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Abstract. We study the class of matroids whose independent set complexes are shifted

simplicial complexes. We prove two characterization theorems, one of which is constructive.

In addition, we show this class is closed under taking minors and duality. Finally, we give

results on shifted broken circuit complexes.

1. Introduction

We want to consider those matroids whose complexes of independent sets are shifted.

This class of shifted matroids has been significantly investigated before, in a variety of

guises. They seem to have been first used in [5] by Crapo. He used them to show that there

are at least 2n non-isomorphic matroids on n elements. They were later investigated in [11]

as a particular kind of transversal matroid. This work includes a characterization in terms

of forbidden minors. Shifted matroids appeared again in [2] and [3] as a kind of lattice path

matroid. Mostly closely related to the presentation here is [1], where these matroids arise

in the context of Catalan matroids. We refer the reader to [3] for a more complete history

of these matroids.

Our approach is to consider the matroid complexes specifically from a shifted perspective.

We provide new proofs utilizing the structure of a shifted complex to show the class is

constructible, closed under taking minors and duality, and exactly the set of principal order

ideals in the shifted partial ordering.

2. Shifted complexes

A simplicial complex on n vertices is shifted if there exists a labeling of the vertices by

one through n such that for any face {v1, v2, . . . , vk}, replacing any vi by a vertex with a

smaller label results in a collection which is also a face.

An equivalent formulation of shifted complexes is in terms of order ideals. An order ideal

I of a poset P is a subset of P such that if x is in I and y is less than x then y is in I. Let Ps

be the partial ordering on strings of increasing integers given by x = (x1 < x2 < · · · < xk)

is less than y = (y1 < y2 < · · · < yk) if xi ≤ yi for all i and x 6= y. Shifted complexes are

exactly the order ideals of Ps. Note that we allow comparisons of strings of various lengths

by considering the shorter string to have the necessary number of initial zeros (abusing that

we are otherwise comparing strictly increasing strings). For example the string 24 is taken

to be less than the string 1356 by considering 24 as 0024.
1
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Example: A simplicial complex which includes the face 24 must also have the face 14

in order to be shifted (see Figure 1).

4 3

1

2

124

134

234

34

4

3

2

1

14

24 123

23

13

12

Figure 1. An example of a shifted complex.

3. Independent Set Complexes of Matroids

We first note that any matroid with a shifted independent set complex can have at most

one parallel class of size greater than one. Suppose we had two parallel classes {a, b} and

{c, d} in a matroid M . Let KM be the corresponding complex. Then we would have

ac, bd ∈ KM and ab, cd /∈ KM . Consider a labeling of the points of M . With out loss of

generality, let a have the smallest label among all four points. bd ∈ K implies both ab and

ad must be faces in order for KM to be shifted. Hence this complex can not be shifted and

our matroids will have at most one parallel class of size greater than one.

For the remainder of this section, we will consider all matroids in terms of their affine

diagrams.

3.1. Ranks 1 and 2. Rank one matroids have independent sets of size at most one. In

terms of the complex of independent sets this is just a collection of disjoint vertices, which

is shifted.

In terms of the affine diagram, there are only two cases of rank two matroids; two points

or a line. It is easy to see that both of these cases with at most one multiplicity give shifted

matroids. In fact, we can see how to construct these complexes which are just graphs. The

only non-adjacencies are between the members of the parallel class of size greater than one.

(If we have no multiplicities, then we have a complete graph.) We can form any such graph

by starting with a collection of disjoint vertices and then starring on all other vertices. By

starring we mean connecting the new vertex to all previous vertices in the graph. Let D

stand for adding a disjoint vertex and S for starring a vertex. Both operations preserve
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shiftedness. Hence complexes formed by successive applications of these two operations are

shifted.

Proposition 1. Rank two shifted matroid independent set complexes are exactly those com-

plexes of the form DD · · ·DSS · · ·S.
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Figure 2. A rank two shifted matroid.

We want to extend the notion of starring a vertex to arbitrary dimensions. Namely, we

will say a vertex v is starred in dimension d onto a complex K by forming the complex

K stard v = K ∪ {v ∪ f | f ∈ K and |f | ≤ d}. Note that this operation is not the same as

coning. Coning corresponds to the special case of starring a vertex in dimension one more

than the dimension of the complex. As an example of starring, let K be the two dimensional

triangle {123}. K star2 4 is the complex with top faces {123, 124, 134, 234}. On the other

hand, K star3 4 is the complex with top face {1234} which is the same as coning by 4. We

will represent these complexes as strings of Ds, Ss, and | - for dimension increase. Thus

in the examples above, K star2 4 would be represented by DS|SS and K star3 4 would be

represented by DS|S|S.

3.2. Rank 3. For rank three matroids, we quickly see that we cannot have more than one

line in the affine diagram for a shifted complex. Let {a1, b1, c1} and {a2, b2, c2} be two

not necessarily disjoint lines (for example c1 and c2 could be the same point) of the affine

diagram of a matroid M with complex KM . This would give us (a1b1c1), (a2b2c2) /∈ KM

and (a1b2c1), (a2b1c2) ∈ KM showing KM is not shifted. Therefore the affine diagram of a

shifted rank 3 matroid can have at most one line and possibly disjoint points. Moreover, the

parallel class of size greater than one, if it exists, lies on this line. To see this, let {a, b, c}

be the unique line of the affine diagram, and suppose {x, y} (6= a, b, c) are parallel elements.

Then we would have (abc), (axy) /∈ KM and (abx), (acy) ∈ KM , again an obstruction to

shiftedness.

Hence rank 3 shifted matroids have the structure of the rank 2 case with additional

disjoint points. Again, it is easy to see that all matroids of this form do have shifted

matroid complexes. The extra disjoint points correspond to vertices starred in dimension

2. Therefore we started with a shifted one dimensional complex and starred vertices in the

second dimension, which leaves us with a shifted complex.
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Proposition 2. Rank 3 shifted matroid independent set complexes are exactly those com-

plexes of the form DD · · ·DSS · · ·S|SS · · ·S.

3.3. General Rank. The same argument as above shows that we cannot have more than

one maximal dimensional surface in the affine diagram of a shifted rank n matroid. More-

over, the affine diagram contains at most one flat per dimension and they are nested. Let

F1 and F2 be flats of the affine diagram and suppose one is not contained in the other. Let

x1 ∈ F1, x2 ∈ F2 and x1 /∈ F2, x2 /∈ F1. Now take maximally independent sets I1 of F1

s.t. x1 /∈ I1 and I2 of F2 s.t. x2 /∈ I2. We can do this because F1 is a flat of the affine

diagram and so rank(F1) = rank(F1 −x1), and similarly rank(F2) = rank(F2 −x2). Clearly

I1 ∪ x1 /∈ KM and I2 ∪ x2 /∈ KM . But, I1 ∪ x2 ∈ KM otherwise x2 would be in the closure

of I1 and hence in F1. Similarly, I2 ∪ x1 ∈ KM and KM would not be shifted. Therefore

our only option again becomes the rank n − 1 case with disjoint points added. As before

this results in a shifted complex since the disjoint vertices simply contribute by starring in

the top dimension.

Theorem 1. Rank n shifted matroid independent set complexes are exactly those complexes

of the form DD · · ·DSS · · ·S|SS · · ·S| · · · |SS · · ·S (with exactly n − 2 vertical bars).

4. Principal Order Ideals

Next we characterize shifted matroids within the class of general shifted complexes. Recall

that shifted complexes can be defined as order ideals in the shifted partial ordering.

Theorem 2. An order ideal in the shifted partial ordering corresponds to a shifted matroid

iff it is a principal order ideal.

Proof. Suppose we have a principal order ideal with top element (x1, x2, . . . , xn). Then we

claim the corresponding shifted complex has the form:

DD . . .D
︸ ︷︷ ︸

xn−xn−1

SS . . . S
︸ ︷︷ ︸

xn−1−xn−2

| . . . |SS . . . S
︸ ︷︷ ︸

x2−x1

|SS . . . S
︸ ︷︷ ︸

x1

.

The faces of the shifted complex will be all those strings coordinate-wise smaller than

(x1, x2, . . . , xn) . Hence all vertices with labels between xn−1 and xn cannot appear in the

same face since they all have label smaller than only one vertex in the defining face. Let

us form a complex by initially adding xn − xn−1 disjoint vertices. This takes care of all the

non-faces of size two. Next we consider the non-faces of size three. These will be the triples

of vertices with smallest label larger than xn−2. In order to not form these two dimensional

faces, we star on all vertices between xn−2 and xn−1 in dimension one. Similarly, to avoid

the three dimensional non-faces we star the appropriate vertices in dimension two. Again

these will be those vertices with label between xn−3 and xn−4. Continuing in this manner

will produce the complex claimed above.
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In the other direction, suppose we have an order ideal with at least two top elements,

X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) with X lexicographically smaller than Y . Also

let us say we have an incomparability of the form xi < yi and xj > yj with i the smallest

index such that xi < yi. Thus i is also the smallest index such that xi 6= yi. Consider

the induced subcomplex on all the xs and ys except xi. In this subcomplex, (y1, y2, . . . , yn)

forms a face of size n and (x1, . . . x̂i, . . . , xn) forms a face of size n − 1. This subcomplex

must be pure for us to have a matroid. Hence (x1, . . . x̂i, . . . , xn) must be contained in a

face of size n, so it must form a face with yl for some l. For l < i, yl = xl. Therefore

l must be greater than or equal to i and yl must be strictly greater than xi. We know

there exists some such y not equal to any x because (x1, x2, . . . , xn) and (y1, y2, . . . , yn)

were taken to be incomparable elements in the shifted partial ordering. But then the

face {(x1, . . . x̂i, . . . , xn) ∪ yl} is greater than (x1, x2, . . . , xn) in the shifted partial order

contradicting the maximality of (x1, x2, . . . , xn).

�

In [1], a class of matroids SM is defined and shown to be a class of shifted matroids. In

our language, this class is precisely the set of principal order ideals in the shifted partial

ordering. Therefore, the previous theorem shows that not only are the elements of SM

shifted matroids, but they are all the shifted matroids.

Corollary 1. There are
(
n
k

)
shifted matroids of rank k on n vertices.

5. Minors, Duality, and Shifting

Theorem 3. The class of shifted matroids is closed under taking minors.

Proof. Let M be a shifted matroid on the base set E and e be any element of E. First we

consider M\e, whose independent sets are the independent sets of M which do not involve

e. In terms of the complex of independent sets, this is equivalent to the geometric deletion

of e from the complex. Since the class of shifted complexes is closed under deletion, we have

that M\e is a shifted matroid.

Next we look at M/e. First we note that M\(E − e) is the matroid on just one element,

e. Therefore, the independent sets of M/e are those subsets which form an independent

set with e. Again, in terms of the complex of independent sets, this is simply the link of

e and the link of any vertex in a shifted complex is shifted. Therefore M/e is a shifted

matroid. �

Theorem 4. The class of shifted matroids is closed under duality.

Proof. Consider any shifted matroid as a principal order ideal in the shifted partial ordering

with unique top element (x1, x2, . . . , xk). The bases of the matroid are {(y1, y2, . . . , yk) | yi ≤

xi and yi 6= 0 ∀i}. Clearly, if we have two bases B1 and B2 such that B1 is less than B2

in the shifted partial ordering, then E − B1 is greater than E − B2 in the shifted partial
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ordering. Taking the complement of all bases gives a principal filter in the shifted partial

ordering. This is equivalent to a principal order ideal since we may simply reverse the

labeling. Therefore the dual of a shifted matroid is a shifted matroid. �

We remark here that algebraically shifting a complex which is a matroid does not neces-

sarily result in a matroid. See [6] for a survey on algebraic shifting. Consider the simplicial

complex which is the boundary complex of the octahedron. It is not hard to check that this

is a matroid. For both symmetric and exterior shifting, the result is the shifted complex

with top faces 136 and 234 and hence not a matroid. Also, we can combinatorial shift the

boundary complex of an octahedron to the shifted complex generated by 145 and 136.

We can observe that matroids are not preserved under any shifting procedure which

preserves the f -vector. A shifted matroid is always a principal order ideal in the shifted

partial ordering, and so we are limited by the size of such ideals. For the octahedron, we

have eight two dimensional faces on six vertices. But there are no principal order ideals in

the shifted partial ordering on six vertices with eight two dimensional elements.

6. Broken Circuit Complex

Next we investigate shifted broken circuit complexes. Given a matroid M on the base

set E and a linear ordering of the base set, a broken circuit of M is a subset C −{xi} where

C is a circuit and xi is the smallest element of C with respect to the linear ordering.

The broken circuit complex BC(M) of a matroid M on a base set E is defined by:

BC(M) = {S ⊆ M : S contains no broken circuit}

Now let us consider the case where we have a rank n shifted matroid M with a shifted

labeling of the vertices.

Theorem 5. Broken circuit complexes of shifted matroids are shifted and inherit a shifted

labeling.

Proof. Let x = (x1, . . . , xn) be a face of the matroid complex and not be a face of BC(M).

We need any greater face, y = (y1, . . . , yn), to also not be a face of BC(M). x must contain

a broken circuit, say (xi1 , . . . , xid) of some circuit (a, xi1 , . . . , xid). If (yi1 , . . . , yid) is not a

face of the matroid complex then we are done. Otherwise we need it to be a broken circuit.

Now since (xi1 , . . . , xid) is a circuit, it had to be a non-face of the complex of independent

sets. But then (yi1 , . . . yid) must also be a non-face or the matroid would not be shifted.

Hence (yi1 , . . . yid) is also a broken circuit, and BC(M) is shifted under the initial shifted

labeling of M .

�
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