TOPOLOGICAL DATA ANALYSIS

BARCODES

Ghrist , Barcodes: The persistent topology of data

Topaz, Ziegelmeier, and Halverson 2015: Topological
Data Analysis of Biological Aggregation Models
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Questions in data analysis:

* How to infer high
dimensional structure
from low dimensional
representations?

How to assemble

discrete points into

g I Obal structu reS? FIGURE 1. Determining the global structure of a noisy point cloud
is not difficult when the points are in E°, but for clouds in higher
dimensions, a planar projection is not always easy to decipher.




Themes in topological data analysis’ :

1. Replace a set of data points with a family of simplicial
complexes, indexed by a proximity parameter.
. View these topological complexes using the novel theory of

persistent homology.
. Encode the persistent homology of a data set as a
parameterized version of a Betti number (a barcode).

"Work of Carlsson, de Silva, Edelsbrunner, Harer, Zomorodian
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CLOUDS OF DATA

FIGURE 1. Determining the global structure of a noisy point cloud
is not difficult when the points are in E°, but for clouds in higher
dimensions, a planar projection is not always easy to decipher.

Point cloud data coming from physical objects in 3-d
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Cech
complex

CLOUDS TO COMPLEXES

FIGURE 2. A fixed set of points [upper left] can be completed to
a a Cech complex C, [lower left] or to a Rips complex R, [lower
right] based on a proximity parameter ¢ [upper right]. This Cech
complex has the homotopy type of the €/2 cover (S* v S' v 81,
while the Rips complex has a wholly different homotopy type (S*V

S2).

Rips
complex




CHOICE OF PARAMETER €2

FIGURE 3. A sequence of Rips complexes for a point cloud data
set representing an annulus. Upon increasing €, holes appear and
disappear. Which holes are real and which are noise?




USE PERSISTENT HOMOLOGY

. \
-

»
R R —— .

C R I e R R W R R W R R e e e e

FIGURE 4. |[bottom] An example of the barcodes for H.(R) in the
example of Figure 3. [top] The rank of Hi(R..) equals the number
of intervals in the barcode for Hi(R) intersecting the (dashed) line
€ = €.




APPLICATION (TOPAZ ET AL.):
BIOLOGICAL AGGREGATION MODELS

Use two math models of biological aggregation (bird

flocks, fish schools, etc.): Vicsek et al., D'Orsogna et al.

Generate point clouds in position-velocity space at

different times.

Analyze the topological structure of these point clouds

by calculating the first few Betti numbers.
Visualize of Betti numbers using contours plots.
Compare results to other measures/parameters used to

quantify global behavior of aggregations.




TDA AND PERSISTENT HOMOLOGY

FORMING A SIMPLICIAL COMPLEX
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Fig 1. Oriented k-simplices for k=0, 1, 2, 3. These k-simplices are the building blocks used to construct a simplicial complex from a point cloud of data.
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k-simplices

* 1-simplex (edge): 2 points are within € of each other.

» 2-simplex (triangle): 3 points are pairwise within € from each
other




EXAMPLE OF A VIETORIS-RIPS COMPLEX

Fig 2. Example of a Vietoris-Rips complex. The 18 points are 0-simplices. Two 0-simplices form a 1-simplex (an edge) if their &/2-neighborhoods (yellow
circles) intersect. Three vertices form a 2-simplex (a triangle) if they are pairwise connected by edges. Four vertices form a 3-simplex (a tetrahedron) if they
are pairwise connected by edges.
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HOMOLOGY

BOUNDARIES

For £ > 0, create an abstract vector space C} with basis consisting of the
set of k-simplices in S.. The elements of (. are called k-chains.

* k-chains: linear combinations of simplices.

* boundary of k-simplex: union of (k-1)-subsimplices.

For example,

O\ (vo,vi)) = il — o) and Oy (Vo Vi Vo)) = (V15 Vo] — Vs V| + [V, ).




SUBSPACES

k—cycles : Z, = ker(0,:C, — C,_,).

k—boundaries : B, :=im(d,,, : C,., — C,)

Note: a k-cycle is a k-chain with boundary O.

HOMOLOGOUS CLASSES

Two cycles are homologous (equivalent) if they differ by a

boundary.




HOMOLOGOUS CLASSES
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Fig 3. Example of homologous cycles. The blue 1-cycle and the red 1-cycle are homologous (equivalent),
because their difference is the boundary of a triangle, shown in green; see text for a detailed explanation.

Define k" homology as the set of homology classes:

Ho:={[z] |z €Z }.
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The kth Betti number is defined as the dimension:

b, = dim(H,) = dim(Z,) — dim(B,)




BETTI NUMBERS

Betti numbers are topological invariants measuring the number
of k-dimensional holes in an object:

* bo: number of connected components.
* bj: number of topological circles.

* by number of trapped volumes, etc.




MORE EXAMPLES

ot b bas ) (A DE0 49

Be o bihs cra b2t 0




For simplicial complexes, Betti numbers by are the number of
homologically distinct k-cycles after discarding k-boundaries.

Still have the dependence on ¢!

To resolve this, note thatfor €1 < ey < ... < epg

s, €S, C---CS,.  CS, .

.
e — M1 —

Persistent homology tracks topological features which persist
across a range of €.

How to visualize? See barcodes in Chad’s slides.




VISUALIZATION OF BETTI NUMBERS
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Fig 5. A random initial condition used to simulate the Vicsek model (9) andtopologica analysis of this initia state. (A) Randaom inkal positons (x, y)
and headings 8ol N = 300 padicies ina square of size [ = 25 with pedodic boundary condiions. The underying space inwhich the data ves is allvee-lons
T2 which has Beflinurbes b = (1,3, 3, 1,0,.. ). (B) Baxode lor Bels nunberb, (£, 0), showing lopological connecled camponents. The zoomed box shows
a single persisient bar, corresponding 1o he entire ensemtie of pariides. (C) Bacode lor Bellinumberb, (£, 0), showing lopological crdes. The 2oomed

box shows llhree persisient bars, represenling he livee drdes camprieing the heedorus. (D) Persistence plol, which disgiays he infosnaon in (B) and (C)
by encoding éach bars stading and ending value o £as apant in the Canesian plane. Red points show b, and biue points show b, . The 20amed box shows
the e points mpesenting the heee persisient lapobgical drdes of he random inikal condBonin (A).
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CROCKER

CONTOUR REALIZATION OF COMPUTED K-DIMENSIONAL
HOLE EVOLUTION IN THE RIPS COMPLEX
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A~ As Always...

" Pudding in the Mix! ’//l\‘
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VICSEK, SIM #1
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VICSEK, SIM #2
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VICSEK, SIM #3
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D'‘ORSOGNA MODEL

Attractive-repulsive interactions between particles
Produces many patterns including mills (rotating rings/swarms)




D’ORSOGNA
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CONCLUSIONS

Introduced CROCKER visualization where features
persisting over time and scale appear as large regions in a

contour plot.

Vicsek model: distinguished simulations where order
parameter did not.

D’'Orsogna model: recognize the presence of double mill.

Limitations: only first 2 Betti numbers with few exceptions.
Over time, no math guarantee that the same components
are consistent.




