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Stability of Markov Chains

Markov Chain on general space (E , E)

Given

Initial distribution λ

Transition Kernel P(x , ·)

We have

X ∼ Pλ on E∞.

X (n) ∼ λPn.

Notions of Stability

Invariant Distribution: π = πP.

Ergodicity ‖λPN − π‖ → 0.
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Coupling

X ,Y : Two random variables on (E , E)

Definition (Coupling)

Z = (X̃ , Ỹ ) on E × E is a coupling of X and Y if

X̃
d
= X , Ỹ

d
= Y .

Coupling Inequality

‖L{X} − L{Y }‖ ≤ 2P(X̃ 6= Ỹ )
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Coupling of Markov Chains

Two independent copies of a the chain P(x , ·) on E ⊂ Z:

T: Coupling Time

Yn
.

=

{
X̃n if n ≤ T
Xn if n > T

Y ∼ X̃

x

T

~x

y

By Coupling Inequality:

‖Pλ(Xn ∈ ·)− Pλ̃(X̃n ∈ ·)‖ ≤ 2Pλλ̃(T > n)

When coupling is ‘successful’, ergodicity holds.
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Ergodicity for Harris Chains

Definition (Harris Chain)

(i) Px (Xn ∈ A; for some n) = 1, ∀x ∈ E (recurrence)

(ii) Px (Xn0 ∈ B) ≥ βϕ(B), ∀x ∈ A, ∀B ∈ E (small set)

A

S S1 2

XS1 
~ ϕ XS2 

~ ϕ

x 0
X
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Ergodicity for Harris Chains

Assume an invariant distribution π exists

Two independent copies of the chain:

X is initialized at arbitrary λ → Corresponding {Sj}
X̃ is initialized at π → Corresponding {S̃j}

A ‘successful’ coupling:

Coupling time T = Sn = S̃m

Renewal Theory ⇒ T is almost surely finite.

Coupling inequality gives ergodicity

‖Pλ(Xn ∈ ·)− π‖ ≤ Pλλ̃(T > n)→ 0
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Infinite-Dimensional State Spaces: Example

Example: Stochastic Delay Differential Equation (SDDE)

dX (t) = −cX (t)dt + g (X (t − r)) dWt

tt-r

X (s) = X(t+s)t

{Xt ; t ≥ 0} is a Markov Process on C ([−r , 0])

Invariant Distribution Exists for large c.

Given the solution Xt for any t > 0, X0 can be recovered
using Law of Iterated Logarithms
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What Goes Wrong?

For SDDE and for typical inf-dim Markov chains:

P(x , ·) and P(y , ·) are mutually singular for x 6= y

Consequences:

Only small sets are singletons

Generally, singletons are not recurrent sets.

And therefore,

Not Harris chains

No successful coupling
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Asymptotic Coupling

Definition (Asymptotic Coupling)

A measure Γ on E∞ × E∞ is an ‘Asymptotic Coupling’ for two
initial distributions λ,µ on E , if

1 Γ1 ∼ Pλ and Γ2 ∼ Pµ.

2 Γ ({(x , y) ∈ E∞ × E∞; limn→∞ d(xn, yn) = 0}) > 0

Theorem (Hairer, Mattingly, Scheutzow)

If there exists a ‘large enough’ set A ⊂ E such that for every
x , y ∈ A there exists an asymptotic coupling Γx ,y of δx and δy ,
then P has at most one invariant distribution.
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Many-Server Queues

μ

λN

μ

μ

μ

1

2

3

N

Where do they arise?
    Call Centers
    Health Care
    Data Centers
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A Markovian Representation

Analysis of GI/G/N systems:

Usual representation is not Markovian

A measure-valued (infinite-dimensional) Markovian
representation[Kaspi, Ramanan]:

Y N(t) =
(
XN , νN ,ZN

)
∈ R×H−2 ×W1,1

Interested in invariant distribution πN to assess Quality of
Service.

πN is hard to characterize.
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An Approximation Scheme

I. Process Level 
Convergence?

III. Limit 
Interchange?

II. Limiting Process Characteristics?

π

π

N

π: invariant distribution of the limit process Y

Hope: πN ⇒ π

A crucial question: Uniqueness of π
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Asymptotic Coupling for Y

Theorem (Aghajani)

Y has a unique stationary distribution.

An asymptotic coupling scheme:

X (t) = X (0) +
√

2B(t)− βt −
∫ t

0
〈h, νs〉 ds

Define

X̃ (t) = X̃ (0) +
√

2B̃(t)− βt −
∫ t

0
〈h, ν̃s〉 ds

where B̃t = Bt +
∫ t
0 ζ(s)ds. Choose ζ such that

∆X = X − X̃ has a simpler from

Girsanov Theorem holds
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