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Abstract One of the key autoregulatory mechanisms that control blood flow in the
kidney is the myogenic response. Subject to increased pressure, the renal afferent
arteriole responds with an increase in muscle tone and a decrease in diameter. To
investigate the myogenic response of an afferent arteriole segment of the rat kid-
ney, we extend a mathematical model of an afferent arteriole cell. For each cell, we
include detailed Ca2+ signaling, transmembrane transport of major ions, the kinet-
ics of myosin light chain phosphorylation, as well as cellular contraction and wall
mechanics. To model an afferent arteriole segment, a number of cell models are
connected in series by gap junctions, which link the cytoplasm of neighboring cells.
Blood flow through the afferent arteriole is modeled using Poiseuille flow. Simula-
tion of an inflow pressure up-step leads to a decrease in the diameter for the proximal
part of the vessel (vasoconstriction) and to an increase in proximal vessel diameter
(vasodilation) for an inflow pressure down-step. Through its myogenic response,
the afferent arteriole segment model yields approximately stable single-nephron
glomerular filtration rate for a physiological range of inflow pressures (100–160
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mmHg), consistent with experimental observations. The present model can be in-
corporated as a key component into models of integrated renal hemodynamic regu-
lation.

1 Introduction

In addition to waste excretion, the kidney is responsible for regulating the balance
of water, electrolytes, and acid–base species. To accomplish these tasks, the kidney
filters a portion of its blood supply into its functional units, the nephrons. Nephrons
are elongated tubules surrounded by a layer of epithelial cells. As the filtrate flows
through the nephron, its fluid and solutes are selectively reabsorbed or secreted,
depending on the animal’s physiological state. Consequently, the composition of
the tubular fluid changes significantly along the nephron, until it eventually emerges
as urine.

For the kidney to properly perform its functions, the rate of filtration into the
nephron must be maintained within a narrow range. Thus, blood flow in the kidney
is controlled by autoregulatory mechanisms. One of the key autoregulatory mecha-
nisms is the tubuloglomerular feedback system, a negative feedback loop that seeks
to balance the filtered load of sodium with the reabsorptive capacity of the nephron
(Eaton and Pooler [4], Schnermann and Briggs [14]). That goal is accomplished
by sensing alterations in tubular fluid chloride concentration at a certain location
(alongside the macula densa cells) and then adjusting the muscle tension of the af-
ferent arteriole, and thus renal blood flow and filtration rate, appropriately.

Another key autoregulatory mechanism is the myogenic response, which is an
intrinsic property of the afferent arteriole. This mechanism induces a compensatory
vasoconstriction of the afferent arteriole when the vessel is presented with an in-
crease in transmural pressure.

The afferent arteriole thus plays a critical role in renal autoregulation. Edwards
and Layton [5] previously developed a very detailed mathematical model of Ca2+

signaling within an afferent arteriole smooth muscle cell of the rat kidney. The
model represents the transmembrane transport of major ions, intracellular Ca2+ dy-
namics, the kinetics of myosin light chain phosphorylation, and the mechanical be-
havior of the cell. The goal of the present study is to develop a multi-cell model of
the afferent arteriole by connecting a series of afferent arteriole smooth muscle cells
via gap junction coupling, and to use the model to study the myogenic response of
the vessel. The present afferent arteriole model is intended to be employed as an
essential component in models of integrated renal hemodynamic regulation.
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Fig. 1 Representation of a single afferent arteriole smooth muscle cell. The contractile force of the
cell depends on the fraction of myosin light chains (MLC) that are phosphorylated. An increase
of luminal pressure results in an influx of cations into the cytosol via pressure-activated channels.
The ensuing depolarization leads to an increase in cytosolic Ca2+ levels, which then enhances the
formation of the MLCK.CaM.Ca4 complex (the active form of myosin light chain kinase, MLCK).
Not shown in the diagram are the background currents and the inward- and delayed-rectifier K+

channels. MLCP: myosin light chain phosphatase; CaM: calmodulin; PMCA: plasma membrane
Ca2+ pump; NCX: Na+/Ca2+ exchanger; SERCA: sarco/endoplasmic Ca2+ pump; RyR: ryan-
odine receptor; IP3R: inositol triphosphate (IP3) receptor.

2 Mathematical Model

In this section, we summarize the model of a single afferent arteriole smooth muscle
cell of the rat kidney, previously developed by Edwards and Layton [5], and then
extend this model to a segment of multiple smooth muscle cells that are connected
in series via gap junctions.

2.1 Single Cell Model

The main signaling pathways in a single afferent arteriole smooth muscle cell that
were considered in Edwards and Layton [5] are represented in Figure 1.

Considering the K+, Na+, Cl−, and Ca2+ channels, the net sum of the currents
flowing across the plasma membrane is

Inet = IK,b + IK,ir + IK,v + IK,Ca + INaK + INa,b + INa,Pres

+ INCX + ICl,b + ICl,Ca + ICa,b + ICa,Pres + IPMCA + ICa,L, (1)

and the transmembrane potential Vm is described by the differential equation
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Table 1 Electrochemical parameters of the cell (overall)

Parameter Value Unit Definition
Cm 5.5×10−6 µF Plasma membrane capacitance
[K]out 5.4 mM Extracellular K+ concentration
[Na]out 140 mM Extracellular Na+ concentration
[Cl]out 120 mM Extracellular Cl− concentration
[Ca]out 2 mM Extracellular Ca2+ concentration
F 96,487 C/mol Faraday constant
R 8.341 J·mol−1·K−1 Ideal gas constant
T 298 K Temperature
volcyt 1 pl Volume of cytosol
volcyt,Ca 0.7 pl Volume of cytosol accessible to Ca2+

volSR 0.14 pl Volume of sarcoplasmic reticulum
Ggap/Cm 950 s−1 Ratio of gap junction coefficient-to-membrane

capacitance

dVm

dt
=− Inet

Cm
, (2)

where Cm is the membrane capacitance. Parameter values and definitions are given
in Table 1.

The pressure-activated ion channels are assumed to predominately carry Na+

and be somewhat permeable to Ca2+ but not to other ions. The currents across these
channels are

INa,Pres = GNa,Pres(Vm−ENa), (3a)
ICa,Pres = GCa,Pres(Vm−ECa), (3b)

where the conductances GNa,Pres and GCa,Pres depend on the luminal pressure P as

Gi,Pres = G0
i,Pres

[
1+1.75

(
P
P1
−1
)(

1+
|P−P2|

P2

)]
, (4)

for i = Na+, Ca2+, with P1 = 100 mmHg and P2 = 60 mmHg.
The remaining equations describing transmembrane ionic transport (including

ion and charge conservation equations, background currents, and K+, Na+, Cl−,
and Ca2+ transport pathways), intracellular Ca2+ dynamics (including Ca2+ buffers
such as calmodulin), the kinetics of myosin light chain (MLC) phosphorylation, and
vessel mechanics for the single cell model are described in the Appendix.

2.2 Multi-Cell Model

To extend the afferent arteriole smooth muscle single cell model of Edwards and
Layton [5] to an afferent arteriole segment containing multiple smooth muscle cells,
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Fig. 2 Representation of a segment of multiple afferent arteriole smooth muscle cells in series.
Each cell follows the dynamics of the single cell model (as in Figure 1), and the cells are connected
to their immediate neighbors via gap junctions. Blood flow through the afferent arteriole lumen is
described by Poiseuille flow (6).

we assume that each cell follows the dynamics of the single cell model as described
in the previous section and the Appendix, and that all the cells are connected in se-
ries via gap junctions. Gap junctions directly connect the cytoplasm of neighboring
cells and allow ions to pass through them, thus coupling the cells electrically. The
flow of ions carrying an electric charge causes an almost instantaneous diffusion of
electrical disturbance to a neighboring cell.

Hence, we modify equation (2) for the transmembrane potential of a single cell
to a segment of cells (see Figure 2) where the electric charge of a given cell j may
diffuse between its nearest neighbors j+1 and j−1 such that

dV j
m

dt
=− Inet

Cm
−

Ggap

Cm

(
−V j+1

m +2V j
m−V j−1

m
)
, j = 2, . . . ,Ncell−1, (5a)

dV j
m

dt
= 0, j = 1,Ncell, (5b)

where Ncell is the total number of cells and Ggap is the gap junction coefficient, which
denotes the strength of the coupling; we assume that Ggap/Cm = 950 s−1 (Sgouralis
and Layton [15]). Per our convention, j = 1 is the first upstream cell and j = Ncell
is the last downstream cell.

As blood flows through the segment of smooth muscle cells, the inflow and out-
flow pressures vary from cell to cell. The luminal blood flow is assumed to be at a
quasi-steady state and is therefore described by Poiseuille flow

dP
dx

=−8µQ
πR4 , (6)

where P is the hydrostatic pressure, µ is the dynamic viscosity of blood, Q is the
volumetric flow rate, and R is the luminal radius calculated from the diameter equa-
tion (43).

Once the radius R is determined, the hydrostatic pressure P for each cell is up-
dated. This, in turn, affects the pressure-activated ion channel conductances GNa,Pres
and GCa,Pres (equation (4)), which are modified as
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Gi,Pres = max
{

0, 20+0.35(P− P̄0)

(
1+

max{0, P−P1}
P1

)}
, (7)

for i = Na+, Ca2+. In the above equation, the conductance is expressed in pS, P1 =
60 mmHg, and P̄0 is a reference pressure that decreases approximately linearly from
100 mmHg to 91.45 mmHg along the model afferent arteriole.

2.3 Numerical Method

To numerically solve the multi-cell model, we implement fractional splitting: the
single cell model is solved for each cell separately in the first stage, and the diffusion
of electric charge between all cells is taken into account in the second stage.

Letting R represent the nonlinear reaction part of equation (5a) (the first term)
and f i

j be the solution to the 51 ordinary differential equations (solved with ode15s
in MATLAB) of the single cell model for cell j = 1, . . . ,Ncell at time step i with
fi = ( f i

1, f i
2, . . . , f i

Ncell
), the first step in the splitting is

f∗− fi

∆ t
= R(f∗), (8)

where f∗ = ( f ∗1 , f ∗2 , . . . , f ∗Ncell
) is the predicted solution that will be corrected by the

second step.
Let f̂ ∗j be the portion of the solution f ∗j that represents the transmembrane po-

tential Vm for cell j with f̂∗ = ( f̂ ∗1 , f̂ ∗2 , . . . , f̂ ∗Ncell
). The linear diffusion part of equa-

tion (5a) (the second term) is solved with ode45 with Neumann boundary conditions
(5b) in MATLAB and is

f̂i+1− f̂∗

∆ t
=

Ggap

Cm
∆ f̂i+1, (9)

where f̂i+1 replaces the transmembrane potential portion of f∗ to obtain fi+1, the
solution at time step i+1.

Assuming that the inflow pressure applied to the first cell, P1, is constant through-
out time, the hydrostatic pressure for the other cells, Pj, j = 2, . . . ,Ncell, is then up-
dated from the Poiseuille flow (6), which is discretized such that

Pi+1
j+1 = Pi+1

j − 8µQ
π(R j+1)4 ∆x, j = 2, . . . ,Ncell, (10)

where ∆x is the numerical width of one afferent arteriole smooth muscle cell sub-
segment.

In the case where the inflow pressure is varied linearly between some times t̂1
and t̂2, then P1 is discretized as

Pi+1
1 = Pi

1− p̂
∆ t

t̂2− t̂1
, (11)
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Table 2 Parameters for Poiseuille equation for blood flow through the afferent arteriole

Parameter Value Unit Definition
µ 1.26×10−4 mmHg · s Dynamic viscosity of blood
Q 300 nL/min Volumetric flow rate

where p̂ determines the change in perfusion pressure that is applied to the first cell
from time t̂1 to t̂2.

3 Model Results

We apply our blood vessel model to an afferent arteriole of length ∼ 240 µm. The
parameters we use for the single cell model are given in Table 1 and the tables
in the Appendix. Additionally, the Poiseuille equation (6) parameters are given in
Table 2, where we assume that the volumetric flow rate Q is known a priori. The
model afferent arteriole is discretized into Ncell = 20 numerical cells, each of length
∆x = 12 µm.

The base case corresponds to setting the inflow boundary pressure to 100 mmHg.
Figure 3 shows the oscillations in membrane potential Vm predicted by the model
for the first cell in our afferent arteriole segment. The mean value of the transmem-
brane potential is−36 mV, which is a good approximation of the measured value of
−40 mV in the pressurized afferent arteriole. The cytosolic concentration of Ca2+

in this cell is shown in Figure 4. This concentration oscillates between 220 and 320
nM, similar to the range predicted by the single-cell model in Edwards and Lay-
ton [5]. Similar oscillations are predicted for the other cells (results not shown).

The diameter of the vessel at the location of the first cell also shows an oscillatory
time profile, which slowly stabilizes to an average of 20.1 µm, as can be seen in

Time (s)
400 450 500

V
m

 (
m

V
)

-36.15

-36

-35.85

Fig. 3 Predicted oscillations of the membrane potential Vm for the first cell in the afferent arteriole
at an inflow pressure of 100 mmHg.
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Fig. 4 Predicted oscillations of the cytosolic concentration of Ca2+ for the first cell in the afferent
arteriole at an inflow pressure of 100 mmHg.
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Fig. 5 Predicted oscillations of the afferent arteriole diameter at the first cell coordinate at an
inflow pressure of 100 mmHg.

Figure 5. We note that this value is only slightly smaller than the average luminal
diameter of 20.5 µm predicted by the single cell model in Edwards and Layton [5].

We examined the effects of varying the inflow pressure on the afferent arteriole.
The left panels in Figure 6 correspond to model simulations where the inflow pres-
sure starts at the reference value of 100 mmHg, then from 50 to 150 seconds we
increase this pressure linearly to 120 mmHg, and then keep it constant at this higher
level for the remainder of the simulation. In a separate simulation, we follow a sim-
ilar protocol and decrease the luminal pressure linearly to 90 mmHg and then keep
it constant at this lower level to produce the panels on the right.

In the case of a pressure increase, we note that this change opens the pressure-
activated channels and triggers depolarization, thereby raising the transmembrane
potential Vm and, subsequently, the cytosolic concentration of Ca2+. In the pressure
down-step case, we observe a reduction in Vm, which elicits a decrease in cytosolic
[Ca2+] and leads to an oscillatory regime for this concentration. These observations
are similar to single-cell model results in Edwards and Layton [5], where luminal
pressure was sharply increased or reduced at a given time point.
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Fig. 6 Time profiles of inflow pressure, Vm, cytosolic [Ca2+], and vessel diameter with a pressure
increase to 120 mmHg (left) and a pressure decrease to 90 mmHg (right). The red dotted vertical
lines point to the time interval when luminal pressure is linearly increased (left) or decreased
(right).

The last row of Figure 6 shows that the diameter of the vessel at the coordinate of
the first cell oscillates around 20 µm before t = 50 s, as in Figure 5. At t = 50 s, the
arteriole acts as a compliant tube and dilates as pressure increases, and conversely
constricts as pressure decreases. This passive response was also observed in the
single-cell model of Edwards and Layton [5].

This effect is quickly replaced by the myogenic response, which leads to a de-
crease in the vessel diameter (vasoconstriction) for the pressure up-step and an
increase in diameter (vasodilation) for the pressure down-step. The vessel diame-
ter stabilizes around 16 µm for the pressure up-step, and stably oscillates around
22 µm for the pressure down-step. The plots correspond to the first cell in the vessel
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Fig. 7 Time-averaged luminal diameters along the blood vessel for base case inflow pressure
100 mmHg together with pressure increase to 120 mmHg (left) and pressure decrease to 90 mmHg
(right).

for both simulations, and a similar myogenic response controls the time profile of
diameters of all subsequent cells (results not shown).

The effects of base case pressure, pressure up-step and down-step on all vessel
cells are shown in Figure 7. Each blue dot corresponds to the average diameter at a
given cell location over a time interval where the radius stabilizes (either converges
to a specific value or oscillates around it). The base case pressure of 100 mmHg
shows relatively constant diameters for the first (proximal) part of the vessel, and
a decrease to 16.9 µm in the distal (latter) part of the segment. For the increase in
luminal pressure to 120 mmHg, our model predicts vasoconstriction in the proximal
part of the afferent arteriole segment, which is reflected in the left panel of Figure 7
by the low diameters at the level of the first cells. The myogenic response stabilizes
downstream pressure, thereby raising the radius in the distal part of the afferent arte-
riole segment to 17.8 µm despite the pressure up-step. Conversely, a pressure down-
step elicits the expected vasodilation in the proximal afferent arteriole segment, as
shown in the right panel; its myogenic response yields a distal afferent arteriole di-
ameter that is smaller than the proximal afferent arteriole diameter (16.5 µm at the
end cell).

It is worth noting that the diameters in the distal part of the afferent arteriole
segment drop back to lower values in the case of the inflow pressure up-step (see left
panel of Figure 7). In order to understand this effect, we should note that the afferent
arteriole diameter represents a balance between the elastic force of the cell and the
myogenic response (see equation (43)). As we move along the afferent arteriole, the
luminal pressure decreases, so that the myogenic response is dominant and leads to
the increase in diameter for the pressure up-step case. Towards the end of the vessel,
the pressure becomes much lower and thus the elastic force (which is proportional
to pressure) leads to a decrease in the distal afferent arteriole diameter.

In order to further investigate the model afferent arteriole’s myogenic response,
we computed the outflow pressure and time- and space-averaged diameter of the
afferent arteriole given different constant inflow pressures. Figure 8 shows the pre-
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Fig. 8 Predicted myogenic response (blue) compared to perfect autoregulation (purple) and no
autoregulation (orange) of blood flow through the vessel for a range of luminal pressures.

dicted outflow pressures at the level of the last afferent arteriole cell. Our results
suggest that there is a slow increase in the outflow pressure for reference inflow
pressures between 100 and 160 mmHg. This increase is substantially slower than
a slope 1 line that would represent no autoregulation, and highlights the predicted
myogenic response of the afferent arteriole model. Note that the predicted outflow
pressure of about 80 mmHg for an inflow pressure of 160 mmHg is higher than the
50 mmHg outflow pressure predicted in Sgouralis and Layton [15].

Similarly, Figure 9 shows the space- and time-averaged afferent arteriole di-
ameter for different reference pressure inputs. As in Sgouralis and Layton [15],
the results point to vasodilation for small inflow pressures (85 mmHg) where the
mean diameter is around 20 µm, and vasoconstriction for large inflow pressures
(160 mmHg), where the mean diameter is lower, around 16.5 µm.

4 Discussion

We have developed a mathematical model of a segment of the afferent arteriole
of the rat kidney. The model represents detailed Ca2+ trafficking in each of the
afferent arteriole smooth muscle cells, as well as the kinetics of myosin light chain
phosphorylation and the mechanical behavior of the cell. The multi-cell afferent
arteriole model is an extension of our published cell model [5], which represents
the Ca2+ dynamics and vasoresponse of a single afferent arteriole smooth muscle
cell. The afferent arteriole segment model of the present study was constructed by
connecting 20 afferent arteriole cell models in series; each cell model is coupled
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Fig. 9 Predicted space- and time-averaged afferent arteriole diameter for a range of luminal pres-
sures.

to its neighbors through gap junctions, which allow the representation of electric
conduction along the afferent arteriole. A fluid dynamics model was included to
relate fluid pressure, fluid flow, and tubular resistance.

The model predicts spontaneous vasomotion at physiological luminal pressures,
which arises from the dynamic exchange of Ca2+ between the cytosol and the sar-
coplasmic reticulum, coupled to the stimulation of Ca2+-activated potassium (KCa)
and chloride (ClCa) channels, and the modulation of voltage-activated L-type chan-
nels. These spontaneous oscillations of the afferent arteriole muscle tone result in
oscillations in fluid pressure and flow.

It is well known that the renal afferent arteriole exhibits the myogenic response,
wherein it reacts to an elevation in blood pressure with an increase in muscle tone
and a decrease in luminal diameter. The myogenic response is believed to stabilize
glomerular filtration and to protect the glomerulus from exceedingly high systolic
blood pressure, especially in hypertension. The model represents the myogenic re-
sponse by assuming that the response is initiated by pressure-induced changes in the
activity of non-selective cation channels. Through its myogenic response, the model
afferent arteriole stabilizes, to a significant degree, outflow pressure for a range of
steady-state inflow pressure, from 100–160 mmHg (see Figure 8).

With its representation of the myogenic response, the present afferent arteriole
segment model can be used as an essential component in models of integrated renal
hemodynamic regulation. By coupling a number of afferent arteriole segment mod-
els, one can investigate how vasomotor responses propagate among a vascular tree.
Furthermore, as we have previously done using a simpler model of an afferent arteri-
ole segment (Sgouralis and Layton [16]), the present model could be combined with
a model of glomerular filtration (e.g., Deen et al. [3], Sgouralis and Layton [16]) and
a model of the tubuloglomerular feedback mechanism (e.g., Layton [12], Sgouralis
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and Layton [16]), which is another key renal autoregulatory mechanism. The re-
sulting integrative model of renal hemodynamics could then serve to investigate the
interactions between the myogenic and TGF mechanisms in the context of renal
autoregulation.

5 Appendix

This appendix contains the remaining equations besides the ones given in Sec-
tion 2.1 for the afferent arteriole smooth muscle single cell model of Edwards and
Layton [5]. For further details and kinetic diagrams, refer to [5].

5.1 Transmembrane Ionic Transport

5.1.1 Ion and charge conservation equations

The cytosolic concentrations of K+, Na+, Cl−, and Ca2+ are determined by consid-
ering the net sum of their respective fluxes into the cytosol (described in subsequent
sections) and integrating

d[K]cyt

dt
=−

(IK,b + IK,ir + IK,v + IK,Ca−2INaK)

F ·volcyt
, (12a)

d[Na]cyt

dt
=−

(INa,b + INa,Pres +3INaK +3INCX)

F ·volcyt
+

JNaCl

volcyt
, (12b)

d[Cl]cyt

dt
=

ICl,b + ICl,Ca

F ·volcyt
+

JNaCl

volcyt
, (12c)

d[Ca]cyt

dt
=−

(
ICa,b + ICa,Pres + IPMCA + ICa,L−2INCX + ISERCA− IRyR− IIP3R

)
2F ·volcyt,Ca

+Rcyt
CaM +Rcyt

Bf , . (12d)

Parameter values and definitions are given in Table 1.
In the sarcoplasmic reticulum (SR),

d[Ca]SR

dt
=

ISERCA− IRyR− IIP3R

2F ·volSR
+RSR

Calseq. (13)

The reaction terms Rcyt
CaM, Rcyt

Bf , and RSR
Calseq account for the buffering of Ca2+ by

cadmolin, other cytosolic buffers, and calsequestrin, respectively, and are described
in equation (35) below.
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5.1.2 Background currents

The background current of ion i, for i = K+,Na+,Cl−,Ca2+, is

Ii,b = Gi,b (Vm−Ei) , (14)

where the Nernst potential of ion i with valence zi is

Ei =
RT
ziF

ln
(
[i]out

[i]cyt

)
. (15)

Parameter values and definitions are given in Table 1.

5.1.3 Potassium transport pathways

The potassium current across inward-rectifier (Kir) channels is determined as

IK,ir = GKirPKir

(
[K]out

[K]ref

)0.9

(Vm−EK) , (16a)

PKir =
1

1+ exp
(

Vm−VKir

sKir

) , (16b)

where the exponential factor, 0.9, the potential of half-maximal activation, VKir, and
the slope, sKir, were obtained by fitting Kir currents in cerebral arterial smooth mus-
cle cells (Wu et al. [18]). Parameter values are given in Tables 1 and 3.

The potassium current across delayed-rectifier (Kv) channels is given by

Table 3 Parameters for potassium currents

Parameter Value Unit
GK,b 0 nS
GKir 0.50 nS
[K]ref 5.0 mM
VKir −80/−65 mV∗

sKir 20/5 mV∗

GKv 9.83 nS
GKCa 5.0 nS
τPf 0.5 mS
τPs 11.5 mS
∗Values for Vm below/above −60 mV
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IK,v = GKv (PKv)
2 (Vm−EK) , (17a)

PKv = 0.58PKv1 +0.42PKv2, (17b)

dPKv1

dt
=

P̄Kv−PKv1

τKv1
, (17c)

dPKv2

dt
=

P̄Kv−PKv2

τKv2
, (17d)

P̄Kv =
1

1+ exp
(
−Vm +1.77

14.52

) , (17e)

τkv1 = 210.99exp

[
−
(

Vm +214.34
195.35

)2
]
−20.59, (17f)

τkv2 = 821.39exp

[
−
(

Vm +31.59
27.46

)2
]
+0.189, (17g)

where PKv1 and PKv2 are the two components of the channel activation process and
τKv1 and τKv2 are the respective time constants (in ms) (Yang et al. [19]). Variable
P̄Kv is voltage dependent and represents the steady-state value of PKv1 and PKv2.

The potassium current across Ca2+-activated K+ (KCa) channels is computed as

IK,Ca = GKCaPKCa (Vm−EK) , (18a)
PKCa = 0.65Pf +0.35Ps, (18b)

dPf

dt
=

P̄KCa−Pf

τPf
, (18c)

dPs

dt
=

P̄KCa−Ps

τPs
, (18d)

P̄KCa =
1

1+ exp
(
−Vm−VKCa

21.70

) , (18e)

VKCa =−45.0 log10
(
[Ca]cyt

)
−63.55, (18f)

where Pf and Ps are the fast and slow components of the channel activation process,
respectively, and τPf and τPs are the corresponding time constants (Yang et al. [19]).
The steady-state open probability of the channels is given by P̄KCa.

The ATP-dependent K+ channels are not considered in the Edwards and Layton
model [5] since it assumed that their conductance is negligible in well perfused and
oxygenated arterioles.

5.1.4 Sodium transport pathways

The current across Na+/K+-ATPase pumps is determined as
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INaK = INaK,max

(
[K]out

[K]out +KK
m,NaK

)2(
[Na]cyt

[Na]cyt +KNa
m,NaK

)3

. (19)

The current across Na+/Ca2+ (NCX) exchanges is given by

INCX =INCX,maxANCX

(
ΦF[Na]3cyt[Ca]out−ΦR[Na]3out[Ca]cyt

G(1+ ksatΦR)

)
, (20a)

ANCX =
[Ca]2cyt(

KCa
m,NCX

)2
+[Ca]2cyt

, (20b)

ΦF =exp
(

γVmF
RT

)
, (20c)

ΦR =exp
(
(γ−1)VmF

RT

)
, (20d)

G =[Na]3out[Ca]cyt +[Na]3cyt[Ca]out +K3
mNao[Ca]cyt

+KmCao[Na]3cyt +K3
mNai[Ca]out

(
1+[Ca]cyt/KmCai

)
+KmCai[Na]3out

(
1+[Na]3cyt/K3

mNai
)

(20e)

(Shannon et al [17]). The flux across NaCl cotransporters is computed as

JNaCl = JNaCl,max
(ENa−ECl)

4

(ENa−ECl)
4 +R4

NaCl

(21)

(Kneller et al. [11]). Parameter values are given in Tables 1 and 4.

Table 4 Parameters for sodium currents

Parameter Value Unit
GNa,b 0.007 nS
G0

Na,Pres 0.020 nS
INaK,max 3.75 µA/µF
KK

m,NaK 1.5 mM
KNa

m,NaK 12 mM
INCX,max 1.5 µA/µF
KCa

m,NCX 0.125×10−3 mM
ksat 0.27 dimensionless

Parameter Value Unit
Km,Nao 87.5 mM
Km,Cao 1.3 mM
Km,Nai 12.29 mM
Km,Cai 3.59×10−3 mM
γ 0.35 dimensionless
JNaCl,max 1.08×10−16 mM/s
RNaCl 87.825 mV

5.1.5 Chloride transport pathways

The current across Ca2+-activated Cl− (ClCa) channels is
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ICl,Ca = GClCaPClCa(Vm−ECl), (22a)

dPClCa

dt
=

P̄ClCa−PClCa

τClCa
, (22b)

P̄ClCa =
[Ca]3cyt

[Ca]3cyt +K3
ClCa

, (22c)

where P̄ClCa is the steady-state open probability of the channel (Jacobson et al. [8]).
Parameter values are given in Table 5.

Table 5 Parameters for chloride currents

Parameter Value Unit
GCl,b 0.007 nS
GClCa 0.80 nS
τClCa 0.050 s
KClCa 140 mM

5.1.6 Calcium transport pathways

Calcium is exchanged between the cytosol and the extracellular space, and between
the cytosol and the SR, which acts as a storage compartment. Parameter values for
calcium currents and buffer reactions are given in Tables 1 and 6.

The current through plasmalemmal Ca2+ (PMCA) pumps is determined as

Table 6 Parameters for calcium currents and buffers

Parameter Value Unit
GCa,b 0.007 nS
G0

Ca,Pres 0.003 nS
GCaL 2.75 nS
IPMCA,max 0.9 µA/µF
KCa

m,PMCA 170×10−6 mM
ISERCA,max 11.76 pA
KCa

m,SERCA 310×10−6 mM
νRyR 12 s−1

Ka 3.7222×10−6 mM
Kb 6.3601×10−6 mM
Kc 0.0571 dimensionless
k−c 0.1 s−1

νIP3R 12 s−1

KIP3
+ 1.85 s−1

[IP3]ref 240 mM
α4 0.5 dimensionless

Parameter Value Unit
k4 1.1×10−3 mM
kIP3
− 1.0 s−1

a1 400×103 mM−1· s−1

a3 400×103 mM−1· s−1

a4 0.2×103 mM−1· s−1

a5 20×103 mM−1· s−1

d1 0.13×10−3 mM−1

d3 943.4×10−6 mM−1

d4 144.5×10−6 mM−1

d5 82.34×10−6 mM−1

KBf
on 103 mM−1· s−1

KBf
off 5 s−1

[Bf]tot
cyt 0.50 mM

kCalseq
on 105 mM−1· s−1

kCalseq
off 65 s−1

[Calseq]tot
SR 0.14 mM
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IPMCA = IPMCA,max

(
[Ca]cyt

KCa
m,PMCA +[Ca]cyt

)
. (23)

The CaV1.2 model of Faber et al. [6] is used for the current across L-type Ca2+

channels. The voltage-dependent gating mode of the channel is considered, which
includes four closed states (c0, c1, c2, and c3), one open state (po), and fast (ivf) and
slow (ivs) inactivated states. The corresponding equations are

ICa,L = GCaL po (Vm−ECa) , (24a)
dc0

dt
= βc1− (4α)c0, (24b)

dc1

dt
= (4α)c0 +(2β )c2− (3α +β )c1, (24c)

dc2

dt
= (3α)c1 +(3β )c3− (2α +2β )c2, (24d)

dc3

dt
= (2α)c2 +(4β )po +ωfivf +ωsivs− (α +3β + γf + γs)c3, (24e)

d po

dt
= αc3 +λfivf +λsivs− (4β +φf +φs)po, (24f)

divf

dt
= γfc3 +φf po +ωsfivs− (ωf +λf +ωfs)ivf, (24g)

divs

dt
= γsc3 +φs po +ωfsivf− (ωs +λs +ωsf)ivs, (24h)

where

α = 0.925exp(Vm/30), β = 0.390exp(Vm/40),
γf = 0.245exp(Vm/10), γs = 0.005exp(−Vm/40),
φf = 0.020exp(Vm/500), φs = 0.030exp(−Vm/280),
λf = 0.035exp(−Vm/300), λs = 0.0011exp(Vm/500),
ωf = (4βλfγf)/(αφf), ωs = (4βλsγs)/(αφs),

ωsf = (λsφf)/λf, ωfs = φs.

T-type Ca2+ channels are not considered in the Edwards and Layton [5] model.
The current across sarco/endoplasmic reticulum Ca2+ (SERCA) pumps is given

by

ISERCA = ISERCA,max

 [Ca]2cyt(
KCa

m,SERCA

)2
+[Ca]2cyt

 . (25)

The RyR model of Keizer and Levine [10] is used to determine the RyR-mediated
release current into the cytosol,

IRyR = vRyRPRyR
(
[Ca]SR− [Ca]cyt

)
(2F ·volSR) , (26)
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where vRyR is the RyR rate constant. The open probability of RyR (PRyR) is calcu-
lated as

PRyR =
ω

(
1+
(
[Ca]cyt/Kb

)3
)

1+
(
Ka/[Ca]cyt

)4
+
(
[Ca]cyt/Kb

)3 , (27a)

dω

dt
=

k−c (ω∞−ω)

ω∞
, (27b)

ω
∞ =

1+
(
Ka/[Ca]cyt

)4
+
(
[Ca]cyt/Kb

)3

1+1/Kc +
(
Ka/[Ca]cyt

)4
+
(
[Ca]cyt/Kb

)3 . (27c)

The IP3R model of De Young and Keizer [2] is used to determined the IP3R-
mediated release current in the cytosol,

IIP3R = vIP3R(x110)
3 ([Ca]SR− [Ca]cyt

)
(2F ·volSR) , (28)

where vIP3R is the IP3R rate constant and x110 is the fraction of receptors bound
by one activated Ca2+ and one IP3, calculated as described below. The cytosolic
concentration of IP3 is calculated as

d[IP3]cyt

dt
= kIP3

+ [IP3]ref

(
[Ca]cyt +(1−α4)k4

[Ca]cyt + k4

)
− kIP3
− [IP3]cyt, (29)

where kIP3
+ and kIP3

− are the rate constants for IP3 formation and consumption, re-
spectively, [IP3]ref is a reference IP3 concentration, and α4 determines the strength
of the Ca2+ feedback on IP3 production.

Three equivalent and independent IP3R subunits are assumed to be involved in
conduction, and each subunit has one IP3 binding site (denoted as site 1) and two
Ca2+ binding sites, one for activation (site 2) and one for inhibition (site 3). The
fraction of receptors in state Si1i2i3 is denoted by xi1i2i3 , where i j equals 0 if the j-th
binding site is unoccupied or 1 if it is occupied. All three subunits must be in the
state S110 (corresponding to the binding of one IP3 and one activating Ca2+) for the
IP3R channel to be open. Assuming rapid equilibrium for IP3 binding,

a1[Ca]cytx0k0 = b1x1k0, k = 0,1, (30a)
a3[Ca]cytx0k1 = b3x1k1, k = 0,1. (30b)

Defining dk = bk/ak, the conservation equations for x0i2i3 are
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dx000

dt
=−a4

(
[Ca]cytx000−d4x001

)
−a5

(
[Ca]cytx000−d5x010

)
, (31a)

dx001

dt
=+a4

(
[Ca]cytx000−d4x001

)
−a5

(
[Ca]cytx001−d5x011

)
, (31b)

dx010

dt
=+a5

(
[Ca]cytx000−d5x010

)
−a4

(
[Ca]cytx010−d4x011

)
, (31c)

x011 = 1− (x000 + x001 + x010 + x100 + x101 + x110 + x111) . (31d)

5.2 Intracellular Ca2+ Dynamics

5.2.1 Calcium buffers

Calcium buffering by calmodulin and other Ca2+-binding proteins in the cytosol is
described as a first-order dynamic process,

d[Bf ·Ca]cyt

dt
= kBf

on[Ca]cyt
(
[Bf]tot

cyt− [Bf ·Ca]cyt
)
− kBf

off[Bf ·Ca]cyt, (32)

where [Bf]tot
cyt is the total concentration of Ca2+-binding proteins other than calmod-

ulin in the cytosol and [Bf·Ca]cyt is the concentration of the calcium-bound sites of
these other buffering elements.

Calcium buffering by calsequestrin in the SR is described as

d[Calseq ·Ca]SR

dt
= kCalseq

on [Ca]SR
(
[Calseq]tot

SR− [Calseq ·Ca]SR
)

− kCalseq
off [Calseq ·Ca]SR, (33)

where [Calseq]tot
SR is the total concentration of calsequestrin sites available for Ca2+

binding in the SR and [Calseq·Ca]SR is the concentration of Ca2+-bound calse-
questrin sites in that compartment. Parameter values are given in Table 6.

5.3 Kinetics of Myosin Light Chain Phosphorylation

5.3.1 CaM activation of MLCK

Calmodulin (CaM) has four Ca2+ binding sites, with two at the NH2 terminus (low
affinity) and two at the COOH terminus (high affinity). Binding of Ca2+ to those
sites yields the CaM.Ca4 complex, and CaM.Ca4 binds to myosin light chain ki-
nase (MLCK) to form MLCK.CaM.Ca4, which is the active form of MLCK that
phosphorylates MLCs.
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The scheme proposed by Fajmut et al. [7] is used to determine the kinetics of
formation of MLCK.CaM.Ca4. Subscripts N and C represent two binding sites each
for Ca2+ at the NH2 and COOH terminus of CaM, respectively, and the subscript M
represents the CaM binding site occupied by MLCK. An underscore ( ) denotes an
unoccupied site for each of these binding sites. For example, CaMNCM designates
MLCK.CaM.Ca4. The kinetic equations for the formation of MLCK are

d[CaM−C−]

dt
=
(
−kCaM
−1 − kCaM

4 [Ca]2− kCaM
5 [MLCK]free

)
[CaM−C−]

+ kCaM
1 [Ca]2[CaM−−−]+ kCaM

−4 [CaMNC−]+ kCaM
−5 [CaM−CM],

(34a)

d[CaMN−−]

dt
=
(
−kCaM
−2 − kCaM

3 [Ca]2
)
[CaMN−−]+ kCaM

2 [Ca]2[CaM−−−]

+ kCaM
−3 [CaMNC−], (34b)

d[CaMNC−]

dt
=
(
−kCaM
−3 − kCaM

−4 − kCaM
7 [MLCK]free

)
[CaMNC−]

+ kCaM
3 [Ca]2[CaMN−−]+ kCaM

4 [Ca]2[CaM−C−]

+ kCaM
−7 [Ca]2[CaMNCM], (34c)

d[CaM−CM]

dt
=
(
−kCaM
−5 − kCaM

6 [Ca]2
)
[CaM−CM]+ kCaM

5 [MLCK]free[CaM−C−]

+ kCaM
−6 [Ca]2[CaMNCM], (34d)

d[CaMNCM]

dt
=
(
−kCaM
−6 − kCaM

−7 [Ca]2
)
[CaMNCM]+ kCaM

6 [Ca]2[CaM−CM]

+ kCaM
7 [MLCK]free[CaMNC−], (34e)

[CaM]tot =[CaM−−−]+ [CaM−C−]+ [CaMN−−]+ [CaMNC−],

+[CaM−CM]+ [CaMNCM], (34f)

[MLCK]tot =[CaM−CM]+ [CaMNCM]+ [MLCK]free, (34g)

where the on- and off-rate constants are denoted by kCaM
i and kCaM

−i , respectively,
[MLCK]free is the concentration of free (unbound) MLCK, [CaM]tot is the total con-
centration of calmodulin, [MLCK]tot is the total concentration of MLCK, and the
subscript “cyt” that denotes the cytosolic compartment is omitted for simplicity.
Parameter values are given in Table 7.

The buffering terms in the Ca2+ conservation equations (12d) and (13) are given
by
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Rcyt
CaM =−2

d[CaMN−−]

dt
−2

d[CaM−C−]

dt
−2

d[CaM−CM]

dt

−4
d[CaMNC−]

dt
−4

d[CaMNCM]

dt
, (35a)

Rcyt
Bf =−

d[Bf ·Ca]cyt

dt
, (35b)

RSR
Calseq =−

d[Calseq ·Ca]SR

dt
. (35c)

5.3.2 Rho-kinase inhibition of MLCP

Myosin light chain phosphatase (MLCP) consists of three subunits, one of which,
MYPT1, can be phosphorylated by Rho kinase (RhoK). Rho-K-induced phospho-
rylation of MYPT1 inactivates MLCP, which promotes contraction. The cytosolic
concentration of active MLCP (denoted MLCP∗) is given by

d[MLCP∗]
dt

= kMLCP
+

(
[MLCP]tot− [MLCP∗]

)
− kMLCP
− [MLCP∗], (36)

where [MLCP]tot is the total concentration of MLCP in the cytosol and the inactiva-
tion of MLCP by RHoK is given by

kMLCP
− = kcat[RhoK] (37)

(Mbikou et al. [13]). The concentration of RhoK, [RhoK], is assumed to be fixed
at 30 nM (Kaneko-Kawano et al. [9]) except in the presence of specific inhibitors.
Parameter values are given in Table 7.

Table 7 Parameters for MLCK and MLCP kinetics

Parameter Value Unit
kCaM

1 2.8×106 mM−1· s−1

kCaM
−1 6 s−1

kCaM
2 108 mM−1· s−1

kCaM
−2 800 s−1

kCaM
3 2.8×106 mM−1· s−1

kCaM
−3 6 s−1

kCaM
4 108 mM−1· s−1

kCaM
−4 800 s−1

kCaM
5 109 mM−1· s−1

kCaM
−5 20 s−1

kCaM
6 1.25×107 mM−1· s−1

kCaM
−6 5 s−1

kCaM
7 109 mM−1· s−1

Parameter Value Unit
kCaM
−7 1 s−1

[CaM]tot 10×10−3 mM
[MLCK]tot 2×10−3 mM
[MLCP]tot 2×10−3 mM
[RhoK] 30×10−6 mM
kcat/kMLCP

+ 0.33×106 mM−1

kMyo
MLCK 0.537 s−1

kMyo
MLCP 1.62 s−1

kMyo
3 1.8 s−1

kMyo
4 0.1 s−1

kMyo
7 0.045 s−1

[Myo]tot 30×10−3 mM
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5.3.3 MLCK- and MLCP-dependent phosphorylation of myosin

The contractile force of the vessels is determined by the fraction of myosin cross-
bridges that are phosphorylated. The four types of cross-bridges considered are free
cross-bridges (Myo), phosphorylated cross-bridges (MyoP), attached phosphory-
lated cycling cross-bridges (AMyoP), and attached dephosphorylated, non-cycling
cross-bridges (AMyo), and the corresponding equations for their concentrations are

d[Myo]
dt

=−kMyo
1 [Myo]+ kMyo

2 [MyoP]+ kMyo
7 [AMyo], (38a)

d[MyoP]
dt

=+kMyo
1 [Myo]− (kMyo

2 + kMyo
3 )[MyoP]+ kMyo

4 [AMyoP], (38b)

d[AMyoP]
dt

=+kMyo
3 [MyoP]− (kMyo

4 + kMyo
5 )[AMyoP]+ kMyo

6 [AMyo], (38c)

[Myo]tot = [Myo]+ [MyoP]+ [AMyoP]+ [AMyo]. (38d)

The rate constants kMyo
3 , kMyo

4 , and kMyo
7 are fixed (Yang et al. [19]). Parameter values

are given in Table 7.
The rate constants kMyo

1 and kMyo
6 represent the activity of MLCK and are as-

sumed to be proportional to the fraction of the fully activated form of the enzyme,
while the rate constants kMyo

2 and kMyo
5 represent the activity of MLCP. The corre-

sponding equations are

kMyo
1 = kMyo

6 = kMyo
MLCK

[CaMNCM]

[CaM]tot , (39a)

kMyo
2 = kMyo

5 = kMyo
MLCP

[MLCP∗]
[MLCP]tot , (39b)

where kMyo
MLCK and kMyo

MLCP are fixed.

5.4 Mechanical Behavior of Cell

The vasomotion of the afferent arteriole is affected by the variations in the number
of crossbridges, which induce variations in the contractile force and thus alter the
diameter of the vessel. Edwards and Layton [5] implemented the model of Carlson
et al. [1] that represents vessel wall tension as the sum of a passive component and
an active myogenic component. The passive component, Tpass, is a function of the
vessel diameter, D,

Tpass =Cpass exp
[
C′pass

(
D
D0
−1
)]

, (40)

where D0 is the reference vessel diameter.
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The active myogenic component is the product of the maximal active tension
generated at a given vessel circumference, T max

act , given by

T max
act =Cact exp

[
−
(

D/D0−C′act

C′′act

)2
]
, (41)

and the fraction of myosin light chains that are phosphorylated, Ψ . Therefore the
total tension in the wall, Twall, is

Twall = Tpass +ΨT max
act . (42)

The change in vessel diameter depends on the difference between the tension
resulting from intravascular pressure p, Tpres = pD/2, and the tension generated in
the wall, Twall, so that

dD
dt

=
1
τd

Dc

Tc
(Tpres−Twall), (43)

where Dc is a reference diameter, Tc is the tension at a pressure of 100 mmHg and
diameter Dc, and τd is a time constant. Parameter values are given in Table 8.

Table 8 Parameters for smooth muscle cell mechanics

Parameter Value Unit
Cpass 223 dyn/cm
C′pass 20.2 dimensionless
Cact 500 dyn/cm
C′act 0.985 dimensionless
C′′act 0.500 dimensionless
D0 27.5 µm
Dc 20.0 µm
τd 1.71 s
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