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Many-Server Queues

Where do they arise?
¢ Call Centers T
« Health Care ER wait llmes you can trust.

o Data Centers =
At rlﬁ: urrent ﬁ wait time, tm.ER 1023000 or vlsbtjﬂ Lﬂﬂcodm;urs com 1
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Many-Server Queues

e G)—n

Relevant steady state performance measures:
o ay = P, {all N servers are busy}

o [P, {wait > t seconds}
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Asymptotic Analysis

Exact analysis for finite N is typically infeasible.

state variable steady state distribution
appropriately centered/scaled

~ Classic pre-limit result —_ ( N )

Y@ > 7
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Asymptotic Analysis

Exact analysis for finite N is typically infeasible.

state variable steady state distribution
appropriately centered/scaled
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@ Recap on exponential service distribution
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@ Recap on exponential service distribution

© State representation for General service distribution
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@ Recap on exponential service distribution
© State representation for General service distribution

© Characterization of the limit process
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@ Recap on exponential service distribution
© State representation for General service distribution
© Characterization of the limit process

@ Proof of the main results
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@ Recap on exponential service distribution

© State representation for General service distribution
© Characterization of the limit process

@ Proof of the main results

@ Ongoing work
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1. Exponential Service Distribution

Halfin-Whitt Regime [Halfin-Whitt’81] for exponential service time
o Let N — 0o, \(N) = Ny — BvVN — oo, pV) = XN /Ny — 1.

e Diffusion (CLT) scaling limit for Xt(N): # of customers in system.
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1. Exponential Service Distribution

Halfin-Whitt Regime [Halfin-Whitt’81] for exponential service time
o Let N — 0o, \(N) = Ny — BvVN — oo, pV) = XN /Ny — 1.

e Diffusion (CLT) scaling limit for Xt(N): # of customers in system.

# of CUSTOH’\?I"S in Classic pre-limit result - m_(;\.v}
system at time t »
Process Level Convergence
Convergence of Stationary Dist.

l l

Unique Invariant Distribution

Yty -----—----~---- > T
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1. Exponential Service Distribution

Halfin-Whitt Regime [Halfin-Whitt’81] for exponential service time
o Let N — 0o, \(N) = Ny — BvVN — oo, pV) = XN /Ny — 1.

e Diffusion (CLT) scaling limit for Xt(N): # of customers in system.

# of CUSTOYI’\?I"S in Classic pre-limit result - m_(;\r}
system at time t »
Process Level Convergence
Convergence of Stationary Dist.

l l

Unique Invariant Distribution

Yty -----—----~---- > T
dY (t) = V2dB, — (8 + Y (¢) " )dt.

(1-dimensional diffusion)
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1. Exponential Service Distribution

Halfin-Whitt Regime [Halfin-Whitt’81] for exponential service time
o Let N — 0o, \(N) = Ny — BvVN — oo, pV) = XN /Ny — 1.

e Diffusion (CLT) scaling limit for Xt(N): # of customers in system.

# of CUSTOYI’\?I"S in Classic pre-limit result - m_(;\r}
system at time t »
Process Level Convergence
Convergence of Stationary Dist.
1: % ) Unique Invariant Distribution | ©aussian Exponential
4 ) - - —=—=—=====-4

dY (t) = V2dB, — (8 + Y (¢) " )dt. \\

(1-dimensional diffusion)
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1. Exponential Service Distribution

Halfin-Whitt Regime [Halfin-Whitt’81] for exponential service time
o Let N — 0o, \(N) = Ny — BvVN — oo, pV) = XN /Ny — 1.

e Diffusion (CLT) scaling limit for Xt(N): # of customers in system.

# of customers in  Classic pre-limit result

system at fime ¥

Process Level
Convergence

dY (t) = V2dB, — (8 + Y (¢) " )dt.

(1-dimensional diffusion)

T
> I
Convergence

of Stationary Dist.

Unique Invariant Distribution | ©aussian

Exponential

b

e Py (all N servers are busy) — m([0,00)) € (0,1).
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2. General Service Distribution

o Statistical data shows that service times are generally distributed
(Lognormal, Pareto, etc. see e.g. [Brown et al. '05])

‘ Goal: To extend the result for general service distribution
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2. General Service Distribution

o Statistical data shows that service times are generally distributed
(Lognormal, Pareto, etc. see e.g. [Brown et al. '05])

‘ Goal: To extend the result for general service distribution

o Challenges
o XM s no longer a Markov Process
e need to keep track of residual times or ages of customers in
service to make the process Markovian
e Dimension of any finite-dim. Markovian representation grows
with N
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2. General Service Distribution

o Statistical data shows that service times are generally distributed
(Lognormal, Pareto, etc. see e.g. [Brown et al. '05])

‘ Goal: To extend the result for general service distribution

o Challenges
o XM s no longer a Markov Process
e need to keep track of residual times or ages of customers in
service to make the process Markovian
e Dimension of any finite-dim. Markovian representation grows
with N

o Prior Work
e Some particular service distributions [Jelenkovic-Mandelbaum],
[Gamarnik-Momcilovic], [Puhalski-Reiman].
o Results using X" obtained by [Puhalskii-Reed], [Reed],
[Mandelbaum-Momcilovic], [Dai-He| (with abandonment), etc.
e However, there are not many results on stationary distribution.
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2. General Service Distribution

o Statistical data shows that service times are generally distributed
(Lognormal, Pareto, etc. see e.g. [Brown et al. '05])

‘ Goal: To extend the result for general service distribution

o Challenges
o XM s no longer a Markov Process
e need to keep track of residual times or ages of customers in
service to make the process Markovian
e Dimension of any finite-dim. Markovian representation grows
with N

o Prior Work
e Some particular service distributions [Jelenkovic-Mandelbaum],
[Gamarnik-Momcilovic], [Puhalski-Reiman].
o Results using X" obtained by [Puhalskii-Reed], [Reed],
[Mandelbaum-Momcilovic], [Dai-He| (with abandonment), etc.
e However, there are not many results on stationary distribution.

A way out: Common State Space (infinite-dimensional) ‘
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A Measure-valued Representation

vy
®
®
£ ®
\ ®
®

age ajf“’ t

o EMW) represents the cumulative external arrivals

° a§N) represents age of the jth customer to enter service

o ) keeps track of the ages of all the customers in service
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A Measure-valued Representation
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age ajf“’ t

o EMW) represents the cumulative external arrivals

° a§N) represents age of the jth customer to enter service

o ) keeps track of the ages of all the customers in service
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A Measure-valued Representation

(N)
Departure Process D

)
®
O e

E (N)_> \ %
®

age ajf"’ t

EW) represents the cumulative external arrivals

ag-N) represents age of the jth customer to enter service

v(N) keeps track of the ages of all the customers in service

o KW) cumulative entry into service

e D) cumulative departure process
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A Measure-valued Representation

Service Entrme vy

—

@®

®

E (N)_> \ %
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o o o o
age ajf"’ t

EW) represents the cumulative external arrivals

ag-N) represents age of the jth customer to enter service

v(N) keeps track of the ages of all the customers in service

o KW) cumulative entry into service

e D) cumulative departure process
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A New Representation

o State descriptor St(N) = (Xt(N), l/t(N>) is used in [Kaspi-Ramanan
’11,°13] and [Kang- Ramanan 10, "12.]

(N)

o Diffusion limit for v is established in a distribution space H_s.

e An extra component needs to be added for the limit process to be
Markov.
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A New Representation

o State descriptor St(N) = (Xt(N), l/t(N)) is used in [Kaspi-Ramanan
’11,°13] and [Kang- Ramanan 10, "12.]

(N)

o Diffusion limit for v is established in a distribution space H_s.

e An extra component needs to be added for the limit process to be
Markov.

o Instead of the whole measure v, we define the functional

ZN(r) =

—~

Glt+r) vy _ Glay(t) + 1)
a0 T Gy 2"

which we call Frozen Departure Process.
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A New Representation

o State descriptor St(N) = (Xt(N), l/t(N)) is used in [Kaspi-Ramanan
’11,°13] and [Kang- Ramanan 10, "12.]

(N)

o Diffusion limit for v is established in a distribution space H_s.

e An extra component needs to be added for the limit process to be
Markov.

o Instead of the whole measure v, we define the functional

ZN(r) =

—~

Glt+r) vy _ Glay(t) + 1)
a0 T Gy 2"

which we call Frozen Departure Process.

e We use the state variable

vV = (xM, ZzM)) e R x H(0, o).
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Main Results

Now we establish diffusion level “change of limits” for Y (V) (¢).

Long-time behavior of pre-limit P ( N )

Y’N(f) ' A

Process Level Convergence
Convergence of Stationary Dist.

Unique Invariant Distribution

Main Contributions
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Main Results

Now we establish diffusion level “change of limits” for Y (V) (¢).

YN(t)

Long-time behavior of pre-limit N
g p ) ﬂ-( )

Proces|
Conve

Follows from [Kang-Ramanan ‘12]
and the continuous mapping theorem

Unique Invariant Distribution

Main Contributions

ergence
nary Dist.
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Main Results
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Main Results

Now we establish diffusion level “change of limits” for Y (V) (¢).

Long-time behavior of pre-limit P ( N )

Y’N(f) ' A

Done for (X,V) in [Kaspi-Ramanan “13]

Proces: rgence
Convel We adapt it to (X,Z) nary Dist.

A Unique Invariant Distribution

Main Contributions
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Main Results

Now we establish diffusion level “change of limits” for Y (V) (¢).

~ N Long-time behavior of pre-limit ~  — ( N )
} (f-) »>
Process Level Convergence
Convergence of Stationary Dist.
. T v
A Unique Invariant Distribution
- e
Y(it) -~ ——-------=---- > T

Main Contributions

o Characterization of the limit (X, Z) in terms of an SPDE in an
appropriate space that makes it Markov
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Main Results

Now we establish diffusion level “change of limits” for Y (V) (¢).

~ N Long-time behavior of pre-limit ~  — ( N )
} (f-) »>
Process Level Convergence
Convergence of Stationary Dist.
A Unique Invariant Distribution
Y (f) ““““““““ >N

Main Contributions

o Characterization of the limit (X, Z) in terms of an SPDE in an
appropriate space that makes it Markov

e Showing that (X, Z) has a unique invariant distribution
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Main Results

Now we establish diffusion level “change of limits” for Y (V) (¢).

~ N Long-time behavior of pre-limit ~  — ( N )
} (IL ) »>
Process Level Convergence
Convergence of Stationary Dist.
A Unique Invariant Distribution
e aT
Yit) -~ ——----------- > T

Main Contributions

o Characterization of the limit (X, Z) in terms of an SPDE in an
appropriate space that makes it Markov

e Showing that (X, Z) has a unique invariant distribution

e Proving #™) — 7, with partial characterization of 7
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Implications of our Results

Comments on Our Results:

e Previously, {Xéév)} (the X-marginal of 7(N)) was only shown to
be tight [Gamarnik-Goldberg]. We proved the convergence.
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Implications of our Results

Comments on Our Results:

e Previously, {Xéév)} (the X-marginal of 7(N)) was only shown to
be tight [Gamarnik-Goldberg]. We proved the convergence.

@ The limit 7 is now the invariant distribution of a Markov process.
We can use basic adjoint relation type formulations to
characterize it.
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Implications of our Results

Comments on Our Results:

e Previously, {Xéév)} (the X-marginal of 7(N)) was only shown to
be tight [Gamarnik-Goldberg]. We proved the convergence.

@ The limit 7 is now the invariant distribution of a Markov process.
We can use basic adjoint relation type formulations to
characterize it.

o As the limit process (X, Z) is infinite dimensional, we use the
newly developed method of asymptotic coupling to prove the
uniqueness of invariant distribution.
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3. Characterization of Limit Process

Consider the following “SPDE”:
dXy = —dM(1) + dB; — Bdt + Z;(0)dt,
dZy(r) = [Z{(r) — G(r)Z}(0)] dt — dM, (.1 — G(r)1) + G(r)dZ(0)

with boundary condition Z;(0) = —X, , and initial condition Y.

B is a standard Brownian motion, M is an independent martingale measure.
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3. Characterization of Limit Process

Consider the following “SPDE”:
dXy = —dM(1) + dB; — Bdt + Z;(0)dt,
dZy(r) = [Z{(r) — G(r)Z}(0)] dt — dM, (.1 — G(r)1) + G(r)dZ(0)

with boundary condition Z;(0) = —X, , and initial condition Y.

B is a standard Brownian motion, M is an independent martingale measure.

Assumptions: 1. hazard rate function h(z) = g(z)/G(x) is bounded;
II. G has finite 2 + € moment for some € > 0;

If Assumptions I. and II. hold, for every initial condition Yy, the
SPDEs above a unique continuous R x H*(0, 0o)-valued solution,
which is a Markov process.
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Characterization of Limit Process

Given initial condition yo = (z0, 20), we can “explicitly” solve the
SPDE:

@ X is a solution to a non-linear Volterra equation ([Reed],
[Puhalskii-Reed],[Kaspi-Ramanan])
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Characterization of Limit Process

Given initial condition yo = (z0, 20), we can “explicitly” solve the
SPDE:

@ X is a solution to a non-linear Volterra equation ([Reed],
[Puhalskii-Reed],[Kaspi-Ramanan])

o The service entry process K satisfies

K({t)=B,—pBt—XT(t)+xf.
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Characterization of Limit Process

Given initial condition yo = (z0, 20), we can “explicitly” solve the
SPDE:

@ X is a solution to a non-linear Volterra equation ([Reed],
[Puhalskii-Reed],[Kaspi-Ramanan])

o The service entry process K satisfies

K({t)=B,—pBt—XT(t)+xf.

o Given X (and hence K), the equation for Z is a transport
equation.

Zt(T') = Zo(t + T’) — Mt(\Ijt—&-Tl) + (FtK)(T)

{W¢;t > 0} and {I'¢;t > 0} are certain family of mappings on continuous

functions.
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Invariant Distribution of the Limit Process

Existence: “Standard.” Follows from Krylov-Bogoliubov Theorem.
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Invariant Distribution of the Limit Process

Existence: “Standard.” Follows from Krylov-Bogoliubov Theorem.

Uniqueness:
e Key challenge: State Space ) = R x H! is infinite dimensional
o Traditional recurrence methods are not easily applicable.

o In some cases, traditional methods fail: the stochastic delay
differential equation example in [Hairer et. al.‘11].
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Invariant Distribution of the Limit Process

Existence: “Standard.” Follows from Krylov-Bogoliubov Theorem.

Uniqueness:
e Key challenge: State Space ) = R x H! is infinite dimensional
o Traditional recurrence methods are not easily applicable.

o In some cases, traditional methods fail: the stochastic delay
differential equation example in [Hairer et. al.‘11].

o We invoke the asymptotic coupling method (Hairer, Mattingly,
Sheutzow, Bakhtin, et al.)
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Invariant Dist. of the Limit Process: Uniqueness

Theorem (Hairer et. al’ll, continuous version)

Assume there exists a measurable set A C Y with following properties:

(I) u(A) > 0 for any invariant probability measure p of Py.

(IT) For every y,y € A, there evists a measurable map
].—‘y,g tAXA— C('P[me)éy,'])[()’oo)(s:g), such that Fy’g('D) > 0.

Then {P:} has at most one invariant probability measure.

Y'Y
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Invariant Dist. of the Limit Process: Uniqueness

Theorem (Hairer et. al’ll, continuous version)

Assume there exists a measurable set A C Y with following properties:

(I) u(A) > 0 for any invariant probability measure pu of Py.

(IT) For every y,y € A, there evists a measurable map
Py,g AXA— C('P[me)éy,'])[()’oo)(s:g), such that Fy,g('D) > 0.

Then {P:} has at most one invariant probability measure.

To prove the uniqueness of the inv. dist. for a Markov kernel P:
@ Specify the subset A.

o For y,g € A, construct (Y, 1773) on a common probability space:
o verify the marginals of Y¥ and Y?.
o show the asymptotic convergence: P {d(Yy(t), Yi(t)) — 0} > 0.

Then ', 5 = Law(Y¥,Y7?) is a legitimate asymptotic coupling.
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Invariant Dist. of the Limit Process: Uniqueness

Under assumptions I, II and IV, the limit process has at most one
tnvariant distribution.

Proof idea. Let y = (29, 20) and § = (Zo, o). Recall
Xy =z — My(1) + By — Bt + [} Z,(0)ds, ¢ >0,
{ Zi(r) = 20(t + 1) = My(Wiyr1) + (T K)(r), r>0.
Now define
{ X =0~ M)+ B, — Bt + [y Z.(0)ds,  t>0,

Zi(r) = Zo(t + 1) — M(Vepr ) + (TeK)(r), 7> 0.

where

By = By + [, (AZL(0) — AAX,) ds.
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Invariant Dist. of the Limit Process: Uniqueness

Define A = {(z,2) € V;x > 0}.
e For every invariant distribution p of P, u(A) > 0.
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Invariant Dist. of the Limit Process: Uniqueness

Define A = {(z,2) € V;x > 0}.
e For every invariant distribution p of P, u(A) > 0.

Asymptotic Convergence:
] AXt = AQITOG_)\t = AXt — 0.
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Invariant Dist. of the Limit Process: Uniqueness

Define A = {(z,2) € V;x > 0}.
e For every invariant distribution p of P, u(A) > 0.

Asymptotic Convergence:
] AXt = A{l?()e_)\t = AXt — 0.

When y,5 € A, we have AZ'(0) € L2

e Using Lemma 2, AZ; — 0 in H(0, c0).

t t
AZy(r) = Azo(t+1)+G(r)AX, +/ AX;g(t—&—r—s)ds—/ AZL(0)G (t+r—s)ds.
0 0
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Invariant Dist. of the Limit Process: Uniqueness

Define A = {(z,2) € V;x > 0}.
e For every invariant distribution p of P, u(A) > 0.

Asymptotic Convergence:
] AXt = A{l?()e_)\t = AXt — 0.

When y,5 € A, we have AZ'(0) € L2

e Using Lemma 2, AZ; — 0 in H(0, c0).
t t
AZy(r) = Azo(t+r)+@(r)AXt_+/ AX;g(t—&—r—s)ds—/ AZL(0)G (t+r—s)ds.
0 0

Distribution of Y:

e By Girsanov Theorem, the distribution of B is equivalent to a
Brownian motion. Novikov condition follows from Lemma 2.

Y ~ Ploo) 85-
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Convergence of Steady-State Distributions

N N
YN (t) xN)
1. Process Level 111. Convergence
Convergence of Stationary Dist?
~ l II. Unique Invariant Distribution
- -
Y(t) -~ T

Further Assumptions:

IIL. ¢ = sup{u € [0,00), g =0 a.e. on [a,a + u| for some a € [0,00)} < co.

IV. g has a density ¢’ and ha(z) = %:é;c)) is bounded.

Theorem (Aghajani and 'R’13)

Under assumptions I-IV and if G has a finite 3 + € moment, the
sequence {TN)} converges weakly to the unique invariant distribution

mofY.
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Convergence of Steady-State Distributions

Proof sketch.

Under assumptions on G, the sequence {W(N)} of steady state
distributions of pre-limit processes is tight in R x H*(0,0).

Proof idea: establish uniform bounds on (X(N),Z(N)) in NN, t, using results in
[Gamarnik and Goldberg’13].
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Convergence of Steady-State Distributions

Proof sketch.

Under assumptions on G, the sequence {W(N)} of steady state
distributions of pre-limit processes is tight in R x H*(0,0).

Proof idea: establish uniform bounds on (X(N),Z(N)) in NN, t, using results in
[Gamarnik and Goldberg’13].

Every subsequential limit of {’R'(N)} s an tnvariant distribution for the
limit process Y .
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Convergence of Steady-State Distributions

Proof sketch.

Under assumptions on G, the sequence {TF(N)} of steady state
distributions of pre-limit processes is tight in R x H*(0,0).

Proof idea: establish uniform bounds on (X(N), Z(N)) in NN, t, using results in
[Gamarnik and Goldberg’13].

Step 2.

Every subsequential limit of {’R'(N)} s an tnvariant distribution for the
limit process Y .

| A

Step 3.
Combine Steps 1 and 2. By uniqueness of invariant distribution for
the limit process Y, we have our final result. []

Makes key use of the fact that Y is Markovian.

\
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Summary and Conclusion

Some subtleties
o Finding a more tractable representation

e conserved the Markov property of the diffusion limit
e been able to remove the problematic ¥ component

@ Prove the uniqueness of invariant distribution for the inf. dim.
limit process

*Qur proposed asymptotic coupling scheme does not work.
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Summary and Conclusion

Some subtleties
o Finding a more tractable representation
e conserved the Markov property of the diffusion limit
e been able to remove the problematic v component
@ Prove the uniqueness of invariant distribution for the inf. dim.
limit process
o Key Challenge Choosing the right space for Z

Space Markov Property = SPDE Charac.  Uniqueness of Stat. Dist.
C[0, ) No Unknown*

€10, 00) Unknown

1L2(0, 00) Unknown No

H' (0, 0)

*Qur proposed asymptotic coupling scheme does not work.
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Summary and Conclusion

Some subtleties
o Finding a more tractable representation
e conserved the Markov property of the diffusion limit
e been able to remove the problematic v component
@ Prove the uniqueness of invariant distribution for the inf. dim.
limit process
o Key Challenge Choosing the right space for Z

Space Markov Property = SPDE Charac.  Uniqueness of Stat. Dist.
C[0, ) No Unknown*

€10, 00) Unknown

1L2(0, 00) Unknown No

H' (0, 0)

@ In our construction, A # Y and therefore, the continuous-time
version of Asymptotic Coupling theorem does not immediately
follow from the discrete-time version.

*Qur proposed asymptotic coupling scheme does not work.
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5. What Else Can This be Used For?

e Seems to be a useful framework to do diffusion control (fluid
version is done in [Atar-Kaspi-Shimkin '12])

e Use generator to get error bounds for finite N ([Braverman-Dai]
in finite dimension.)

o Characterization of invariant distribution using infinitesimal
generator of the limit process and basic adjoint relation.
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Characterization of Invariant Distribution

Characterization of the generator £ of the diffusion process Y.

o for f(x,2) = f(z,z(rl),...,z(rn)) with fe C2(R"+1):

XA

Super-Critical £
region (X>0) —|—

[ L.f itx>0,
Ef{ﬁf if 2 < 0.

Ny

Sub-Critical £ o

region (X<0)
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Characterization of Invariant Distribution

Characterization of the generator £ of the diffusion process Y.

o for f(x,2) = f(z,z(rl),...,z(rn)) with fe C2(R"+1):

XA

Super-Critical £
region (X>0) —|—

[ L.f itx>0,
Ef{ﬁf if 2 < 0.

Ny

Sub-Critical £ o

region (X<0)

o L, and L_ are second order differential operators, whose explicit
forms are known.

o L_ is the generator of an “infinite-server” queue.

e L is the generator of the limit of a system composed of N
decoupled closed queues.
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Characterization of Invariant Distribution

An Idea: analyze sub-critical and super-critical systems and identify
w4+ and p_ which satisfy £* ¢ = 0 and L* ¢ = 0, respectively, then
glue them together such that ¢ is smooth at the boundary.

XA
Super-Critical ® o
region (X>0) ﬁ-ﬁ-pJﬁ =0
* z
Sub-Critical LYo =0
region (X<0)
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Summary and Conclusion

Summary and Conclusions:

o Introduced a more tractable SPDE framework for the study of
diffusion limits of many-server queues

@ Use of the asymptotic coupling method (as opposed to Lyapunov
function methods) to establishing stability properties of queueing
networks: more suitable for infinite-dimensional processes

o Strengthened the Gamarnik-Goldberg tightness result to
convergence of the X-marginal

o A wide range of service distributions satisfy our assumptions,
including Log-Normal, Pareto (for certain parameters), Gamma,
Phase-Type, etc. Weibull does not.

Future challenges:

e Complete the characterization of the stationary distribution of
the limit Markovian process.

o Extensions to more general systems
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