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Where do they arise?
    Call Centers
    Health Care
    Data Centers
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Relevant steady state performance measures:
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Asymptotic Analysis

Exact analysis for finite N is typically infeasible.

Classic pre-limit result

state variable
appropriately centered/scaled

steady state distribution
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Outline

1 Recap on exponential service distribution

2 State representation for General service distribution

3 Characterization of the limit process

4 Proof of the main results

5 Ongoing work
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1. Exponential Service Distribution

Halfin-Whitt Regime [Halfin-Whitt’81] for exponential service time

Let N →∞, λ(N) = Nµ− β
√
N →∞, ρ(N) = λ(N)/Nµ→ 1.

Diffusion (CLT) scaling limit for X
(N)
t : # of customers in system.

Pss(all N servers are busy)→ π([0,∞)) ∈ (0, 1).
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2. General Service Distribution

Statistical data shows that service times are generally distributed
(Lognormal, Pareto, etc. see e.g. [Brown et al. ’05])

Goal: To extend the result for general service distribution

Challenges
X(N) is no longer a Markov Process
need to keep track of residual times or ages of customers in
service to make the process Markovian
Dimension of any finite-dim. Markovian representation grows
with N

Prior Work
Some particular service distributions [Jelenkovic-Mandelbaum],
[Gamarnik-Momcilovic], [Puhalski-Reiman].
Results using XN obtained by [Puhalskii-Reed], [Reed],
[Mandelbaum-Momcilovic], [Dai-He] (with abandonment), etc.
However, there are not many results on stationary distribution.

A way out: Common State Space (infinite-dimensional)
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A Measure-valued Representation

tage aj

ν (N)

(N)

(N)E

E(N) represents the cumulative external arrivals

a
(N)
j represents age of the jth customer to enter service

ν(N) keeps track of the ages of all the customers in service

ν
(N)
t =

∑
j δa(N)

j
(t)
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A Measure-valued Representation

tage aj

ν (N)

(N)

(N)E

Departure Process  D(N)

E(N) represents the cumulative external arrivals

a
(N)
j represents age of the jth customer to enter service

ν(N) keeps track of the ages of all the customers in service

K(N) cumulative entry into service

D(N) cumulative departure process
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A Measure-valued Representation

tage aj

ν (N)

(N)

(N)E

(N)KService Entry

E(N) represents the cumulative external arrivals

a
(N)
j represents age of the jth customer to enter service

ν(N) keeps track of the ages of all the customers in service

K(N) cumulative entry into service

D(N) cumulative departure process

Mohammadreza Aghajanijoint work with Kavita RamananA Diffusion Approximation for Stationary Distribution of Many-Server Queueing System In Halfin-Whitt Regime



A New Representation

State descriptor S
(N)
t =

(
X

(N)
t , ν

(N)
t

)
is used in [Kaspi-Ramanan

’11,’13] and [Kang- Ramanan ’10, ’12.]

Diffusion limit for ν(N) is established in a distribution space H−2.

An extra component needs to be added for the limit process to be
Markov.

Instead of the whole measure ν, we define the functional

Z
(N)
t (r)

.
= 〈G(·+ r)

G(·)
, ν

(N)
t 〉 =

∑
j in service

G(aj(t) + r)

G(aj(t))
, r ≥ 0,

which we call Frozen Departure Process.

We use the state variable

Y
(N)
t = (X

(N)
t , Z

(N)
t ) ∈ R×H1(0,∞).
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Main Results

Now we establish diffusion level “change of limits” for Y (N)(t).

  Process Level 
Convergence

Convergence
of Stationary Dist.

Unique Invariant Distribution

Long-time behavior of pre-limit

Main Contributions

Characterization of the limit (X,Z) in terms of an SPDE in an
appropriate space that makes it Markov

Showing that (X,Z) has a unique invariant distribution

Proving π(N) 7→ π, with partial characterization of π
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Implications of our Results

Comments on Our Results:

Previously, {X̂(N)
∞ } (the X-marginal of π(N)) was only shown to

be tight [Gamarnik-Goldberg]. We proved the convergence.

The limit π is now the invariant distribution of a Markov process.
We can use basic adjoint relation type formulations to
characterize it.

As the limit process (X,Z) is infinite dimensional, we use the
newly developed method of asymptotic coupling to prove the
uniqueness of invariant distribution.
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3. Characterization of Limit Process

Consider the following “SPDE”: dXt = −dMt(1) + dBt − βdt+ Z ′t(0)dt,

dZt(r) =
[
Z ′t(r)− Ḡ(r)Z ′t(0)

]
dt− dMt

(
Φr1− Ḡ(r)1

)
+ Ḡ(r)dZt(0)

with boundary condition Zt(0) = −X−t , and initial condition Y0.

B is a standard Brownian motion, M is an independent martingale measure.

Assumptions: I. hazard rate function h(x)
.
= g(x)/G(x) is bounded;

II. G has finite 2 + ε moment for some ε > 0;

Theorem

If Assumptions I. and II. hold, for every initial condition Y0, the
SPDEs above a unique continuous R×H1(0,∞)-valued solution,
which is a Markov process.
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Characterization of Limit Process

Given initial condition y0 = (x0, z0), we can “explicitly” solve the
SPDE:

X is a solution to a non-linear Volterra equation ([Reed],
[Puhalskii-Reed],[Kaspi-Ramanan])

The service entry process K satisfies

K(t) = Bt − βt−X+(t) + x+0 .

Given X (and hence K), the equation for Z is a transport
equation.

Zt(r) = z0(t+ r)−Mt(Ψt+r1) +
(
ΓtK

)
(r).

{Ψt; t ≥ 0} and {Γt; t ≥ 0} are certain family of mappings on continuous

functions.
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Given X (and hence K), the equation for Z is a transport
equation.

Zt(r) = z0(t+ r)−Mt(Ψt+r1) +
(
ΓtK

)
(r).

{Ψt; t ≥ 0} and {Γt; t ≥ 0} are certain family of mappings on continuous

functions.
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Invariant Distribution of the Limit Process

Existence: “Standard.” Follows from Krylov-Bogoliubov Theorem.

Uniqueness:

Key challenge: State Space Y .
= R×H1 is infinite dimensional

Traditional recurrence methods are not easily applicable.

In some cases, traditional methods fail: the stochastic delay
differential equation example in [Hairer et. al.‘11].

We invoke the asymptotic coupling method (Hairer, Mattingly,
Sheutzow, Bakhtin, et al.)
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Invariant Dist. of the Limit Process: Uniqueness

Theorem (Hairer et. al’11, continuous version)

Assume there exists a measurable set A ⊆ Y with following properties:

(I) µ(A) > 0 for any invariant probability measure µ of Pt.

(II) For every y, ỹ ∈ A, there exists a measurable map
Γy,ỹ : A×A→ C̃(P[0,∞)δy,P[0,∞)δỹ), such that Γy,ỹ(D) > 0.

Then {Pt} has at most one invariant probability measure.

A

y

y~
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(II) For every y, ỹ ∈ A, there exists a measurable map
Γy,ỹ : A×A→ C̃(P[0,∞)δy,P[0,∞)δỹ), such that Γy,ỹ(D) > 0.

Then {Pt} has at most one invariant probability measure.

To prove the uniqueness of the inv. dist. for a Markov kernel P:

Specify the subset A.

For y, ỹ ∈ A, construct (Y y, Ỹ ỹ) on a common probability space:

verify the marginals of Y y and Ỹ ỹ.

show the asymptotic convergence: P
{
d(Y y(t), Ỹ ỹ(t))→ 0

}
> 0.

Then Γy,ỹ = Law(Y y, Ỹ ỹ) is a legitimate asymptotic coupling.
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Invariant Dist. of the Limit Process: Uniqueness

Theorem

Under assumptions I, II and IV, the limit process has at most one
invariant distribution.

Proof idea. Let y = (x0, z0) and ỹ = (x̃0, ỹ0). Recall Xt = x0 −Mt(1) +Bt − βt+
∫ t

0
Z′s(0)ds, t ≥ 0,

Zt(r) = z0(t+ r)−Mt(Ψt+r1) +
(
ΓtK

)
(r), r ≥ 0.

Now define X̃t = x̃0 −Mt(1) + B̃t − βt+
∫ t

0
Z̃′s(0)ds, t ≥ 0,

Z̃t(r) = z̃0(t+ r)−Mt(Ψt+r1) +
(
ΓtK̃

)
(r), r ≥ 0.

where

B̃t = Bt +
∫ t
0

(∆Z ′s(0)− λ∆Xs) ds.
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Invariant Dist. of the Limit Process: Uniqueness

Define A = {(x, z) ∈ Y;x ≥ 0}.
For every invariant distribution µ of P, µ(A) > 0.

Asymptotic Convergence:

∆Xt = ∆x0e
−λt ⇒ ∆Xt → 0.

Lemma (2)

When y, ỹ ∈ A, we have ∆Z ′·(0) ∈ L2

Using Lemma 2, ∆Zt → 0 in H1(0,∞).

∆Zt(r) = ∆z0(t+r)+Ḡ(r)∆X−t +

∫ t

0
∆X−s g(t+r−s)ds−

∫ t

0
∆Z′s(0)Ḡ(t+r−s)ds.

Distribution of Ỹ :

By Girsanov Theorem, the distribution of B̃ is equivalent to a
Brownian motion. Novikov condition follows from Lemma 2.

Ỹ ∼ Pb∞cδỹ.
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∆Z′s(0)Ḡ(t+r−s)ds.

Distribution of Ỹ :
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Ỹ ∼ Pb∞cδỹ.
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4. Convergence of Steady-State Distributions

I. Process Level 
Convergence.

III. Convergence
of Stationary Dist?

II. Unique Invariant Distribution

Further Assumptions:

III. %
.
= sup{u ∈ [0,∞), g = 0 a.e. on [a, a+ u] for some a ∈ [0,∞)} <∞.

IV. g has a density g′ and h2(x)
.
=

g′(x)

Ḡ(x)
is bounded.

Theorem (Aghajani and ’R’13)

Under assumptions I-IV and if G has a finite 3 + ε moment, the
sequence {π(N)} converges weakly to the unique invariant distribution
π of Y .
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Convergence of Steady-State Distributions

Proof sketch.

Step 1.

Under assumptions on G, the sequence {π(N)} of steady state
distributions of pre-limit processes is tight in R×H1(0,∞).

Proof idea: establish uniform bounds on (X(N), Z(N)) in N, t, using results in

[Gamarnik and Goldberg’13].

Step 2.

Every subsequential limit of {π(N)} is an invariant distribution for the
limit process Y .

Step 3.

Combine Steps 1 and 2. By uniqueness of invariant distribution for
the limit process Y , we have our final result.

Makes key use of the fact that Y is Markovian.
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Summary and Conclusion

Some subtleties

Finding a more tractable representation

conserved the Markov property of the diffusion limit
been able to remove the problematic ν component

Prove the uniqueness of invariant distribution for the inf. dim.
limit process

Key Challenge Choosing the right space for Z

Space Markov Property SPDE Charac. Uniqueness of Stat. Dist.

C[0,∞) Yes No Unknown∗

C1[0,∞) Yes Yes Unknown
L2(0,∞) Unknown No Yes
H1(0,∞) Yes Yes Yes

In our construction, A 6= Y and therefore, the continuous-time
version of Asymptotic Coupling theorem does not immediately
follow from the discrete-time version.

∗Our proposed asymptotic coupling scheme does not work.
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5. What Else Can This be Used For?

Seems to be a useful framework to do diffusion control (fluid
version is done in [Atar-Kaspi-Shimkin ’12])

Use generator to get error bounds for finite N ([Braverman-Dai]
in finite dimension.)

Characterization of invariant distribution using infinitesimal
generator of the limit process and basic adjoint relation.
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Characterization of Invariant Distribution

Characterization of the generator L of the diffusion process Y.

for f(x, z) = f̃(x, z(r1), ..., z(rn)) with f̃ ∈ C2
c(Rn+1):

X

Z

Super-Critical 
region (X>0)

Sub-Critical 
region (X<0)

L+ and L− are second order differential operators, whose explicit
forms are known.

L− is the generator of an “infinite-server” queue.

L+ is the generator of the limit of a system composed of N
decoupled closed queues.
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Characterization of Invariant Distribution

An Idea: analyze sub-critical and super-critical systems and identify
ϕ+ and ϕ− which satisfy L∗−ϕ = 0 and L∗−ϕ = 0, respectively, then
glue them together such that ϕ is smooth at the boundary.

X

Z

Super-Critical 
region (X>0)

Sub-Critical 
region (X<0)
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Summary and Conclusion

Summary and Conclusions:

Introduced a more tractable SPDE framework for the study of
diffusion limits of many-server queues

Use of the asymptotic coupling method (as opposed to Lyapunov
function methods) to establishing stability properties of queueing
networks: more suitable for infinite-dimensional processes

Strengthened the Gamarnik-Goldberg tightness result to
convergence of the X-marginal

A wide range of service distributions satisfy our assumptions,
including Log-Normal, Pareto (for certain parameters), Gamma,
Phase-Type, etc. Weibull does not.

Future challenges:

Complete the characterization of the stationary distribution of
the limit Markovian process.

Extensions to more general systems
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