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Model of Interest

Network with

N servers

an infinite capacity queue for each server

a common arrival process

FCFS service discipline within each queue (no processor sharing)

=1
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Model of Interest

Load Balancing Algorithm:

How to assign incoming jobs to servers?

Aim to achieve good performance with low computational cost

Goal: Analysis and comparison of different load balancing
algorithms
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Routing Algorithm: Supermarket Model

Each arriving job

chooses d queues out of N , uniformly at random,

joins the shortest queue among the chosen d.

ties broken uniformly at random.
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Prior Work - Exponential Service Distribution

Supermarket model for exponential service time

Fluid limit and steady state queue length decay rate is obtained

case d = 2, [Vvedenskaya-Dobrushin-Karpelevich ’96]

case d ≥ 2, [Mitzenmacher ’01]

General Approach

Using Markovian state descriptor {SN
` (t); ` ≥ 1, t ≥ 0}

SN
` (t) : fraction of stations with at least ` jobs

Convergence as N →∞ proved using an extension of Kurtz’s theorem

The limit process is a solution to a sequence of ODEs

Steady state queue length distribution is obtained by the fixed point of the
ODE sequence

Joint work with Kavita Ramanan Hydrodynamics limits for Randomized Load Balancing



Prior Work - Exponential Service Distribution

Supermarket model for exponential service time

Fluid limit and steady state queue length decay rate is obtained

case d = 2, [Vvedenskaya-Dobrushin-Karpelevich ’96]

case d ≥ 2, [Mitzenmacher ’01]

General Approach

Using Markovian state descriptor {SN
` (t); ` ≥ 1, t ≥ 0}

SN
` (t) : fraction of stations with at least ` jobs

Convergence as N →∞ proved using an extension of Kurtz’s theorem

The limit process is a solution to a sequence of ODEs

Steady state queue length distribution is obtained by the fixed point of the
ODE sequence

Joint work with Kavita Ramanan Hydrodynamics limits for Randomized Load Balancing



Prior Work - Exponential Service Distribution

Summary of Results

Joint the Shortest Queue (JSQ)
Performance: P (XN (∞) > `)→ 0 for ` ≥ 1
Computational Cost: N comparison per routing (not feasible)

Power of two Choices: double-exponential decay for d ≥ 2

Joint work with Kavita Ramanan Hydrodynamics limits for Randomized Load Balancing



Prior Work - Exponential Service Distribution

Summary of Results

Joint the Shortest Queue (JSQ)
Performance: P (XN (∞) > `)→ 0 for ` ≥ 1
Computational Cost: N comparison per routing (not feasible)

d = 1 (random routing, decoupled M/M/1 queues):
Performance: P (XN (∞) > `)→ cλ`

Computational cost: one random flip per routing

Power of two Choices: double-exponential decay for d ≥ 2

Joint work with Kavita Ramanan Hydrodynamics limits for Randomized Load Balancing



Prior Work - Exponential Service Distribution

Summary of Results

Joint the Shortest Queue (JSQ)
Performance: P (XN (∞) > `)→ 0 for ` ≥ 1
Computational Cost: N comparison per routing (not feasible)

d ≥ 2 (supermarket model):

Performance: P (XN (∞) > `)→ λ(d
`−1)/(d−1)

Computational Cost: d random flips and d− 1 comparison per routing

d = 1 (random routing, decoupled M/M/1 queues):
Performance: P (XN (∞) > `)→ cλ`

Computational cost: one random flip per routing

Power of two Choices: double-exponential decay for d ≥ 2

Joint work with Kavita Ramanan Hydrodynamics limits for Randomized Load Balancing



Prior Work - Exponential Service Distribution

Summary of Results

Joint the Shortest Queue (JSQ)
Performance: P (XN (∞) > `)→ 0 for ` ≥ 1
Computational Cost: N comparison per routing (not feasible)

d ≥ 2 (supermarket model):

Performance: P (XN (∞) > `)→ λ(d
`−1)/(d−1)

Computational Cost: d random flips and d− 1 comparison per routing

d = 1 (random routing, decoupled M/M/1 queues):
Performance: P (XN (∞) > `)→ cλ`

Computational cost: one random flip per routing

Power of two Choices: double-exponential decay for d ≥ 2

Joint work with Kavita Ramanan Hydrodynamics limits for Randomized Load Balancing



Prior Work -General Service Distribution

Our Focus: General service time distribution

almost nothing was known 5 years ago

Mathematical Challenge:

{SN
` } is no longer Markovian

need to keep track of more information
No finite dimensional common state space for Markovian
Representations
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Prior Work -General Service Distribution

Recent Progress
Stability of pre-limit systems [Foss-Chernova’98]

Tightness of stationary distributions sequence [Bramson’10]

Stationary queue length decay [Bramson-Lu-Prabhakar’13]

Approach Taken in [Bramson-Lu-Prabhakar’13]:
Cavity Method

only proved for service distribution with decreasing hazard rate

assumes Poisson arrival (uses Poisson splitting)

only applicable for steady-state distribution

Pro: can also be easily applied to processor sharing
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Transient Behavior - Simulation

Simulation results for fraction of busy servery∗

Poisson arrival with λ = 0.5

1000 servers

empty initial condition

∗Simulation results by Xingjie Li, Brown University
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Transient Behavior - Simulation

Simulation results for fraction of busy servery†

Poisson arrival with λ = 0.5

1000 servers

initially one job in each server
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Transient Behavior - Simulation

Simulation results for fraction of queues with queue length at least 2‡

Poisson arrival with λ = 0.5

1000 servers

initially one job in each server

‡Simulation results by Xingjie Li, Brown University
Joint work with Kavita Ramanan Hydrodynamics limits for Randomized Load Balancing



Our Goal

Observations:

No result on the time scale to reach equilibrium

Transient behavior is also important

No result on distributions without decreasing hazard rate

Our Goal:

Introduce a new approach: Interacting Measure-valued Processes
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Interacting Measure-Valued Processes Representation

ν`: unit mass at the ages of jobs in servers with
queues of length at least ` .

at least one job
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Interacting Measure-Valued Processes Representation

ν`: unit mass at the ages of jobs in servers with
queues of length at least ` .

age

age

at least two jobs
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Interacting Measure-Valued Processes Representation

ν`: unit mass at the ages of jobs in servers with
queues of length at least ` .

age

age

age

at least three jobs
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Interacting Measure-Valued Processes Representation

ν`: unit mass at the ages of jobs in servers with
queues of length at least ` .

age

age

age

age

at least four jobs
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Interacting Measure-Valued Processes Representation

ν`: unit mass at the ages of jobs in servers with
queues of length at least ` .

age

age

age

age

age

at least five jobs
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Interacting Measure-Valued Processes Representation

ν`: unit mass at the ages of jobs in servers with
queues of length at least ` .

age

age

age

age

age

Analogous to [Kaspi-Ramanan’11]
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Dynamics of Measure-Valued Processes

I. when no arrival/departure is happening, the masses move to the
right with unit speed.
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Dynamics of Measure-Valued Processes

II. Upon departure from a queue with ` jobs,

the corresponding mass departs from all νj , j ≤ `
a new mass at zero is added to all νj , j ≤ `− 1

exactly l customers

D`: cumulative departure process from servers with at least ` jobs before
departure.
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Dynamics of Measure-Valued Processes

III. Upon arrival a queue with `− 1 jobs right before arrival,

if ` = 1, a mass at zero joins ν1

if ` ≥ 2, the mass corresponding to the age of job in that particular server is
added to ν`

exactly l-1 customers

R` : routing measure process
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Routing Probabilities Super-Market Model

Upon arrival of jth job,

server i has ` job: Xi = `.

ζj is the index of the server to which job j is routed

what is the probability {ζj = i|Xi = `}?

1 P{server i has queue length ≥ `} = P{all picks have queue length ≥ `} = Sd
` .

S` =
1

N
〈1, ν`〉 : portion of servers with at least ≤ `

2 P{server ζj has exactly ` job} = Sd
` − S

d
`+1.

3 P{ζj = i
∣∣Xi = `} = 1

N

S2
`−S

2
`+1

S`−S`+1
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Main Results

Definition A process ν̄ = {ν̄`}`≥0 solves the age equations if for all
f ∈ C1

b [0,∞),

initial jobs
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Main Results

Definition A process ν̄ = {ν̄`}`≥0 solves the age equations if for all
f ∈ C1

b [0,∞),

linear growth of ages

Joint work with Kavita Ramanan Hydrodynamics limits for Randomized Load Balancing



Main Results

Definition A process ν̄ = {ν̄`}`≥0 solves the age equations if for all
f ∈ C1

b [0,∞),

service entry
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Main Results

Definition A process ν̄ = {ν̄`}`≥0 solves the age equations if for all
f ∈ C1

b [0,∞),

Routing process
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Main Results

Definition A process ν̄ = {ν̄`}`≥0 solves the age equations if for all
f ∈ C1

b [0,∞),

mass balance
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Main Results

Definition A process ν̄ = {ν̄`}`≥0 solves the age equations if for all
f ∈ C1

b [0,∞),

departure rate
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Main Results

Definition A process ν̄ = {ν̄`}`≥0 solves the age equations if for all
f ∈ C1

b [0,∞),

routing measure
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Main Results

Definition A process ν̄ = {ν̄`}`≥0 solves the age equations if for all
f ∈ C1

b [0,∞),

routing measure
routing probabilities
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Main Result

Theorem

Let {ν(N)(t) = (ν
(N)
` (t))`; t ≥ 0} be the measure-valued representation for

the N-server system with initial condition ν(N)(0). If for some ν`(0)

1 arrival process E(N) is a renewal process with rate λN , and λN/N → λ,

2 service distribution G has mean 1 and density g,

3 for every ` ≥ 1, ν
(N)
` (0)/N → ν`(0),

then
1

N
ν
(N)
` → ν`,

where ν is the unique solution to the age equation corresponding to ν(0).

Proof sketch.

show the tightness of the sequence { 1
N
ν(N)}.

show that every sub-sequential limit solves the age equation.

use the uniqueness theorem for a unique characterization of sub-sequential
limits.
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Hydrodynamics Equations

We can partially solve the age equation: for every f ∈ Cb[0,∞)

〈f, ν`(t)〉 =〈f(·+ t)
Ḡ(·+ t)

Ḡ(·)
, ν`(0)〉+

∫
[0,t]

f(t− s)Ḡ(t− s)dD`+1(s)

+

∫ t

0

〈f(·+ t− s) Ḡ(·+ t− s)
Ḡ(·)

, η`(s)〉ds (1)

and

〈1, ν`(t)〉 − 〈1, ν`(0)〉 = D`(t) +

∫ t

0

〈1, η`(s)ds−D`(t), (2)

with

D`(t) =

∫ t

0

〈h, ν`(s)〉ds (3)

η`(t) =

 λ(1− 〈1, ν1(t)〉2)δ0 if ` = 1,

λ〈1, ν`−1(t) + ν`(t)〉(ν`−1(t)− ν`(t)) if ` ≥ 2.
(4)

Equations (1)-(4) are called Hydrodynamics Equations.
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A PDE representation

If one is only interested in S`(t) = 〈1, ν`(t)〉,

〈1, ν`(t)〉 =〈 Ḡ(·+ t)

Ḡ(·)
, ν`(0)〉+

∫
[0,t]

Ḡ(t− s)dD`+1(s)

+

∫ t

0

〈 Ḡ(·+ t− s)
Ḡ(·)

, η`(s)〉ds (5)

define

fr(x) =
1−G(x+ r)

1−G(x)
, ξ`(t, r) = 〈fr, ν`(t)〉.

Then, we have D`(t) = −
∫ t

0
∂rξ`(s, 0)ds, and the PDE

ξ`(t, r) =ξ`(0, t+ r)−
∫ t

0
Ḡ(t+ r − u)ξ′`+1(u, 0)du,

+λ

∫ t

0
F (ξ`−1(u, r), ξ`(u, r))du,

with boundary condition

ξ`(t, 0)− ξ`(0, 0) =

∫ t

0
λ(u)

(
ξ`−1(u, 0)2 − ξ`(u, 0)2

)
−
(
ξ′`−1(u, 0)− ξ′`(u, 0)2

)
du,
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, ξ`(t, r) = 〈fr, ν`(t)〉.

Then, we have D`(t) = −
∫ t

0
∂rξ`(s, 0)ds, and the PDE

ξ`(t, r) =ξ`(0, t+ r)−
∫ t

0
Ḡ(t+ r − u)ξ′`+1(u, 0)du,

+λ

∫ t

0
F (ξ`−1(u, r), ξ`(u, r))du,

with boundary condition

ξ`(t, 0)− ξ`(0, 0) =

∫ t

0
λ(u)

(
ξ`−1(u, 0)2 − ξ`(u, 0)2

)
−
(
ξ′`−1(u, 0)− ξ′`(u, 0)2

)
du,
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Conclusion

We introduced a framework to analysis the load balancing algorithm,
featuring

Hydrodynamics limit which captures transient behavior

Applicable for general service distributions

Applicable for more general time varying arrival processes

For Exponential service distribution:

limit process is characterized by a solution of a sequence of ODEs

For General service distribution:

limit process is characterized by a solution of a sequence of PDEs

Equilibrium distributions are characterized by the fixed point of the
PDEs.
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Simulation Result

We can numerically solve the PDE and compare to the simulation
result we previously saw
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Discussion and Ongoing Work

The PDE provides more efficient alternative to simulations in
order to address network optimization and design questions

Our Interacting measure-valued processes framework is
general

Applicable for different load balancing algorithms

Applied to the analysis of the Serve the Longest Queue (SLQ)
service discipline [Ramanan, Ganguly, Robert]

Ongoing Work

Rate of Convergence Result

More on Numerical solution for the PDEs

Gaining insight to specific time-varying scenarios

Fixed point analysis for the PDE to derive stationary distribution
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