Asymptotic Coupling of an SPDE, with Applications to Many-Server Queues

Mohammadreza Aghajani joint work with Kavita Ramanan

Brown University

March 2014

Mohammadreza Aghajanijoint work Asymptotic Coupling of an SPDE, w

Many-Server Queues

Where do they arise?

- Call Centers
- Health Care
- Data Centers

Relevant Steady state performance:

4 6 1 1 4

- $\mathbb{P}_{ss}\{\text{all } N \text{ servers are busy}\}$
- \mathbb{P}_{ss} {waiting time > t seconds}

Asymptotic Analysis

Exact analysis for finite N is typically infeasible.

Exponential Service Distribution

Exponential service time case is studied in [Halfin-Whitt'81]

• • • • • • • • • • • •

General Service Distribution

• Statistical data shows that service times are generally distributed (Lognormal, Pareto, etc. see e.g. [Brown et al. '05])

Goal: To extend the result to general service distribution

• Challenges

- $\{X^{(N)} = \# \text{ of customers in system}\}$ is no longer a Markov Process
- need to keep track of residual times or ages of customers in service to make the process Markovian
- \blacktriangleright Dimension of any finite-dim. Markovian representation grows with N
- Results using X^N obtained by [Puhalskii and Reed], [Reed], [Mandelbaum and Momcilovic], [Dai and He], etc.
- ▶ However, few results on stationary distribution (beyond phase-type distributions)

A way out: Common State Space (infinite-dimensional)

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

A Measure-Valued Representation

A measure-valued state descriptor [Kaspi-Ramanan'11]: $(X^{(N)}, \nu^{(N)})$

- $E^{(N)}$ represents the cumulative external arrivals
- $a_j^{(N)}$ represents age of the *j*th customer to enter service
- $\nu^{(N)}$ keeps track of the ages of all the customers in service

$$\nu_t^{(N)} = \sum_j \delta_{a_j^{(N)}}(t)$$

A Central Limit Theorem

An important functional:

$$Z_t^{(N)}(r) = \sum_{j \text{ in service}} \frac{1 - G(a_j(t) + r)}{1 - G(a_j(t))}, \ r \in (0, \infty).$$

Take the state variable $Y_t^{(N)} = (X_t^{(N)}, Z_t^{(N)}) \in \mathbb{R} \times \mathbb{H}^1(0, \infty)$

Lemma (Aghajani and 'R'13, Corollary of Kaspi and 'R'13) Under Assumptions on G, if $\hat{y}_0^{(N)} \Rightarrow y_0$ in $\mathbb{R} \times \mathbb{H}^1(0, \infty)$, then for every $t \ge 0$, $\hat{Y}_t^{(N)} \Rightarrow Y_t$ in $\mathbb{R} \times \mathbb{H}^1(0, \infty)$,

for some continuous Markov process $\{Y_t = (X_t, Z_t); t \ge 0\}$.

• To make Y have all the desired properties, the choice of space is subtle.

Main focus: Limit Process

When $z_0 \in \mathbb{H}^1(0,\infty) \cap \mathbb{C}^1[0,\infty)$, the limit process is the unique solution of the coupled Ito process/SPDE:

 $\begin{cases} dX_t = dW_t + dB_t - \beta dt + Z'_t(0)dt, \\ dZ_t(r) = \left[Z'_t(r) - \bar{G}(r)Z'_t(0) \right] dt - dM_t(r) + \bar{G}(r)dZ_t(0), \end{cases}$

with boundary condition $Z_t(0) = -X_t^- = X_t \wedge 0$.

- M is a martingale measure, correlated to the Brownian motion W.
- $\bullet~W$ and B are independent Brownian motions.

Remarks:

- Unusual SPDE boundary conditions enter the drift term.
- The process lies in the infinite-dimensional space $\mathbb{R} \times \mathbb{H}^1(0, \infty)$.
- For general initial condition z_0 , Y is a solution to a slightly more complicated SPDE.

We are the interested in the invariant distribution of the Markov process Y.

・ロト ・通ト ・ヨト ・ヨト

Invariant Distribution: Existence

Theorem (Aghajani and 'R'13)

Under assumptions on G, the limit process has an invariant distribution.

• Main tool: Krylov-Bogoliubov ['37] Theorem. Need to show the tightness for family of occupation measures

$$\mu(\Gamma) = \frac{1}{T} \int_0^T \mathbf{1}_{\Gamma} \left(Y_t \right) dt$$

• Starting from a particular initial condition introduced in [Gamarnik and Goldberg '11], we use the bounds they obtained on $\widehat{X}^{(N)}$.

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Key challenge: State Space $\mathcal{Y} \doteq \mathbb{R} \times \mathbb{H}^1$ is infinite dimensional
 - ▶ Traditional recurrence methods are not easily applicable.
 - ▶ In some cases, traditional methods fail [Hairer et. al.'11].
- We invoke the asymptotic coupling method (Hairer, Mattingly, Sheutzow, Bakhtin, et al.)

Theorem (Hairer et al.'11, continuous-time version)

Assume for a Markov kernel $\{\mathcal{P}_t\}$ on a polish state space \mathcal{Y} , there exists a measurable set $A \subseteq \mathcal{Y}$ with the following two properties:

- (I) $\mu(A) > 0$ for any invariant probability measure μ of \mathcal{P}_t .
- (II) For every $y, \tilde{y} \in A$, there exists a measurable map $\Gamma_{y,\tilde{y}} : A \times A \to \tilde{\mathcal{M}}(\mathcal{P}_{[0,\infty)}\delta_y, \mathcal{P}_{[0,\infty)}\delta_{\tilde{y}})$, such that $\Gamma_{y,\tilde{y}}(\mathcal{D}) > 0$.

Then $\{\mathcal{P}_t\}$ has at most one invariant probability measure.

\$\mathcal{P}_{[0,∞)} \delta_y ∈ \mathcal{M}(\mathcal{Y}^{[0,∞)})\$: distribution of a Markov process with kernel \$\mathcal{P}\$ starting at \$y\$.
\$\tilde{\mathcal{M}}(\mu_1, \mu_2) = {\begin{array}{c} \mathcal{E} ∈ \mathcal{M}(\mathcal{Y}^{[0,∞)})\$, \$\mathcal{Y}_i < \mathcal{\mathcal{H}}_i, \$i = 1, 2\$.}\$
\$\mathcal{D} = {(x, y) ∈ \mathcal{Y}^{[0,∞)} × \mathcal{Y}^{[0,∞)}\$; \$\lim_{t → ∞} d(x_t, y_t) = 0\$}

To utilize the the asymptotic coupling theorem, we have to:

Then $\Gamma_{y,\tilde{y}} = \text{Law}(Y^y, \tilde{Y}^{\tilde{y}})$ is a legitimate asymptotic coupling.

→ (□) → (□) → (→)

Theorem (Aghajani and 'R'13)

Under assumptions on G, the limit process has at most one invariant distribution.

Proof idea. Let $y = (x_0, z_0)$ and $\tilde{y} = (\tilde{x}_0, \tilde{y}_0)$. As defined before,

$$\begin{cases} dX_t = dW_t + dB_t - \beta dt + Z'_t(0)dt, \\ dZ_t(r) = \left[Z'_t(r) - \bar{G}(r)Z'_t(0) \right] dt - dM_t(r) + \bar{G}(r)dZ_t(0) \end{cases}$$

Now define

4

$$\begin{cases} d\tilde{X}_t = dW_t + d\tilde{B}_t - \beta dt + \tilde{Z}'_t(0)dt, \\ d\tilde{Z}_t(r) = \left[\tilde{Z}'_t(r) - \bar{G}(r)\tilde{Z}'_t(0)\right] dt - dM_t(r) + \bar{G}(r)d\tilde{Z}_t(0), \end{cases}$$

where

$$\tilde{B}_t = B_t + \int_0^t \left(\Delta Z'_s(0) - \lambda \Delta X_s\right) ds.$$

Define $A = \{(x, z) \in \mathcal{Y}; x \ge 0\}$. For every invariant dist. μ of $\mathcal{P}, \mu(A) > 0$.

Lemma

When $y, \tilde{y} \in A$, we have $\Delta Z'_{\cdot}(0) \in \mathbb{L}^2$

- Asymptotic Convergence:
 - $\Delta X_t = \Delta x_0 e^{-\lambda t} \quad \Rightarrow \quad \Delta X_t \to 0.$

$$\Delta Z_t(r) = \Delta z_0(t+r) + \bar{G}(r)\Delta X_t^- + \int_0^t \Delta X_s^- g(t+r-s)ds$$
$$-\int_0^t \Delta Z_s'(0)\bar{G}(t+r-s)ds. \tag{1}$$

• Using Lemma (2), $\Delta Z_t \to 0$ in $\mathbb{H}^1(0,\infty)$.

• Distribution of \tilde{Y} :

- ▶ By Lemma 2, the drift $\Delta Z'_{\cdot}(0) \lambda \Delta X_{\cdot}$ satisfies the Novikov condition.
- ▶ By Girsanov's Theorem, the distribution of \tilde{B} is equivalent to a Brownian motion, and therefore, $\tilde{Y} \sim \mathcal{P}_{\lfloor \infty \rfloor} \delta_{\tilde{y}}$.

Summary and Conclusion

Key Challenge: Choosing the right space for Z

Space	Markov Property	SPDE Charac.	Uniqueness of Stat. Dist.
$\mathbb{C}[0,\infty)$	Yes	No	Unknown
$\mathbb{C}^1[0,\infty)$	Yes	Yes	Unknown
$\mathbb{L}_2(0,\infty)$	Unknown	No	Yes
$\mathbb{H}^1(0,\infty)$	Yes	Yes	Yes

Summary and Conclusions:

- Introduced a more tractable SPDE framework for the study of diffusion limits of many-server queues
- Use of the asymptotic coupling method (as opposed to Lyapunov function methods) to establishing stability properties of queueing networks: more suitable for establishing uniqueness of stationary distributions of infinite-dimensional processes
- Strengthened the Gamarnik-Goldberg tightness result to convergence of the X-marginal

A D A A D A A D A A D A

Open Problem

The main open problem:

to characterize the unique invariant distribution of \boldsymbol{Y}

A possible approach: to use the generator of the process Y.

Lemma

For all $F : \mathbb{R} \times \mathbb{H}^1(0,\infty) \cap \mathbb{C}^1[0,\infty) \to \mathbb{R}$ with a representation $F(x,z) = f(x,z^{(n)})$ for some $n \ge 1, r_1, ..., r_n \in [0,\infty), z^{(n)} = (z(r_1), ..., z(r_n))$ and $f \in \mathbb{C}^1(\mathbb{R}^{n+1})$,

$$CF(x,z) = f_x(x,z^{(n)})\{z'(0) - \beta\} + \sum_{j=1}^n f_j(x,z^{(n)})\{z'(r_j) - \bar{G}(r_j)m(x,z)\} + f_{xx}(x,z^{(n)}) + \sum_{j=1}^n b_j(x)f_{xj}(x,z^{(n)}) + \frac{1}{2}\sum_{i,j=1}^n c_{i,j}(x)f_{i,j}(x,z^{(n)}).$$

where b_i and $c_{i,j}$'s are piecewise constant functions with discontinuity only at x = 0, and

$$m(x,z) = \begin{cases} \beta & \text{if } x \leq 0 \\ z'(0) & \text{if } x > 0 \end{cases}$$

▲ロト ▲御 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ④ ● ●

Selected References

- Halfin, S. and Whitt, W. (1981). *Heavy-traffic limit theorems for queues with many servers*, Oper. Res. 29, 567-588.
- Hairer, M., Mattingly, J. C. and Scheutzow, M. (2011). Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations. Probab. Theory Related Fields 149, 223-259.
- Puhalskii, A.A. and Reiman, M.I (2000) The Multiclass GI/PH/N Queue in the Halfin-Whitt Regime. Adv. Appl. Probab. 32, no. 2, pp. 564–595.
- Gamarnik, D. and Momcilovic, P. (2008) Steady-state analysis of a multi-server queue in the Halfin-Whitt regime, Advances in Applied Probability, 40, 548577.
- Reed, J. (2009) The G/GI/N queue in the Halfin-Whitt regime, Ann. Appl. Probab. 19 No. 6, 2211-2269.
- Puhalskii, A.A. and Reed, J. (2010) On many servers queues in heavy traffic, Ann. Appl. Probab. 20 No.1, 129-195.
- Kang, W. and Ramanan, K. (2010) Fluid limits of many-server queues with reneging Ann. Appl. Probab. 20:2204-2260
- Kaspi, H. and Ramanan, K. (2013) Law of large numbers limits for many-server queues, Ann. Appl. Probab. 21 No. 1, 33-114..
- Kaspi, H. and Ramanan, K. (2013) SPDE limits of many-server queues, Ann. Appl. Probab. 23 No. 1, 145-229.

イロト イポト イヨト イヨト