted labeling in all dimensions. Any shifted labeling

must label the nodes in non-increasing order with respect to all preorders.

Otherwise, we would have two nodes, x and y, such that l(x) < l(y) but

y �i x for some i. This means Ni[y] ⊃ Ni(x) with strict containment.

Therefore we would have yf ∈ K but xf /∈ K for some face f , showing K

is not shifted. Thus we see that for a complex to be shifted it must have all

preorders total and a labeling which is non-increasing with respect to them

all. This means that two nodes x and y may be equivalent in one preorder

and have one larger than the other in another preorder. But, x cannot be

greater than y in one preorder and then smaller than y in another. In Figure 7

we have a ∼1 b �1 c ∼1 d and a ∼2 b ∼2 c �2 d.

Next we use the vicinal preorder characterization to describe obstructions

to shiftedness. We consider an obstruction to shiftedness to be a non-shifted
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Figure 7: A shifted complex with different but compatible preorders.

simplicial complex all of whose induced subcomplexes are shifted. Recall

that threshold graphs can be characterized in terms of forbidden induced

subgraphs (see Figure 2). Our goal is to characterize shifted complexes in

terms of forbidden induced subcomplexes. For a complex to be shifted it must

be shifted in all dimensions and we may easily check if the 1-skeleton of a

complex is shifted. Therefore in general, when we consider the d-dimensional

case, we allow ourselves to assume the (d − 1)-skeleton is shifted.

Theorem 2. In d dimensions all obstructions to shiftedness with shifted (d−

1)-skeleton are on (d + 3) ≤ n ≤ (2d + 2) nodes, and there exist obstructions

on each of these values.

Proof. Let K be a d-dimensional obstruction with shifted (d−1)-skeleton on

n > (2d + 2) nodes.

Case 1: The d skeleton of K is not shifted.

Then the d-vicinal preorder is not total. This is the case if and only if there

exists x, y ∈ K such that x and y are incomparable. Again this is equivalent

to Nd[x] + Nd(y) and Nd[y] + Nd(x). Hence we have (d − 1) faces e1 and e2

such that xe1 ∈ K, ye1 /∈ K and ye2 ∈ K, xe2 /∈ K. The number of nodes in

{x, y, e1, e2} is at least (d+3) and at most (2d+2). Since n > (2d+2), there

must exist a node a, not equal to x or y and not in e1 or e2. Removing a

from K clearly cannot affect xe1, ye1, ye2, or xe2. This implies the d-vicinal

preorder is not total on K \ a. Therefore K \ a can not be shifted, which

contradicts that K is an obstruction.

Case 2: The d skeleton of K is shifted.

Then we know all preorders are total. Since K is not shifted, there is no
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Figure 8: A family of obstructions.

labeling of the nodes which is non-increasing with respect to all of them. We

have assumed the (d−1) skeleton is shifted, therefore it is the d-vicinal order

which does not agree with the first (d − 1) orders. This happens if and only

if there exists x and y such that x �i y and y �d x for some i ≤ d−1. Hence

we have a (d − 2)-face w and a (d − 1)-face f such that xw, yf ∈ K and

yw, xf /∈ K. The total number of nodes in {x, y, w, f} is at least (d+3) and

at most (2d + 1). Since n > (2d + 2), there must exist a node a, not equal

to x or y and not in f or w. Removing a from K cannot affect xw, yw, xf,

or yf . This implies there cannot exist a shifted labeling on K \ a, which

contradicts that K is an obstruction.

To finish the proof, we first note that if n < (d + 3) then we cannot have

any of the obstructing structures above. Next, we show a family of obstruc-

tions on (d + 3) ≤ n ≤ (2d + 2) nodes. For each of the following complexes,

let the (d − 1)-skeleton be complete. Take two d-faces, (x,w1, w2, . . . , wd)

and (y, v1, v2, . . . , vd). Consider the amount of overlap between the vis and

wis. They may overlap on 0 to at most (d−1) nodes. In each case, removing

any node leaves at most one d-face on a complete (d − 1)-skeleton, which is

shifted (see Figure 8).

One of the most important consequences of this theorem is that there are

finitely many obstructions to shiftedness in each dimension. This means that

we can check for shiftedness in a fixed dimension.

Obstructions to shifted families (shifted hypergraphs) were considered
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in [13] and extended by Duval and Shareshian [2]. They defined obstructions

not with respect to induced subgraph but deletion and contraction. In this

case it was shown that all obstructions are on n = 2d vertices.

5 Enumeration

In one dimension, the number of shifted complexes is the number of threshold

graphs.

Theorem. There are 2n−1 non-isomorphic unlabeled threshold graphs on n

nodes.

Proof. Consider the constructive characterization of threshold graphs. Re-

call that all threshold graphs can be formed by successively performing two

operations. This would give us 2n strings, except that at the first step, star-

ring a node and adding a disjoint node are equivalent. No two of these graphs

are isomorphic to each other. One way to see this is to note that each string

gives a unique degree sequence.

Next we consider two dimensional shifted complexes where the question

of enumeration becomes much more difficult.

Theorem 3. The number of two dimensional shifted complexes on (n + 1)

nodes is given by: ∏

1≤ i≤ j ≤ k≤n

i + j + k − 1

i + j + k − 2

The first few numbers of this series are:

1, 2, 5, 16, 66, 352, 2431, . . .

This is a result of the connection between shifted complexes and totally

symmetric plane partitions. We show that two dimensional shifted complexes

are in bijection with totally symmetric plane partitions.
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Definition 5. A plane partition π = (πij)i,j≥1 is an array of nonnegative

integers with non-increasing rows and columns. A plane partition is totally

symmetric if πij = πji and each row, when considered as an ordinary parti-

tion, is self-conjugate (see Figure 9).

3 3 2

2 1

1 0

3

2

Figure 9: A totally symmetric plane partition.

Plane partitions can also be thought of as collections of blocks in R3

where entry ij gives us the height of the blocks at that location. Then we

can look at different symmetry classes of this structure. Totally symmetric

plane partitions correspond to plane partitions which are invariant under the

action of S3. In this setting, it is not hard to see that TSPPs are order ideals

in the poset of Figure 10, where a string (abc) represents all permutations

of the elements {a, b, c}. Given an order ideal π in N3, we recover the plane
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Figure 10: TSPPs as order ideals.

partition as follows: πij = |{k : (i, j, k) ∈ π}|. We can move between
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this poset and the shifted poset simply by adding (012) to each entry (see

Figure 11). Now it is clear that two dimensional shifted complexes are the

same as totally symmetric plane partitions as they are order ideals in the

same poset. Theorem 3 is simply a restatement of the following:
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13
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Figure 11: Bijection between TSPPs and 2-dimensional shifted complexes.

Theorem. [16] The number of TSPPs which fit in an (n × n × n) box is:

∏

1≤ i≤ j ≤ k≤n

i + j + k − 1

i + j + k − 2

These questions can be generalized by looking at stacks of cubes in higher

dimensions which are invariant under certain symmetries. The d-dimensional

shifted complexes exactly correspond to the d-dimensional analogue of a to-

tally symmetric plane partition. Essentially nothing is known in this direc-

tion. There is not even a conjecture of the number of such structures for

dimension four and higher. We refer the interested reader to [14], [15] and

[16] for much more on plane partitions and their enumeration.

Next we give the first few entries in the number of pure shifted complexes

(see Figure 12). These numbers have many interesting properties. For ex-

ample, let Tn be the total number of two dimension shifted complexes on n

nodes. Then the number of pure two dimensional shifted complexes on n

nodes is Tn−1 − Tn−2. Also, the second off diagonal consists of the Eulerian
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numbers, 2k − k − 1, with k = n − 1. See [10] for a thorough discussion the

enumeration of pure shifted complexes.

Finally, we mention that although it is shown in the last section that there

exists a finite number of obstructions in each dimension, the exact number

is not known (even for d = 2).
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Figure 12: The number of pure shifted complexes in d dimensions on n nodes.
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