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MODEL
Network with N servers
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Load Balancing Algorithm:

• How to assign incoming jobs to servers to achieve good perfor-
mance with low computational cost?

A performance parameter:

Steady-State Queue Length Probabilities:

S` = lim
N→∞

Pss{a typical queue length ≥ `}

Common Load Balancing Algorithms

• Joins the Shortest Queue not feasible for large N

• SQ(d) (supermarket) algorithm:

– chooses d queues out of N , u.a.r.

– joins the shortest among d

EXPONENTIAL SERVICE DIST.
SQ(d) for Exponential Service Distribution [VDK’96]:
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• Random Routing (d=1): exponential decay.

• one additional choice (d=2): double-exponential decay.

Power of Two Choices

GENERAL SERVICE DIST.
Statistical Observation:

• real-world service time distributions are non-exponential

Questions:

• Does the “power of two choices” also hold for general distribu-
tions? Partial answer by [Bramson-Lu-Prabhakar’13]: SQ(2) for Pareto service
distribution Ḡ(x) ∼ x−β :

– β > 2 (finite variance):
double-exponential decay

– β = 2:
exponential decay

– β < 2 (infinite variance):
power-law decay

How about other distributions (e.g. Log-Normal, Weibull?)

• How long does it take to reach “stationarity”?

• How about the transient behavior?

• How about time-inhomogeneous (e.g. periodic) arrivals ?

CHALLENGES? WE GOT AN IDEA!
Challenges of General Service Dist.

• A common Markovian Representation for all N

– sequence of queue lengths are not Markovian

– Need to keep track of ages

– dimension of the Markovian state space grows with N

• Would like a more robust framework.

Our Idea: Sequence of Measure-valued Processes

• Use a common infinite-dimensional state space

ν`: unit mass at the ages of jobs in servers with
queues of length at least ` .
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Inspired by a simpler framework in [Kaspi-Ramanan’11]

DYNAMICS OF MEASURE-VALUED PROCESSES
I. no arrivals/departures, masses move to the right with unit speed.

II. Upon departure from a queue with ` jobs,

• D`: cumulative departure process from servers with at least ` jobs

III. Upon arrival a queue with `− 1 jobs right before arrival,

exactly l customers

• R` : routing measure process

MAIN RESULT: HYDRODYNAMIC LIMIT
Definition A process ν = (ν`; ` ≥ 1) solves the measure-valued hydro-

dynamic equations if for all f ∈ C1
b [0×∞),
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Theorem: : Existence/Uniqueness of Hydrodynamic Eqns.

For every initial condition ν(0) = (ν`(0); ` ≥ 1) with ν` ≥ ν`+1,
the hydrodynamic equations has a unique solution.

The hydrodynamic equations can be partially solved

〈f, ν`(t)〉 =〈f(·+ t)
Ḡ(·+ t)

Ḡ(·)
, ν`(0)〉+

∫
[0,t]

f(t− s)Ḡ(t− s)dD`+1(s)

+

∫ t

0
〈f(·+ t− s)

Ḡ(·+ t− s)
Ḡ(·)

, η`(s)〉ds (1)

Theorem: : Hydrodynamic Limit

Let {ν(N)(t) = (ν
(N)
` (t))`; t ≥ 0} be the representation for the

N -server system with initial condition ν(N)(0). If

1. arrival processE(N) is a renewal process with rate λN , and
λN/N → λ,

2. service distribution G has mean 1 and density g,

3. for every ` ≥ 1, ν
(N)
` (0)/N → ν`(0),

for some ν`(0), then
1

N
ν
(N)
` → ν`,

where ν is the unique solution to the hydrodynamic equations
with initial condition ν(0).

Corollary: : Propagation of Chaos

If the initial condition is exchangeable, then

lim
N→∞

P{X(N),1(t) ≥ `1, ...., X(N),K(t) ≥ `K} =
K∏

k=1

〈1, ν`k(t)〉.

Open question: propagation of chaos on the infinite interval

Remarks on Proof

• show tightness of the subsequence { 1
N ν

(N)} identify compen-
sators of certain processes,

• show that every sub-seq. limit solves the hydrodynamic equation.

• Reduce uniqueness of solutions to hydrodynamic equations to
uniqueness of solutions to the system of non-linear PDEs.

• show the uniqueness of non-linear PDEs, (find the right metric)

REDUCTION TO “PDES”
If one is only interested in S`(t) = 〈1, ν`(t)〉,

〈1, ν`(t)〉 =〈 Ḡ(·+ t)

Ḡ(·)
, ν`(0)〉+

∫
[0,t]

Ḡ(t− s)dD`+1(s)

+

∫ t

0

〈 Ḡ(·+ t− s)
Ḡ(·)

, η`(s)〉ds

An invariant family under equation (1)

F =

{
fr(x) =

Ḡ(x+ r)

Ḡ(x)
; r ≥ 0

}
Theorem: : PDE representation

For every sequence of bounded, continuously differentiable
functions ξ0` , the sequence of partial integro-differential equa-
tions

ξ`(t, r) =ξ0` (t+ r)−
∫ t

0

Ḡ(t+ r − u)ξ′`+1(u, 0)du+

∫ t

0

ζ`(t, u, r)du

with

ζ` =

 Ḡ(t+ r − u)(1− ξ1(u, 0)2) ` = 1,

(ξ`−1(u, 0) + ξ`(u, 0))(ξ`−1(u, t+ r − u)− ξ`(u, t+ r − u)) ` ≥ 2.

and with boundary condition

ξ`(t, 0)− ξ0` (0) =

∫ t

0

λ(u)
(
ξ`−1(u, 0)2 − ξ`(u, 0)2

)
du

−
∫ t

0

λ(u)
(
ξ′`−1(u, 0)− ξ′`(u, 0)2

)
du,

has a unique solution. Furthermore,

ξ`(t, r) = 〈fr, ν`(t)〉.

NUMERICAL RESULTS
Hydrodynamic PDEs can be numerically solve, and be used to ap-

proximate the transient behavior queue-length Probabilities:

or to gain non-trivial insight on the behavior of the N -server network,
for example,

Service distribution with larger variance performs better on getting rid
of initial backlog.A COUNTER-INTUITIVE RESULT!


