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Abstract. In this paper, we consider a variation on Cheeger numbers
related to the coboundary expanders recently defined by Dotterer and
Kahle. A Cheeger-type inequality is proved, which is similar to a result
on graphs due to Fan Chung. This inequality is then used to study the
relationship between coboundary expanders on simplicial complexes and
their corresponding eigenvalues, complementing and extending results
found by Gundert and Wagner. In particular, we find these coboundary
expanders do not satisfy natural Buser or Cheeger inequalities.

1. Introduction

1.1. Background. The Cheeger inequality [7, 6] is a classic result that
relates the isoperimetric constant of a manifold (with or without boundary)
to the spectral gap of the Laplace-Beltrami operator. An analog of the
manifold result was also found to hold on graphs [3, 2, 25] and is a prominent
result in spectral graph theory. Given a graph G with vertex set V , the
Cheeger number is the following isoperimetric constant

h := min
∅(S(V

|δS|
min{|S|, |S|}

where δS is the set of edges connecting a vertex in S with a vertex in
S = V \S. The Cheeger inequality on the graph relates the Cheeger number
h to the algebraic connectivity λ [14] which is the the second eigenvalue of
the graph Laplacian. It states that

2h ≥ λ ≥ h2

2 maxv∈V dv

where dv is the number of edges connected to vertex v (also called the degree
of the vertex). For more background on the Cheeger inequality see [9].

A key motivation for studying the Cheeger inequality has been under-
standing expander graphs [17] – sparse graphs with strong connectivity prop-
erties. The edge expansion of a graph is the Cheeger number in these studies
and expanders are families of regular graphs G of increasing size with the
property h(G) > ε for some fixed ε > 0 and all G ∈ G. A generalization
of the Cheeger number to higher dimensions on simplicial complexes, based
on ideas in [21, 24], was defined and expansion properties studied in [11]
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via cochain complexes. In addition, it has long been known [13] that the
graph Laplacian generalizes to higher dimensions on simplicial complexes. In
particular one can generalize the notion of algebraic connectivity to higher
dimensions using the cochain complex and relate an eigenvalue of the k-
dimensional Laplacian to the k-dimensional Cheeger number. This raises
the question of whether the Cheeger inequality has a higher-dimensional
analog.

1.2. Main Results. In this paper we examine the combinatorial Laplacian
which is derived from a chain complex and a cochain complex. Precise
definitions of the object studied and the results are given in section 2. We
first state our negative result – for the cochain complex a natural Cheeger
inequality does not hold. For anm-dimensional simplicial complex we denote
λm−1 as the analog of the spectral gap for dimension m− 1 on the cochain
complex and we denote hm−1 as the (m−1)-dimensional coboundary Cheeger
number. In addition, let Sk be the set of k-dimensional simplexes and for
any s ∈ Sk let ds be the number of (k + 1)-simplexes incident to s. The
following result is an informal statement of Proposition 2.10 and implies
that there exists no Cheeger inequality of the following form for the cochain
complex. Specifically, there are no constants p1, p2, C such that either of the
inequalities

C(hm−1)p1 ≥ λm−1 or λm−1 ≥ C(hm−1)p2

maxs∈Sm−1 ds

hold in general for an m-dimensional simplicial complex X with m > 1. The
case of h0 and λ0 with p1 = 1 and p2 = 2 reduces to the Cheeger inequality
on the graph and the Cheeger inequality holds.

For the chain complex we obtain a positive result, there is a direct ana-
logue for the Cheeger inequality in certain well-behaved cases. Whereas the
cochain complex is defined using the coboundary map, the chain complex is
defined using the boundary map. Denote γm as the analog of the spectral
gap for dimension m on the chain complex and hm as the m-dimensional
Cheeger number defined using the boundary map. If the m-dimensional sim-
plicial complex X is an orientable pseudomanifold or satisfies certain more
general conditions, then

hm ≥ γm ≥
h2m

2(m+ 1)
.

This inequality can be considered a discrete analog of the Cheeger inequality
for manifolds with Dirichlet boundary condition [7, 6].

1.3. Related Work. A probabilistic argument was used by Gundert and
Wagner [16] to show on the cochain complex there exists infinitely many
simplicial complexes with hm−1 = 0 and λm−1 > c for some fixed constant
c > 0 – implying that one side of the Cheeger inequality cannot hold in
general. However, this construction requires the complexes to have torsion
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in their integral homology groups due to the way hm−1 and λm−1 relate
to cohomology. In this paper we show that even for torsion-free simplicial
complexes there exist counterexamples that rule out both sides of a Cheeger
inequality.

The analysis of the chain complex in our paper is related to a paper by
Fan Chung [8] which introduces a notion of a Cheeger number on graphs
with the analog of a Dirichlet boundary condition. We provide a detailed
comparison on Appendix A.

Finally, it should be mentioned that the authors in [27] prove a two-
sided Cheeger-type inequality for λm−1 using a modified higher-dimensional
Cheeger number. The modified Cheeger number used is nonzero only if
the simplicial complex has complete skeleton, and the Cheeger side of the
inequality includes an additive constant.

2. Main Results

2.1. Simplicial Complexes. Since the concept of a Cheeger inequality is
strongly associated to manifolds we focus in this paper on abstract simplicial
complexes that are analogous to well-behaved manifolds. In particular, we
will focus on simplicial complexes that have geometric realizations homeo-
morphic to a Euclidean ball Bm := {x ∈ Rm : ‖x‖2 ≤ 1}. We will call such
complexes simplicial m-balls

By a simplicial complex we always mean an abstract finite simplicial com-
plex. Simplicial complexes generalize the notion of a graph to higher dimen-
sions. Given a set of vertices V , any nonempty subset σ ⊆ V of the form
σ = {v0, v1, . . . , vk} is called a k-dimensional simplex, or k-simplex. A sim-
plicial complex X is a finite collection of simplexes of various dimensions
such that X is closed under inclusion, i.e., τ ⊆ σ and σ ∈ X implies τ ∈ X.

Given a simplicial complex X denote the set of k-simplexes of X as Sk :=
Sk(X). We call X a simplicial m-complex if Sm(X) 6= ∅ but Sm+1(X) = ∅.
Given two simplexes σ ∈ Sk and τ ∈ Sk+1 such that σ ⊂ τ , we call σ a face
of τ and τ a coface of σ. Two k-simplexes are lower adjacent if they share
a common face and are upper adjacent if they share a common coface.

Every simplicial complex X has associated with it a geometric realization
denoted |X|. The simplicial m-complex Σm consisting of a single m-simplex
and its subsets has geometric realization homeomorphic to Bm. Thus, Σm

is an example of a simplicial m-ball. A subdivision of a simplicial complex
X is a simplicial complex X ′ such that |X ′| = |X| and every simplex of
X ′ is, in the geometric realization, contained in a simplex of X. Thus, any
subdivision of Σm is also a simplicial m-ball.

There is another convenient set of criteria under which a simplicial com-
plex is a simplicial m-ball. A simplicial m-complex X is constructible if
either (1) X = Σm or (2) X can be decomposed into the union of two con-
structible simplicial m-subcomplexes X = X1 ∪X2 such that X1 ∩X2 is a
constructible simplicial (m−1)-complex. If every s ∈ Sm−1 has at most two
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Figure 1. An example of ∂(R) and δ(R).

cofaces then X is said to be non-branching. In this case, every s ∈ Sm−1
with exactly one coface is called a boundary face of X. It is known [5]
that a the geometric realization of a non-branching constructible simplicial
m-complex X is homeomorphic to Bm if X has at least one boundary face
(otherwise it is homeomorphic to the sphere).

2.2. Chain and Cochain Complexes. Given a simplicial complex X
and any field F , we can define the chain and cochain complexes of X
over F . In this paper we consider the fields Z2 and R. Given a simplex
σ = {v0, v1, . . . , vk}, σ can be ordered as a set. An orientation, denoted by
[v0, v1, . . . , vk] is an equivalence class of all even permutations of the given
ordering. There are always two orientations for k > 0. The space of k-chains
Ck(F ) := Ck(X;F ) is the vector space of linear combinations of oriented
k-simplexes with coefficients in F , with the stipulation that the two orien-
tations of a simplex are negatives of each other in Ck(F ). The space of
k-cochains Ck(F ) := Ck(X;F ) is then defined to be the vector space dual
to Ck(F ). These spaces are isomorphic and we will make no distinction
between them. The boundary map ∂k(F ) : Ck(F )→ Ck−1(F ) is defined on
the basis elements [v0, . . . , vk] as

∂k[v0, . . . , vk] =

k∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk]

The coboundary map δk−1(F ) : Ck−1(F ) → Ck(F ) is then defined to be
the transpose of the boundary map. When there is no confusion, we will
denote the boundary and coboundary maps by ∂ and δ. It is easy to see that
∂∂ = δδ = 0, so that (Ck(F ), ∂k) and (Ck(F ), δk) form chain and cochain
complexes. See Figures 1 and 2 for examples of ∂ and δ on real and Z2

chains/cochains.
When F = Z2, positive and negative have no meaning and therefore

no distinction is made between different orientations. In particular, it is
possible to identify Ck(Z2) and Ck(Z2) with Sk as sets. Throughout this
paper, we will identify a k-chain/k-cochain φ over Z2 with the subset φ ⊂ Sk
of k-simplexes to which φ assigns the coefficient 1.
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Figure 2. An example of ∂(Z2) and δ(Z2).

The homology and cohomology vector spaces of X over F are

Hk(F ) := Hk(X;F ) =
ker ∂k

im ∂k+1
and Hk(F ) := Hk(X;F ) =

ker δk

im δk−1
.

It is known from the universal coefficient theorem that Hk(F ) is the vector
space dual to Hk(F ).

2.3. Laplacians and Eigenvalues. The k-th Laplacian of X is defined to
be

Lk := Lup
k + Ldown

k

where

Lup
k = ∂k+1(R)δk(R) and Ldown

k = δk−1(R)∂k(R).

By way of Rayleigh quotients, the smallest nontrivial eigenvalue of Lup
k and

Ldown
k are given by

λk = min
f∈Ck(R)
f⊥im δ

‖δf‖22
‖f‖22

= min
f∈Ck(R)
f /∈im δ

‖δf‖22
ming∈im δ‖f + g‖22

,

λk = min
f∈Ck(R)
f⊥im ∂

‖∂f‖22
‖f‖22

= min
f∈Ck(R)
f /∈im ∂

‖∂f‖22
ming∈im ∂‖f + g‖22

,

where ‖·‖2 denotes the Euclidean norm on both Ck(R) and Ck(R). It is
well known that the nonzero spectrum of Lk is the union of the nonzero
spectrum of Lup

k with the nonzero spectrum of Ldown
k . Thus, the smallest

nonzero eigenvalue of Lk is either λk or λk assuming one of them is nonzero.
In addition, the nonzero spectrum of Lup

k is the same as the nonzero spectrum

of Ldown
k+1 . Thus, λk = λk+1 whenever λk, λk+1 are both nonzero.

The relationship between eigenvalues and homology/cohomology is as fol-
lows:

λk = 0 λk = 0
m and m

Hk(R) 6= 0 Hk(R) 6= 0.

If we pass to the reduced cochain complex, λ0 becomes the algebraic con-

nectivity (or Fiedler number) of a graph [14] and λ0 = 0⇔ H̃0(R) 6= 0.
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2.4. Cheeger Numbers. Higher-dimensional Cheeger numbers were first
stated in [11] to capture a higher-dimensional notion of expanders. They
are defined via the coboundary map as follows:

Definition 2.1. Let ‖·‖ denote the Hamming norm on Ck(Z2). The k-th
(coboundary) Cheeger number of X is

hk := min
φ∈Ck(Z2)
φ/∈im δ

‖δφ‖
minψ∈im δ‖φ+ ψ‖

.

A similar definition can be given for the boundary map.

Definition 2.2. Let ‖·‖ also denote the Hamming norm on Ck(Z2). The
k-th boundary Cheeger number of X is

hk := min
φ∈Ck(Z2)
φ/∈im ∂

‖∂φ‖
minψ∈im ∂‖φ+ ψ‖

.

The relationship between Cheeger numbers and homology/cohomology is
as follows:

hk = 0 hk = 0
m and m

Hk(Z2) 6= 0 Hk(Z2) 6= 0 .

If we pass to the reduced cochain complex, h0 becomes the Cheeger number

of a graph [11] and h0 = 0⇔ H̃0(Z2) 6= 0.
Often, we speak of a cochain that attains the minimum in the definition

of the Cheeger number – in the graph case these are Cheeger cuts. We will

say that φ ∈ Ck(Z2) attains hk if hk = ‖δφ‖
‖φ‖ . The same terminology will be

used for hk.

2.5. Additional Notation and Preliminary Results. Here we collect
some interesting results concerning Cheeger numbers which will be needed
later in section 2.6. Lemma 2.3 says that h1 has a very simple interpretation
in terms of the diameter of the simplicial complex. Lemma 2.5 says that
hm−1 also has a very simple interpretation in terms of the radius.

We define the diameter of a simplicial m-complex X as follows. Given two
vertices v1, v2 ∈ S0, we define the distance between them to be the quantity

dist(v1, v2) := min{‖φ‖ : φ ∈ C1(Z2) and ∂φ = v1 + v2}

Any chain φ attaining the minimum is called a geodesic. Note that for any
geodesic φ, h1 ≤ 2

‖φ‖ . For our purposes, dist(v1, v2) = 0 if v1, v2 are not in

the same connected component. The diameter of X is then defined to be

diam(X) := max
v1,v2∈S0

dist(v1, v2).

As it turns out, h1 is strongly related to the diameter of a simplicial complex.
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Lemma 2.3. Given a simplicial m-complex X with m ≥ 1 and satisfying
H1(Z2) = 0, h1 is attained by a geodesic and hence

h1 =
2

diam(X)
.

Proof. Suppose that φ ∈ C1(Z2) attains h1. Clearly, ‖∂φ‖ must be even and
nonzero. What we will show is that we can assume ‖∂φ‖ = 2. Thinking of
φ as a graph (consisting of the edges in φ and their vertices), it is also clear
that every connected component φi of φ has ‖∂φi‖ even. For every pair of
vertices in ∂φi, there exists a geodesic in X with the given pair of vertices
as its boundary. Thus, there exist geodesics ψ1, . . . , ψq such that ∂ψj is a
distinct pair of vertices in ∂φ for all j and ∂(ψ1 + · · · + ψq) = ∂φ. Since φ
attains h1 and H1(Z2) = 0,

‖φ‖ = min
ψ∈im ∂

‖φ+ ψ‖ = min
∂ψ=∂φ

‖ψ‖

In other words, φ is a 1-chain of smallest norm with boundary ∂φ. Thus,
‖ψ1 + · · ·+ ψq‖ ≥ ‖φ‖. Now,

h1 =
‖∂φ‖
‖φ‖

≥ ‖∂(ψ1 + · · ·+ ψq)‖
‖ψ1 + · · ·+ ψq‖

≥ 2 + · · ·+ 2

‖ψ1‖+ · · ·+ ‖ψq‖

≥ min

{
2

‖ψ1‖
, . . . ,

2

‖ψq‖

}
≥ h1

and therefore h1 = min
{

2
‖ψ1‖ , . . . ,

2
‖ψq‖

}
. Here we are using the general in-

equality a1+a2+···+ak
b1+b2+···+bk ≥ mini

ai
bi

, valid for all a1, . . . , ak, b1, . . . , bk > 0. Hence,

h1 = 2
‖ψj‖ for some geodesic ψj . This completes the proof. �

While the diameter is defined in terms of 1-chains, we define the radius
in terms of (m − 1)-cochains as follows. Given a simplicial m-complex X,
we define the depth of an m-simplex σ to be

depth(σ) := min{‖φ‖ : φ ∈ Cm−1(Z2), δφ = σ}.
Any minimizing φ will be said to be a depth-attaining cochain for σ. Note
that for any such φ, hm−1 ≤ 1

‖φ‖ . All m-simplexes have a defined depth

when Hm(Z2) is trivial. In this case, we define the radius of X to be

rad(X) := max
σ∈Sm

depth(σ).

Depth-attaining cochains have a very predictable structure for non-branching
simplicial complexes, a fact which we will use later in proving Proposition
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2.10. Roughly speaking, Lemma 2.4 says that if φ is depth-attaining for σ,
then φ is a linear non-intersecting sequence of (m − 1)-simplexes starting
with a face of σ and ending with a boundary face. For the statement and
proof of this Lemma we define the star st(s) of a simplex s to be the set of
cofaces of s.

Lemma 2.4. Let X be a simplicial m-complex such that every s ∈ Sm−1
has at most two cofaces. Suppose that σ ∈ Sm has depth d and φ is a depth-
attaining cochain for σ. Then there is a sequence s1, s2, . . . , sd of distinct
(m− 1)-simplexes and a sequence σ = σ1, σ2, . . . , σd of distinct m-simplexes
satisfying

(1) φ =
∑d

i=1 si,
(2) st(si) = {σi, σi+1} for i < d,
(3) st(sd) = {σd}.

Proof. Assume φ =
∑d

i=1 si. Clearly, at least one of the si must have σ as
a coface, so WLOG we can assume s1 has σ = σ1 as a coface. If s1 is a
boundary face, we are done and d = 1. If not, then s1 has another coface
σ2. In this case, if there are no other si with σ2 as a coface then we arrive at
the contradiction that δφ contains σ2, i.e., δφ 6= σ. Thus, there is another
si with σ2 as a coface, which we can assume WLOG is s2.

We proceed by induction. Suppose that for k > 1 there is a sequence
σ1, σ2, . . . , σk of distinct m-simplexes such that δ(s1 + · · ·+ sk−1) = σ + σk
where st(si) = {σi, σi+1} for all i. Then we can find another si, i > k, which
we can assume WLOG is sk and which has σk as a coface. If no such si
exists then δφ 6= σ. If sk is a boundary face we are done and d = k. If sk
has σk+1 as a second coface and σk+1 = σi for some i < k then si + . . .+ sk
is a cocycle, but this means that δ(φ− si − · · · − sk) = σ so φ is not depth-
attaining. Otherwise, σ1, σ2, . . . , σk+1 is a sequence of distinct m-simplexes
such that δ(s1 + · · ·+sk) = σ+σk+1 where st(si) = {σi, σi+1} for all i. This
leaves us back where we started. By induction, we can continue this process
until k = d and sd is a boundary face. �

Lemma 2.5. Let X be a simplicial m-complex with Hm−1(Z2) = 0 and
Hm(Z2) = 0. Then hm−1 is attained by a depth-attaining cochain and hence

hm−1 =
1

rad(X)
.

Proof. Suppose ψ attains hm−1 and δψ is a sum of distinct m-simplexes
σ1, . . . , σq with depth-attaining cochains ψ1, . . . , ψq. Clearly ‖ψ‖ ≤ ‖ψ1‖ +
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· · ·+ ‖ψq‖, so

hm−1 =
q

‖ψ‖

≥ 1 + · · ·+ 1

‖ψ1‖+ · · ·+ ‖ψq‖

≥ min

{
1

‖ψ1‖
, . . . ,

1

‖ψq‖

}
≥ hm−1

and therefore hm−1 = min
{

1
‖ψ1‖ , . . . ,

1
‖ψq‖

}
. Here we are using the gen-

eral inequality a1+a2+···+ak
b1+b2+···+bk ≥ mini

ai
bi

, valid for all a1, . . . , ak, b1, . . . , bk > 0.

Hence, hm−1 = 1
‖ψj‖ for some depth-attainng cochain ψj . This completes

the proof. �

An interesting result which will not be used in this paper is a Cheeger-type
inequality for the special case X = Σm.

Lemma 2.6. Recall Σm is the simplicial complex induced by an m-simplex.
The following holds for all k.

(1) hk(Σm−1) ≥ m
k+2

(2) hk(Σ
m−1) ≥ m

m−k .

The reason this result is Cheeger-type is because all the Laplacian eigen-
values of all dimensions for Σm−1 are equal to m (this is easily seen from
the characterization of the Laplacian in [26]). Part (1) of this Lemma was
proved by Meshulam and Wallach [24] (who, even though they did not de-
fine the Cheeger number, still worked with its numerator and denominator
separately). Their proof can be easily modified to prove part (2) of the
Lemma.

2.6. Main Results. We now state the main results of this paper – there
exists a Cheeger-type inequality in the top dimension for the chain complex
but not for the cochain complex.

To state the results we need the following notion of orientational similarity.
Two oriented lower adjacent k-simplexes are dissimilarly oriented if they
induce the same orientation on the common face. In other words, if σ =
[v0, . . . , vk] and τ = [w0, . . . , wk] share the face {u0, . . . , uk−1}, then σ and τ
are dissimilarly oriented if ∂(R)σ and ∂(R)τ assign the same coefficient (+1
or −1) to the oriented simplex [u0, . . . , uk−1]. Otherwise, they are said to
be similarly oriented. If X is a simplicial m-complex and all its m-simplices
can be oriented similarly, then X is called orientable.

We first state the positive result – there is a Cheeger-type inequality for
the chain complex.

Theorem 2.7. Let X be a simplicial m-complex, m > 0.
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(1) Let φ ∈ Cm(Z2) minimize the quotient in

hm := min
φ∈Cm(Z2)
φ/∈im ∂

‖∂φ‖
minψ∈im ∂‖φ+ ψ‖

.

If all m-simplexes in φ can be similarly oriented, then hm ≥ λm.
(2) Assume that every (m−1)-dimensional simplex is incident to at most

two m-simplexes. Then

λm ≥
h2m

2(m+ 1)
.

The first statement is the analog of the Buser inequality for graphs. The
second statement is an analog of the Cheeger inequality for graphs, as well
as the Cheeger inequality for a manifold with Dirichlet boundary conditions.
The constraint that every (m− 1)-simplex has at most two cofaces enforces
the boundary condition. The hypotheses required for both inequalities are
always satisfied by orientable pseudomanifolds.

The hypotheses required by the Theorem cannot be removed, as proved
by the following two examples.

Example 2.8 (Real Projective Plane). Given a triangulation X of RP 2 (see
Figure 3) we know that H2(Z2) 6= 0 while H2(R) = 0, so that h2 = 0 6= λ2.
This is due to the nonorientability of RP 2. The chain φ ∈ C2(Z2) containing
every m-simplex has no boundary. However, the m-simplexes cannot all be
similarly oriented, so that there is no corresponding boundaryless chain in
C2(R). As a result, the hypothesis used in part (1) of the Theorem cannot
in general be removed.

Figure 3. The fundamental polygon of RP 2.

Example 2.9. Let Gk be a graph with 2k vertices of degree one, half of
which connect to one end of an edge and the other half connect to the other
end (see figure 4). Clearly, h0(Gk) = 1

k+1 while Lemma 2.3 implies h1 = 2
3 .

By the Buser inequality for graphs, λ0 ≤ 2
k+1 and since λ1 = λ0, this means

that λ1 → 0. As a result, we conclude that the hypothesis used in part (2)
of the Theorem cannot be removed.
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k vertices k vertices

Figure 4. The family of graphs Gk.

Proof of Theorem 2.7. Given the hypotheses, λm is a linear programming
relaxation of hm. Let g ∈ Cm(R) be the chain which assigns a 1 to every
simplex in φ (all of them similarly oriented) and a 0 to every other simplex.
Then

hm =
‖∂φ‖
‖φ‖

=
‖∂g‖22
‖g‖22

≥ min
f∈Cm(R)
f 6=0

‖∂f‖22
‖f‖22

= λm.

�

Proof of Theorem 2.7. Let f be an eigenvector of λm and for any oriented
m-simplex σ let f(σ) denote the coefficient assigned to σ by f . Orient the
m-simplexes of X so that all the values of f are non-negative and let Sor

m(X)
be the set of oriented m-simplices of X. We do not assume the m-simplexes
are similarly oriented. Number the m-simplexes from 1 to N := |Sor

m(X)| in
increasing order of f :

0 ≤ f(σ1) ≤ f(σ2) ≤ · · · ≤ f(σN ).

To aid us in the proof, we introduce a new simplicial m-complex X ′

which contains X as a subcomplex and which is defined as follows: for
every boundary face s = {v0, . . . , vm−1} in X create a new vertex v and a
new m-simplex σ = {v0, . . . , vm−1, v} which includes v and s. These new m-
simplexes will be called border facets. Give the border facets any orientation
and let F or

m (X ′) be the set of oriented border facets. We can extend f to be
a function on Sor

m(X) ∪ F or
m (X ′) by defining f(σ) = 0 for any σ ∈ F or

m (X ′).
Let M := |F or

m (X ′)| and number the oriented border facets in any order:

F or
m (X ′) = {σ0, σ−1, . . . , σ1−M}.

The intuition behind introducing the border facets comes from the anal-
ogy with the continuous Cheeger inequality for functions satisfying Dirichlet
boundary conditions (see [7]). In our case, the Dirichlet boundary condi-
tion is implicit in the fact that f is defined on m-simplexes (as opposed to
vertices). The border facets represent the boundary of the m-dimensional
part of X, and f is in fact zero on them. See Figure 5 for a depiction. In
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1 1 1 1

0

0

0

0

Figure 5. Making Dirichlet boundary conditions explicit.

this analogy, hm plays the part of the Cheeger number defined as in [7] for
manifolds with boundary.

When two simplexes σ, τ are lower adjacent we write σ ∼ τ . Now define

Ci = {{σj , σk} : 1−M ≤ j ≤ i < k ≤ N and σj ∼ σk}
and

h[f ] = min
0≤i≤N−1

|Ci|
N − i

.

Observe that h[f ] ≥ hm.
We now finish the theorem. The following summations are taken over all

oriented m-simplexes in Sor
m(X) ∪ F or

m (X ′).

λm =

∑
σ∼τ (f(σ)± f(τ))2∑

σ f(σ)2
,(1)

=

∑
σ∼τ (f(σ)± f(τ))2∑

σ f(σ)2
·
∑

σ∼τ (f(σ)∓ f(τ))2∑
σ∼τ (f(σ)∓ f(τ))2

,

≥
(∑

σ∼τ |f(σ)2 − f(τ)2|
)2

(
∑

σ f(σ)2) · (
∑

σ∼τ (f(σ)∓ f(t2))2)
,(3)

≥
(∑

σ∼τ |f(σ)2 − f(τ)2|
)2

(
∑

σ f(σ)2) · (2
∑

σ∼τ f(σ)2 + f(τ)2)
,

=

(∑
σ∼τ |f(σ)2 − f(τ)2|

)2
(
∑

σ f(σ)2) · 2(m+ 1) · (
∑

σ f(σ)2)
,

=

(∑N−1
i=0 (f(σi+1)

2 − f(σi)
2)|Ci|

)2
2(m+ 1) · (

∑
σ f(σ)2)2

,(6)

≥

(∑N−1
i=0 (f(σi+1)

2 − f(σi)
2)h[f ](N − i)

)2
2(m+ 1) · (

∑
σ f(σ)2)2

,

=
h[f ]2

2(m+ 1)
·
(∑

σ f(σ)2
)2

(
∑

σ f(σ)2)2
,

≥ h2m
2(m+ 1)

.

Step (1) follows from the Rayleigh quotient characterization of λm and step
(3) follows from the Cauchy-Schwarz inequality. We prove the statement for
step (6) below.
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We want to show∑
σ∼τ
|f(σ)2 − f(τ)2| =

N−1∑
i=0

(f(σi+1)
2 − f(σi)

2)|Ci|.

This can be seen by counting the number of times each f(σi)
2 appears in

each sum. In the left hand sum, each f(σi)
2 appears a number of times

equal to

∆i := |{{σj , σi} : j < i and σj ∼ σi}| − |{{σi, σk} : i < k and σi ∼ σk}| .
On the other hand, each f(σi)

2 appears |Ci−1|− |Ci| times in the right hand
sum. To see that these are the same, note that for each pair {σj , σk} in
Ci−1, either k = i or else {σj , σk} is in Ci as well, meaning it is canceled
in the difference. Similarly, for each pair {σj , σk} in Ci, either j = i or else
{σj , σk} is in Ci−1 as well, again meaning it is canceled. Thus

|Ci−1| − |Ci| = ∆i.

This completes the proof. �

We now state the negative result – the analogous Cheeger-type inequality
for the cochain complex does not hold.

Proposition 2.10. For every m > 1, there exist families of simplicial m-
balls Xk and Yk such that

(1) for Xk, λ
m−1(Xk) ≥ (m−1)2

2(m+1) for all k but hm−1(Xk)→ 0 as k →∞.

(2) for Yk, λ
m−1(Yk) ≤ 1

mk−1 for k > 1 but hm−1(Yk) ≥ 1
k for all k.

As mentioned in the introduction, it has already been shown in [16] that
there exist infinite families of simplicial complexes for which hm−1 = 0 but
λm−1 is bounded away from 0. Such a construction relies on the presence
of torsion in the integral homology groups. Indeed, any simplicial complex
with torsion can be used to show that the inequality (hk)p ≥ Cλk need
not hold in general for any p,C > 0, and k > 0. A good example is RP2

which has H1(Z2) 6= 0 and H2(Z2) 6= 0 but H1(R) = 0 and H2(R) = 0.
By contrast, the example presented here is a family of orientable simplicial
complexes, proving that the failure of the Cheeger inequality to hold is not
simply the result of torsion.

The fact that both families Xk and Yk are simplicial m-balls helps show
the degree to which the Cheeger inequality fails to hold even for ‘nice’ sim-
plicial complexes.

The proof of Proposition 2.10 puts together much of what appears earlier
in this paper. To show that Xk is a simplicial m-ball we will need to prove
that it is constructible and non-branching. The Yk will be defined by subdi-
viding Σm, implying that it too is a simplicial m-ball. To compute the values
of hm−1 for Xk and Yk we make use of Lemmas 2.4 and 2.5. Computing hm
will involve simple counting. By Theorem 2.7 and the fact that λm = λm−1,
we can use our estimate of hm to estimate λm−1, finishing the proof.
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X1 X2 X3 X4

Figure 6. The first few iterations of Xk in dimension 2.
The 2-simplexes have been shaded according to their depth.

Now to begin the proof. We define the family Xk recursively. To begin
with, we let X1 be Σm, the simplicial complex induced by a single m-simplex.
Note that hm(X1) = m + 1 and hm−1(X1) = 1. Then, given Xk, we define
Xk+1 by gluing m-simplexes on to Xk as follows: for each boundary face
s = {v0, . . . , vm−1} in Xk we create a new vertex v and a new m-simplex
σ = {v0, . . . , vm−1, v} which includes v and s. A picture of the first few
iterations of Xk for the case m = 2 can be seen in Figure 6.

Clearly, X1 is a simplicial m-ball. The following two lemmas prove that
indeed every Xk is a simplicial m-ball.

Lemma 2.11. Xk is constructible for all k.

Proof. The proof is by induction. We know X1 is constructible. Assuming
that Xk is constructible, we must prove that Xk+1 is constructible. This
reduces to proving that gluing a single m-simplex to Xk along a boundary
face preserves constructibility. LetX ′k be the result of taking a boundary face
s = {v0, . . . , vm−1} in Xk and adding a new vertex v and a new m-simplex
σ = {v0, . . . , vm−1, v} which includes v and s. Then X ′k can be decomposed
as the union of Xk and the simplicial subcomplex T = Σm consisting of σ
and its subsets, both of which are constructible m-complexes. Furthermore,
the intersection of Xk and T is Σm−1, which is constructible. Therefore, X ′k
is constructible by definition. �

Lemma 2.12. Xk is non-branching for all k.

Proof. The proof is again by induction. We know that X1 is non-branching.
Assume this is true for Xk as well. By construction, s ∈ Sm−1(Xk) has
another coface in Sm(Xk+1) if and only if s has only one coface in Sm(Xk).
The new (m − 1)-simplexes are the boundary faces of Xk+1 and thus have
exactly one coface. Thus, the total number of cofaces of every (m − 1)-
simplex in Xk+1 is either one or two. �

As mentioned in the introduction, constructible non-branching simplicial
m-complexes are simplicial m-balls. Thus, every Xk is a simplicial m-ball.
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To prove part (1) of Proposition 2.10, we need to keep track of how the
Cheeger numbers hm−1(Xk) and hm(Xk) change with k. This is accom-
plished in the following two lemmas.

Lemma 2.13. hm−1(Xk) = 1
k for all k.

Proof. By Lemma 2.5, hm−1(Xk) = 1
rad(Xk)

. For k = 1, rad(X1) = 1. Now

suppose that rad(Xk) = k. We will prove that in passing from Xk to Xk+1,
all m-simplexes originally in Xk have their depth increased by exactly 1 (we
already know the new m-simplexes in Xk+1 have depth 1).

If τ ∈ Sm(Xk) has depth d and φ is a depth-attaining cochain for τ in
Xk, then φ is a sum of a sequence {si}di=1 of (m − 1)-simplexes satisfying
the conditions in Lemma 2.4. All of those conditions are preserved in going
from Xk to Xk+1, except that sd is no longer a boundary face. Instead,
if sd = {v0, . . . , vm−1} then a new vertex v and a new m-simplex σ =
{v0, . . . , vm−1, v} are created which prevent sd from being a boundary face
and add σ to the coboundary of φ. However, if we add any of the other faces
of σ to φ (which are all boundary faces), we obtain a new cochain φ′ with
δφ′ = τ and ‖φ′‖ = d+ 1. Thus, the depth of τ in Xk+1 is at most d+ 1.

Conversely, if τ has depth d′ in Xk+1 and ψ =
∑d′

i=1 ti is a depth-attaining

cochain for τ with {ti}d
′
i=1 satisfying the conditions in Lemma 2.4, then

ψ′ =
∑d′−1

i=1 ti is a cochain in Xk with δψ′ = τ , so that the depth of σ is at
most d′− 1. Thus, if τ has depth d in Xk then its depth in Xk+1 must be at
least d+1. Combined with the above result we conclude that all m-simplexes
originally in Xk have their depth increased by exactly 1 in Xk+1. �

Lemma 2.14. hm(Xk) ≥ m− 1 for all k.

Proof. We know that hm(X1) = m + 1 ≥ m − 1. Now suppose hm(Xk) ≥
m− 1. Any chain φ ∈ Cm(Z2;Xk+1) attaining hm can be decomposed into
a chain ψ ∈ Cm(Z2;Xk) plus a chain ψ′ which is a sum of depth 1 simplexes
in Xk+1. Then we can write ‖∂φ‖ = ‖∂ψ‖ + ‖∂ψ′‖ − 2x where x is the
number of (m− 1)-simplexes shared by ∂ψ and ∂ψ′. Since m of the m+ 1
faces of any m-simplex in ψ′ are boundary faces, x ≤ ‖ψ′‖. Also, it is clear
that ‖∂ψ′‖ = (m+ 1)‖ψ′‖. Thus,

‖∂φ‖
‖φ‖

=
‖∂ψ‖+ (m+ 1)‖ψ′‖ − 2x

‖ψ‖+ ‖ψ′‖

≥ ‖∂ψ‖+ (m− 1)‖ψ′‖
‖ψ‖+ ‖ψ′‖

≥ min

{
‖∂ψ‖
‖ψ‖

,m− 1

}
≥ m− 1

(In fact, with some effort it can be seen that hm = (m+1)(m−1)
(m+1)−2m−k+1 .) �
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Y1 Y2 Y3

Figure 7. The first few iterations of Yk in dimension 2. The
2-simplexes have been shaded according to their depth.

By Theorem 2.7, λm−1(Xk) = λm(Xk) ≥ (m−1)2
2(m+1) . This completes the

proof of part (1) of Proposition 2.10.
In order to define the family Yk we need to make use of the notion of

stellar subdivision, which can be traced back to at least [1].

Definition 2.15 (Stellar Subdivision). Let Y be a simplicial m-complex
and let σ = {v0, . . . , vm} ∈ Sm(Y ). The stellar subdivision of Y along σ,
denoted by sdσ Y , is the simplicial m-complex obtained from Y by creating
a new vertex w and replacing σ with the m-simplexes

τi = {v0, . . . , vi−1, w, vi+1, . . . , vm}

where i = 0, . . . ,m. For notational purposes, we denote the j-th face of τi
by ti,j := τi \ {vj} for i 6= j, and ti,i := τi \ {w}. If σ1, . . . , σn ∈ Sm(Y ), then
we define the stellar subdivision of Y along the σi to be

sdσ1,...,σn Y := sdσ1 sdσ2 · · · sdσn Y

We now define the Yk recursively. Let Σm be the simplicial complex in-
duced by a single m-simplex σ and let Y1 := sdσ Σm. Label the m-simplexes
of Y1 as σ0, . . . , σm and call their common vertex (the one created by stellar
subdivision) the central vertex v. Now, given a Yk containing the central
vertex v, we call all m-simplexes containing v the inner m-simplexes of Yk
and label them as σ0, . . . , σn. All non-inner m-simplexes will be referred to
as outer m-simplexes. We then define Yk+1 := sdσ0,...,σn Yk. Note that v
and all outer m-simplexes (and the simplexes they contain) are preserved
unchanged in going from Yk to Yk+1 while all of the inner m-simplexes are
subdivided. Furthermore, it is clear that all the Yk are subdivisions of Σm

and are thus simplicial m-balls. A picture of the first few iterations of Yk
for m = 2 can be seen in Figure 7.
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To prove part (2) of Proposition 2.10, we need to keep track of how the
Cheeger numbers hm−1(Yk) and hm(Yk) change with k. This is accomplished
in the following two lemmas.

Lemma 2.16. hm−1(Yk) ≥ 1
k for all k.

Proof. By Lemma 2.5, we can prove this by keeping track of the depths of
all the m-simplexes of Yk. For Y1, all the m-simplexes σi contain a boundary
face (using the notation of Definition 2.15 with σi = τi, the boundary face
of σi is ti,i). Thus, every σi has depth 1 and by Lemma 2.5, hm−1(Y1) = 1.
Note that the cochain φ which is depth-attaining for some σi does not include
any (m− 1)-simplex which contains v.

Now suppose for induction that every outer m-simplex σ of Yk has depth
≤ k and a depth-attaining cochain φ ∈ Cm−1(Z2) such that φ does not
contain any face of any inner m-simplex. Then in Yk+1, φ remains unaltered,
proving that σ still has depth ≤ k in Yk+1.

Similarly, suppose that every inner m-simplex σ of Yk has depth ≤ k via
a depth-attaining cochain φ which does not contain any (m − 1)-simplex
containing v. Then in Yk+1, σ is removed and replaced by new m-simplices.
Using the notation of Definition 2.15, in Yk+1 the coboundary of φ becomes
δφ = τm+1, so that the depth of τm+1 is at most k. Furthermore, by adding
any face t(m+1),j to φ (j 6= m + 1) we obtain a cochain φ′ with δφ′ = τj ,
proving that the depth of τj is at most k+ 1. Since φ′ still does not contain
any (m − 1)-simplex which contains v, we are back where we started. The
statement now follows by induction. �

Lemma 2.17. hm(Yk) ≤ 1
mk−1 for all k > 1.

Proof. To prove this, we merely count the number of m-simplexes in Yk.
Note that in going from Yk to Yk+1 we replace (m+1)mk−1 innerm-simplexes
with (m+ 1)mk inner m-simplexes. Thus, Yk+1 has

(m+ 1)mk − (m+ 1)mk−1 = (m+ 1)(m− 1)mk−1

more m-simplexes than Yk. Since |Sm(Y1)| = m+1, this means that |Sm(Yk)|
is equal to

(m+ 1) + (m+ 1)(m− 1) + (m+ 1)(m− 1)m+ . . .

+ (m+ 1)(m− 1)mk−2 = (m+ 1)mk−1.

Since Yk has m+ 1 boundary faces, the chain φ containing all m-simplexes
of Yk gives the upper bound on hm(Yk):

hm(Yk) ≤
‖∂φ‖
‖φ‖

=
m+ 1

(m+ 1)mk−1 =
1

mk−1 .

�

By Theorem 2.7, λm−1(Yk) = λm(Yk) ≤ 1
mk−1 . This completes the proof

of Proposition 2.10.
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3. Discussion and Open Problems

The Cheeger inequality has been relevant to a variety of algorithmic and
analysis problems in computer science and mathematics including spectral
clustering [18, 23], manifold learning [4], and the analysis of random walks
[19].

There has been interest in extending ideas from graphs to abstract simpli-
cial complexes including spanning trees on simplicial complexes [12], proper-
ties of expanders on simplicial complexes [24, 11, 16], and higher-dimensional
constructions of conditional independence [22]. A motivation for our work
was to begin to develop intuition for the mathematical principles behind a
higher-dimensional notion of spectral clustering. This objective is far from
being realized.

A result of the universal coefficient theorem in algebraic topology is that
torsion will be an obstacle in relating higher-dimensional Cheeger numbers
with eigenvalues. The Cheeger inequality for graphs holds without any as-
sumptions since zeroth homology is never affected by torsion. For higher
dimensions either the inequality does not hold or we require assumptions
that remove torsion. The negative results for the Cheeger inequality in [16]
are for simplicial complexes with torsion. Torsion is also known to affect al-
gorithmic complexity. For example, the problem of finding minimal weight
cycles given a simplicial complex with weights is NP-hard if there is torsion
and is otherwise a linear program [10]. In Appendix A we use the real pro-
jective plane to illustrate some of the issues with torsion and why they do
not appear in the graph setting.

A local Cheeger number and algebraic connectivity for graphs with Dirich-
let like boundary conditions was defined in [8] and a Cheeger inequality
was proved. There is a close relation between Theorem 1 of [8] and Theo-
rem 2.7 in our paper. If Theorem 1 is adapted to an unnormalized setting
(see Appendix A) then for non-branching orientable simplicial m-complexes
Theorem 2.7 reduces to Theorem 1. However, Theorem 2.7 covers the more
general cases of non-orientable and branching simplicial m-complexes.

We close with a few open problems of possible interest.

(1) Intermediate values of k – Given a simplicial m-complex, what can
we say about the relationship between hk and λk or hk and λk for
1 < k < m − 1? Torsion again will need to be addressed but are
there some conditions under which some Cheeger-type inequalities
may hold?

(2) High-order eigenvalues – In [20] the authors introduce higher-order
(as opposed to higher-dimensional) Cheeger numbers on the graph
which correspond to higher-order eigenvalues of the graph Laplacian
and prove a general Cheeger inequality for them. A natural ques-
tion is how our results would extend to higher-orders. Indeed, by
analogy with the Rayleigh quotient characterization of higher order
eigenvalues, it would seem reasonable to define the kth dimensional,
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jth order coboundary Cheeger numbers to be

hk,j := min
φ∈Ck(Z2)
φ/∈Sj

‖δφ‖
minψ∈Sj

‖φ+ ψ‖

where

Sj = span(im δ ∪ {φ1, . . . , φj−1})
is the subspace of Ck(Z2) spanned by im δ and cochains φ1, . . . , φj−1
which attain hk,1, . . . , hk,j−1, respectively. The higher order bound-
ary Cheeger numbers hk,j could be defined similarly. One would
need to prove that this definition makes sense and then ask whether
they satisfy any inequalities with the corresponding eigenvalues.

(3) Cheeger inequalities on manifolds – Ultimately, the study of higher-
dimensional Cheeger numbers on simplicial complexes should (morally
speaking) be translated back to the manifold setting if possible. A
tentative definition for the k-dimensional coboundary Cheeger num-
ber of a manifold M might be

hk = inf
S

Volm−k−1(∂S \ ∂M)

inf∂T=∂S Volm−k(T )

where Volk denotes k-dimensional volume and the infimum is taken
over all k-codimensional submanifolds S of M . Similarly, the k-th
boundary Cheeger number of M might be

hk = inf
S

Volk−1(∂S)

inf∂T=∂S Volk(T )

where again Volk denotes k-dimensional volume and the infimum is
taken over all k-dimensional submanifolds S of M .
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Appendix A. Relation to Graphs with Dirichlet Boundaries
and the Real Projective Plane

In [8], Fan Chung defines a normalized local Dirichlet Cheeger number
and normalized local Dirichlet eigenvalue and proves an inequality between
them. If one translates Fan Chung’s result to the unnormalized case for
graphs with vertex degree upper bounded by m + 1, it closely resembles
Theorem 2.7.
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Translating Theorem 1 of [8] into the unnormalized setting, it reads as
follows. Given a graph G we can prescribe a certain set of vertices to be the
boundary vertices of the graph. Let S be the prescribed boundary vertex
set, and let

hS := hS(G) = min
‖δφ‖
‖φ‖

where the minimum is taken over all nonzero φ ∈ C0(Z2) such that φ does
not include any boundary vertex. Similarly, let

λS = min
‖δf‖22
‖f‖22

where the minimum is taken over all nonzero f ∈ C0(R) such that f(s) = 0
for all s ∈ S. We can also characterize λS as the smallest eigenvalue of LS0 ,
the submatrix of L0 consisting of the rows and columns of L0 not indexed
by vertices in S. In this case, LS0 is a map on C0

S(R), the subspace of C0(R)
spanned by the vertices not in S. Then if every vertex has degree upper
bounded by m+ 1

hS ≥ λS ≥
h2S

2(m+ 1)
.

To relate the above inequality to the simplicial complex setting, we note
that for every non-branching simplicial m-complex X, one can construct a
graph G (similar to the dual graph defined in [15]) as follows. Begin by
constructing the simplicial complex X ′ as in the proof of Theorem 2.7 and
let S be the set of border facets of X ′. Create a vertex in G for every m-
simplex in X ′. We will use S to denote both the border facets of X ′ and
the set of vertices in G which correspond the border facets. Connect two
vertices with an edge whenever the corresponding m-simplexes are lower
adjacent in X ′. Since X ′ is non-branching, the vertices of G have degree
upper bounded by m+ 1. Identifying C0

S(G;R) with Cm(X;R), we can ask
if Lm : Cm(X;R)→ Cm(X;R) and LS0 : C0

S(G;R)→ C0
S(G;R) are the same

map. They are the same if and only if X is orientable (this is easy to see
from the characterization of the Laplacian in [26]). In addition, hm(X) and
hS are equal regardless of orientability. Thus, for non-branching orientable
simplicial m-complexes, Theorem 2.7 reduces to the result proved by Fan
Chung, and the proofs are identical. The difference is that Theorem 2.7
covers the more general cases of non-orientable and branching simplicial
m-complexes, for which parts of the inequality may still hold.

The real projective plane provides a simple example of how orientation
plays a role in our analysis of the Cheeger inequality and why it doesn’t play
a role in [8]. In Figure 8, the first image shows the fundamental polygon
that defines RP 2, the second image shows a triangulation X of RP 2, and
the third image is the dual graph G of the triangulation (in the second
and third image, edges with similar color are identified). In this simple
example, there is no boundary (S = ∅). In the triangulation, if one considers
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Figure 8. The fundamental polygon of RP 2, a triangula-
tion, and the dual graph of the triangulation.

the 2-chain φ ∈ C2(Z2) which contains every 2-simplex, then ∂φ = 0 and
thus h2(X) = 0. However, if one considers the 2-chain f ∈ C2(X;R) that
assigns a 1 to every 2-simplex with the orientation shown in the figure, the
boundary of f is a 1-chain which assigns a 2 to every colored edge with the
orientation shown. In particular, ∂f 6= 0 and in fact λ2 6= 0 as a result
of the nonorientability of RP 2. However, the dual graph cannot see this
nonorientability, as the 0-chain f̃ ∈ C0

S(G;R) corresponding to f has empty
coboundary, meaning λS = 0. Thus, in this case the map L2 is not the same
as the map LS0 , and Theorem 1 of [8] still holds while part 1 of Theorem 2.7
fails.
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