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Preface

The H-function or popularly known in the literature as Fox’s H -function has
recently found applications in a large variety of problems connected with reaction,
diffusion, reaction—diffusion, engineering and communication, fractional differen-
tial and integral equations, many areas of theoretical physics, statistical distribution
theory, etc. One of the standard books and most cited book on the topic is the 1978
book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the
fields of applications. Due to popular demand, the authors were requested to up-
grade and bring out a revised edition of the 1978 book. It was decided to bring out a
new book, mostly dealing with recent applications in statistical distributions, path-
way models, nonextensive statistical mechanics, astrophysics problems, fractional
calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics
area also.

It was decided to confine the discussion to H-function of one scalar variable
only. Matrix variable cases and many variable cases are not discussed in detail,
but an insight into these areas is given. When going from one variable to many
variables, there is nothing called a unique bivariate or multivariate analogue of a
given function. Whatever be the criteria used, there may be many different functions
qualified to be bivariate or multivariate analogues of a given univariate function.
Some of the bivariate and multivariate H -functions, currently in the literature, are
also questioned by many authors. Hence, it was decided to concentrate on one
variable case and to put some multivariable situations in an appendix; only the
definitions and immediate properties are given here.

Chapter 1 gives the definitions, various contours, existence conditions, and some
particular cases. Chapter 2 deals with various types of transforms such as Laplace,
Fourier, Hankel, etc. on H -functions, their properties, and some relationships among
them. Chapter 3 goes into fractional calculus and their connections to H -functions.
All the popular fractional differential and fractional integral operators are examined
in this chapter.

Chapter 4 is on the applications of H -function in various areas of statistical
distribution theory, various structures of random variables, generalized distributions,
Mathai’s pathway models, a versatile integral which is connected to different fields,
etc. Chapter 5 gives a glimpse into functions of matrix argument, mainly real-valued
scalar functions of matrix argument when the matrices are real or Hermitian positive

ix



X Preface

definite. H -function of matrix argument is defined only in the form of a class of
functions satisfying a certain integral equation and hence a detailed discussion is
not attempted here.

Chapter 6 examines applications of H -function into various problems in physics.
The problems examined are the following: solar and stellar models, gravitational
instability problem, energy generation, solar neutrino problem, generalized en-
tropies, Tsallis statistics, superstatistics, Mathai’s pathway analysis, input—output
models, kinetic equations, reaction, diffusion, and reaction—diffusion problems where
H -functions prop up in the analytic solutions to these problems.

The book is intended as a reference source for teachers and researchers, and it
can also be used as a textbook in a one-semester graduate (post-graduate) course on
H -function. In this context, a more or less exhaustive and up-to-date bibliography
on H -function is included in the book.

Montreal, QC A.M. Mathai
Jodhpur, Rajasthan, India R.K Saxena
Vienna, Austria Hans J. Haubold
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Chapter 1
On the H-Function With Applications

1.1 A Brief Historical Background

Mellin—Barnes integrals are discovered by Salvatore Pincherle, an Italian
mathematician in the year 1888. These integrals are based on the duality principle
between linear differential equations and linear difference equations with rational
coefficients. The theory of these integrals has been developed by Mellin (1910)
and has been used in the development of the theory of hypergeometric functions
by Barnes (1908). Important contributions of Salvatore Pincherle are recently given
in a paper by Mainardi and Pagnini (2003). In the year 1946, these integrals were
used by Meijer to introduce the G-function into mathematical analysis. From 1956
to 1970 lot of work has been done on this function, which can be seen from the
bibliography of the book by Mathai and Saxena (1973a).

In the year 1961, in an attempt to discover a most generalized symmetrical
Fourier kernel, Charles Fox (1961) defined a new function involving Mellin—Barnes
integrals, which is a generalization of the G-function of Meijer. This function is
called Fox’s H -function or the H-function. The importance of this function is
realized by the scientists, engineers and statisticians due to its vast potential of
its applications in diversified fields of science and engineering. This function in-
cludes, among others, the functions considered by Boersma (1962), Mittag-I.effler
(1903), generalized Bessel function due to Wright (1934), the generalization of the
hypergeometric functions studied by Fox (1928), and Wright (1935, 1940), Kritzel
function (Kritzel 1979), generalized Mittag-Leffler function due to Dzherbashyan
(1960), generalized Mittag-Leffler function due to Prabhakar (1971) and multi-
index Mittag-Leffler function due to Kiryakova (2000), etc. Except the functions
of Boersma (1962), the aforesaid functions cannot be obtained as special cases of
the G-function of Meijer (1946), hence a study of the H-function will cover wider
range than the G-function and gives general, deeper, and useful results directly ap-
plicable in various problems of physical, biological, engineering and earth sciences,
such as fluid flow, rheology, diffusion in porous media, kinematics in viscoelastic
media, relaxation and diffusion processes in complex systems, propagation of seis-
mic waves, anomalous diffusion and turbulence, etc. see, Caputo (1969), Glockle

A .M. Mathai et al., The H-Function: Theory and Applications, 1
DOI 10.1007/978-1-4419-0916-9_1, (© Springer Science+Business Media, LLC 2010



2 1 On the H-Function With Applications

and Nonnenmacher (1993), Mainardi et al. (2001), Saichev and Zaslavsky (1997),
Hilfer (2000), Metzler and Klafter (2000), Podlubny (1999), Schneider (1986) and
Schneider and Wyss (1989) and others.

1.2 The H -Function

Notation 1.1.

— ; — , (ap,Ap)] _ . (a1,41),...(ap,4p)]. .
H(x)=H,"(2) = H,} [Z|(b:,qu) } =H,) [z B1.B1). (b Bo) ] H-function.
(1.1)

Definition 1.1. The H -function is defined by means of a Mellin—Barnes type inte-
gral in the following manner (Mathai and Saxena 1978)

_ . _ , (ap,4p)| _ , (a1,41),--(ap,4p)
H(x) = Hpg'(2) = Hpg [Z (b:,qu)] = Hy [Z (b1.B1) by Ba) }
1
- — [ e, (1.2)
2ni Jr,

where i = (—1)% ,2# 0,and z7° = exp[—s{ln |z| +i arg z}], where In |z| represents
the natural logarithm of |z| and arg z is not necessarily the principal value. Here

= TGy + B Tj= T —a; — A;5)}

O3s) = .
O = e TG — by — BTy (@) + Ayo)}

(1.3)

An empty product is always interpreted as unity; m,n, p,q € No with 0 <n < p,
l<m<gq,A;,B; € Ry,a;,bj e RorC,i=1,....,p;j=1,...,q.Lisa
suitable contour separating the poles

b.
g,-vz—( ’+V),j=1,...,m; v =0,1.2.... (1.4)
B

of the gamma functions I'(b; 4 sB;) from the poles

I —a; +k
wkkz(#),/\zl,...,n; k=0.12,... (1.5)

of the gamma functions T'(1 — a3 — sA4,), that is

Apbj+v)#Bj(ay—k—-1), j=1,--- m;A=1,....n; vk=0,1,2,...
(1.6)



1.2 The H-Function 3

The contour L exists on account of (1.6). These assumptions will be retained
throughout. The contour L is either L o, L1 Or L;jyoo. The following are the
definitions of these contours.

(i) L = L_« is aloop beginning and ending at —oo and encircling all the poles
of I'(b; + B;s),j = 1,...,m once in the positive direction but none of the
poles of T'(1 —a; — Ays),A = 1,...,n. The integral converges for all z if
@ >0andz# 0;or u =0and 0 < |z] < B. The integral also converges if

pw=0.z=p8 and NE) <-1, (1.7)
where
14 q
B= 1@ T1BH% ;. (1.8)
j=1 j=1
q 14
u = Bj— Aj, and (1.9)
i=1 i=1
q P _
5 — bj—Za,-erTq. (1.10)
j=1 j=1

(il) L = L4 is aloop beginning and ending at +o0o and encircling all the poles
of I'(1 —ay — Ays),A = 1,...,n once in the negative direction but none of
the poles of I'(b; + Bjs), j = 1,...,m. The integral converges for all z if

w<0andz# Oor u =0and |z > B. (1.11)

The integral also converges if the conditions given in (1.7) are satisfied.

(iii) L = L;yeo is a contour starting at the point y — ioco and going to y + ioco
where y € R = (—oc, +00) such that all the poles of I'(b; + B;s),j =
1,...,m are separated from those of I'(1 — a; — A;s),A = 1,...,n. The
integral converges if

1
a>0,|argz] < me, a # 0. (1.12)

The integral also converges if « = 0, Yy + R(§) < —l,argz = 0andz # 0

where . » . ‘
a=Y A;j— > Aj+ Y Bj— >  Bj (1.13)
j=1 Jj=1

j=n+1 j=m+1

A detailed and comprehensive account of the H -function is available from the
monographs Mathai and Saxena (1978), Prudnikov et al. (1990), Kilbas and Saigo
(2004).
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Existence conditions for the H-function. In many applied problems associated
with fractional differential equations and fractional integral equations, the solutions
of certain problems are obtained in terms of the H -function. The H -function natu-
rally occurs as solutions of such equations. In order to find the existence conditions
of the solution of the problem, we therefore need the existence conditions for the
H -function. The existence conditions for the H -function are enumerated below. It is
presumed that the condition (1.6) is satisfied throughout this book unless otherwise
stated.

Theorem 1.1. The H-function is an analytic function of z and exists in the follow-
ing cases:

Case l:q > 1,u >0, H-function exists for all z # 0, (1.14)
Case2:q > 1,u =0, H-function exists for 0 < |z| < B, (1.15)
Case3:q > 1,u =0,N() <—1, H-function exists for |z| = B, (1.16)
Case4: p > 1,u <0, H-function exists for all z,z # 0, (1.17)
Case 5: p = 1,u =0, H-function exists for |z| > B, (1.18)
Case6: p=>1,u=0and N(8) < —1, H-function exists for |z| = f,  (1.19)
1

Case7: o > 0,|argz| < 5710[, H -function exists for all z # 0, (1.20)

Case 8: 0o =0,yu + R(S) < —1, H-function exists for argz = 0 and 7 # 0.
(1.21)

In what follows
1 1

= ——p—=q. 1.22
c m+n 3P~ 54 (1.22)

Proof 1.1. The proof of the existence conditions can be obtained by finding the
convergence of the integral (1.2), which depends on the asymptotic estimate of ®(s)
at infinity. Such a result can be found by using the following asymptotic relation for
the gamma function I'(z),z = x + iy, x,y € R at infinity on lines parallel to the
coordinate axes given by Kilbas and Saigo (1999, p. 193):

|x 4+ iy| ~ \/27T|X|x_% exp[—x — x(1 —sign{(x))y/2], |x] > 00, (1.23)

and
X+ iy| ~ V2r |y T 2e T2y 5 o (1.24)

The proof of the above results (1.23) and (1.24) can be developed by making use of
the Stirling formula (Erdélyi et al. 1953, p. 47, 1.18(2))

1 1 1 139
T(2) ~ V2 F3e |14+ — _
@ e [+1k+2%£ 5184023

— 0(2_4)} , |argz] < m.
(1.25)
For details of the proof, see Kilbas and Saigo (1999).
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In order to prove Theorem 1.1, we first establish the following two lemmas.
These lemmas will then be applied in finding the asymptotic relations along the
lines 7y, 72 and 7,,, defined by

n={t+ipi:teR},n={+¢:te R}, ={y+it:teR} (126)

where ¢1,¢,,v € R. O

Lemma 1.1. Foro,t € R, there holds the asymptotic estimate
ut
Ot +io)| ~A<§) B s oo, (1.27)

where

=1
{ 3=1[B;R(b'1) 26—5)%(b_,-)]} {1_[’,1':1 e7lod; +Im(a ;)]

A= (2m) el 1 , (1.28)
{njpzl[A-;ﬁ(aj)—ze—S‘i(aj)]} ([T, ertes smon)
and
e \ 1l
1O +io)| ~ B (m) B ® 5 e, (1.29)
where

-1
{n?zl[B;ﬁ(l’./) 26—%(11_;)]} {ni:n-ﬂ err[crA_,--i—Im(a_,—)]}
B = (27) ed™m "

i

1
{ 5):1[14?(”") 26_%("./)]} {n’f’zleﬂ[aB_,--i-Im(b_,-)]}

i
(1.30)
and B, i and § are defined in (1.8), (1.9), and (1.10) respectively.

Lemma 1.2. Foro,t € R there holds the asymptotic relation

1©(0 + i) ~ Cle|** TR exp[—r{|t|a + Im(v)sign(r)} /2], |t| = oo, (1.31)

uniformly on o on any bounded interval in R, where
P

q
* 1_,. L
C = @m0 expl—c* —po — @7 [[ 47V VI BV 2. (132)
Jj=1 Jj=1

D=

where |1, 8, c* are defined in (1.9), (1.10) and (1.22) respectively, and

P

n m q
v:Zaj— Zaj-i-ij— Z b;.
i=1 i=1

j=n+1 j=m+1
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The Lemma 1.1 and Lemma 1.2 follow from (1.3), (1.19) and (1.20). By virtue of
the above Lemmas 1.1 and 1.2. it is not difficult to derive the following asymptotic
relations at infinity of the integrand of (1.2):

e Hlel |Z| ||
©(2)z°| ~ Bje?s “¥ (—) (—) (" s =1 +ig;er;,j=1,2,

|7 B
(1.33)
ast — —o¢;
e \ Ml B t
Q| ~ 4,8 (H) (H) 1M, s =1 tig; ey j = 1.2,
(1.34)
ast — +o0;
1©(2)z7%| ~ Cy exp[—y log |z| + 7 Im(v) sign(r)/2]|¢|"* ), (1.35)
xexp[—n|t|%+largz], s=y+iter, (1.36)

as |{] — oo. Here Ay and A,, B; and B, are defined in (1.24) and (1.28) with ¢
replaced by ¢; and ¢, respectively, and C; by (1.28) with o replaced by y.

The conditions for the existence of the H -function then follow as a consequence
of these asymptotic relations.

Remark 1.1. Existence conditions for the H -function are given by Braaksma (1964,
p- 240), Mathai (1993c) and Kilbas and Saigo (2004). The conditions described here
are based on the results given by Kilbas and Saigo (1998, p. 44), also see Kilbas and
Saigo (2004); which provide slight improvement over the conditions given in the
theorem initially given by Prudnikov, Brychkov, and Marichev (1990, Sect. 8.3.1,
p. 627).

Note 1.1. Due to the presence of the factor z~° in the integrand of (1.2), the
H -function is, in general, multivalued but one-valued on the Riemann surface of
Inz (Braaksma 1964).

Note 1.2. The convergence of a general Mellin—Barnes integral is already given in
the book by Erdélyi et al. (1953, pp. 49-50). Asymptotic estimates for the function
O(o +it) and its derivative ®' (o +i1) as |¢| — oo are given by Kilbas et al. (1993).

Remark 1.2. An extension of the definition of the H -function has been given by
Skibinski (1970), Inayat-Hussain (1987), and Siidland et al. (1998). Definition of
some of these extensions will be presented in the Appendix.
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1.3 Illustrative Examples

The simplest examples of the H-function involve the exponential function,
Mittag-Leffler functions (Erdélyi et al. (1955, Sect. 18.1); Mittag-Leffler (1903)),
and generalized Mittag-Leffler function (Prabhakar 1971), which are directly appli-
cable in fractional reaction, fractional relaxation and fractional reaction—diffusion
problems of science and engineering. These functions will be introduced with the
help of the following examples:

Example 1.1. Evaluate

1 y+ioco

@) = — (s)=ds. (largz < sz £0),  (137)
2mi 2

y—ioo

where the path of integration is a straight line 9 (s) = y, ¥ > 0, lying on the right
of the poles of T'(s) givenby s = —v, v = 0,1, 2, ... and express it in terms of the
H -function.

Solution 1.1. Evaluating the integral as the sum of residues we have

f@) =2 lim (s + W ()"

[e.e]
-D...
:Z lim CRICh ity SF(S)Z_S
s>y s+v—1)---s
[e.e] o0
) F's+v+1) _ -1y -
— 1 A S: V: Z, 138
§s—l>n—lv(s+v—l)...sz ; ! ¢ © ( )

On comparing the equation (1.37) with the definition of the H -function (1.2), we
obtain the relation

e = Hyf [zl o] (1.39)

Note 1.3. Equation (1.37) gives the Mellin—Barnes integral for the exponential
function e%. This integral is called Cahen—Mellin integral and is very useful in
evaluating integrals involving product of two exponential functions or one exponen-
tial function and one special function in a compact form. This integral is also useful
in the study of statistical distributions.

Example 1.2. Prove that

y+ioco

1-z7%= m oo T (=T (s + a)(—z)°ds, |arg(—z)| < 7. (1.40)

where 0 < R (y) < R(a) and the contour is a straight line N (s) = y, separating the
poles of T'(—s) at the points —s = —v, v = 0, 1, ... from those of I'(s + a) at the
pointss = —a—v, v=20,1,....
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Solution 1.2. As in the preceding example, evaluating the integral as the sum of
residues we have

1 y+ioco

271 T@) Jy—ioo I'(=5)T(s + a)(—z)*ds

o0 (o]

1 DT +v)(=" @y,
T T ; V! _;) e
=1Fo(a; ;200 =(1-27% ]z <1, (1.41)

where (a);, a € C,k € Ny, is the Pochhammer symbol or shifted factorial, de-
fined by

@py=1,@r=a(a+1)...(a+k—1),a#0

r k
= M, (1.42)
I'(a)
when I'(a) is defined.
The result (1.42) can be expressed in terms of the H -function as
_ 1 1,1 (1—a,1)
(=97 = Al [l (1.43)
Notation 1.2. E,(z): Mittag-Leffler function (Mittag-Leffler 1903).
Definition 1.2.
E = —— a0e C,N(a) >0,ze C. 1.44
(@) kX_%F(ak-ﬁ-l)a @)>90.z (149

Notation 1.3. E, g(z): Generalized Mittag-Leffler function (Erdélyi et al. (1955),
Sect. 18.1, Wiman (1905)).

Definition 1.3.

0 k

Z
Eup(2) = ;; m,a,ﬁ €C, M) >0,RPB)>0,zeC. (145)

Note 1.4. Both the functions defined by (1.44) and (1.45) are entire functions
of order.

1
p=— and typeoc = 1.
o
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Notation 1.4. E;’ 8 (2): Generalized Mittag-I_effler function.

Definition 1.4.

o k
(Vkz
E! =) — = () >0,RPB)>0,NR(y) >0,zeC. (146
(0= 2 g 0> 0N > 00 > 0.6 C (140
This function is also an entire function with p = m, see Prabhakar (1971).
Example 1.3. Evaluate the Mellin—Barnes integral

1 [rHerErd-s)
J T

f()_2z —ice (1 —as)

(—z)"*ds, |arg 7| < 7, (1.47)

where « € R and show that f(z) is the Mittag-Leffler function Ey(z) defined by
the series (1.44).

Solution 1.3. We have

o0 o0
. +ETEr1—ys) s bl
= 1 — = - 1.48
@ V;si“—lv Fa—ay) 9 ;F(av-l—l) (49
1,1 (0,1)
= Eo(x) = Hy} [_Z (0,1),<o,a)] :
on comparing the results (1.2) and (1.48).
Example 1.4. Establish the Mellin—Barnes integral
1y rErd-s
Eqp(z) = Tord -3 (—2)°ds, |arg z] < m, (1.49)

27 y—ico L'(B—as)

where @ € RT,8 € C,%(B) > 0and E, () is the generalized Mittag-Leffler
function defined by the series (1.45).

Solution 1.4. Evaluating the contour integral as a sum of residues, we find that

IRl N N N C+IEOTA -9,
e M e Zsiv Mgy
:éF(a T - Pes®
= Hll;zl[ O M] (1.50)

where we have used the definition of the generalized Mittag-Leffler function (1.45)
and the definition of the H-function (1.2).
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In a similar manner, we can prove the next example.

Example 1.5. Prove that the generalized Mittag-Leffler function F Z 4 (z) defined by
(1.46) is represented as a Mellin—Barnes integral in the form

1 THO TSI (y — )

WTO) Jyies TB—ay) O O gl <m (15D

Ez,ﬂ (@) =

wherea € R, B8,y e C,R(B) >0,y #0,—1,-2,...
Solution 1.5. Proceed as in Solution 1.4 to establish the result.

Note 1.5. Applications of the generalized Mittag-Ieffler function Ey (z) in finite-
size scaling in anisotropic systems can be found in the papers by Tonchev (2005,
2007) and Chamati and Tonchev (2006). This function is studied by Prabhakar
(1971), Kilbas et al. (2002, 2004) and Saxena and Saigo (2005).

Example 1.6. Evaluate the following reaction rate integral of physics in terms of the
H -function.

o0
I(a,b,c;p) = / 1L exp(—bt — ct™P)dr, (1.52)
0
where a, b, ¢ > 0.

Solution 1.6. Expressing the right hand side of the above expression with the help
of the convolution property of the Mellin transform and then taking the inverse
Mellin transform one has

1 1 y+ioo

o0
/ [a_l exp(—b[ — C[_p)d[ = — F(a + S)r (i) (bC%)_SdS
0 p

pb? 2mi fy_ino

= L [bcﬂ

o (1.53)

|(0 1),(0,1 )]

Remark 1.3. The integral of this example defines the Kritzel function (Kritzel
1979). For a detailed account of this function, the reader may consult the book by
Kilbas and Saigo (2004). Further, this integral is useful in the study of nuclear reac-
tion rates in astrophysics, see Anderson et al. (1994), Haubold and Mathai (1986),
Mathai and Haubold (1988) and Saxena et al. (2004), etc.

Following a similar procedure, it is not difficult to prove the next example.
Example 1.7. Prove that the Mellin—Barnes integral

1 [y () 1\"7>
J _— | = ds, 0, 1.54
v(@) = 27i y—ico LA +v—y5) (2Z) Y= ( )
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defines the Bessel function of the first kind, Jy, (z), defined by

o0

B (—Dk Z\v+2k
J(@) = kX:(:) T +v+ ik (5) . (1.55)

1.4 Some Identities of the H -Function

This section deals with certain basic properties of the H-function. Many authors
have investigated various properties of this function, and the researches carried out
by Braaksma (1964), Gupta (1965), Gupta and Jain (1966, 1968, 1969), Bajpai
(1969a), Lawrynowicz (1969), Anandani (1969a, 1969b), Kilbas and Saigo (2004),
Chaurasia (1976b) and Skibinski (1970) will be discussed here.

The results of this section follow as a consequence of the definition of the
H -function (1.2) by the application of certain properties of gamma functions, hence
their proofs are omitted.

Property 1.1. The H -function is symmetric in the pairs (a1, A1), ..., Ay, An),
likewise (an+1, An+1), e (ap, Ap),' in (b], Bl), e (bm, Bm) and in (bm+1,
Bpiiy1).....(bg. By).

Property 1.2. Ifone ofthe (a;,A;),j =1,...,nis equal to one of the (bj, B}),
j =m+1,...,9 or one of the (bj,Bj)] = 1,...,m is equal to one of the
(aj,A;), j =n+1,..., pthen the H-function reduces to one of the lower order
p and q, and n (or m) decrease by unity.

Thus we have the following reduction formulae:
gma [ (a1,41),.(ap,4p) ] _ ggmmn—1 [ (a2,42),....(ap A4 p) ]

p.q (b1,B1)ses(bg—1,B4—1),(a1,41) p—1,4q-1 (b1,B1),...,(bg—1,B4—1)
(1.56)

providedn > 1 and g > m; and

Hmn[ (al,Al)wn,(apfl,Apfl),(bl,Bl)iI _Hm—l,n [ (a,41),.n(ap_1,4Ap— 1)]
P4 (b1,B1),...,(bq,Bq) — T p—1,9-1 | *l(b2,B2),....,(bg,Bgq) ’

(1.57)

provided m > 1 and p > n.

Property 1.3. There holds the formula:

(ap,4p) (1-bg,B
Hy 26 ] = H"m[ et “p)} (1.58)
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This is an important property of the H -function because it enables us to transform

a Hfunction with 1 = 23—1 B; — Zp_l A; > 0and argz to one with 1 < 0

and arg and vice versa. It also helps in deducing the asymptotic expansion for the
H functton for the case p < O from the given result for this function for (1 > 0 and
vice versa.

Property 1.4. The following result holds:

(ap, ) _ , k (ap.kAp)
Hmn[ 2l o ] =k Hpy [Z \<b:,k3q")], (1.59)

where k > 0.

Property 1.5. There holds the formula

@p,Ap) (ap+odp,Ap)
SHY el nn ] = Hpd [ iomyan ] (1.60

where o € C.

Property 1.6. The following relation holds:

Hm,n+1 [ 0,¥),(a1,A41),....(ap,A p)] _ (_1)er+1,n [

(a1,41);...(ap,A4p)(0.y)
pHLg+1 | “I(b1,B1),....(bg,Bg),(r,¥) ptlg+l

B1)sens(by . Bg)
(1.61)

where p < g,y > 0.

Property 1.7. The following relation holds:
gmtin [ |(t11 ,Al),~~~,(ap,Ap),(1_r,V):|=(_1)rHm,n"rl [ |(1_r,y),(al,Al),~~~,(ap,Ap):| ,

Hpi 1 g1 [E113),51 By Yoo (g By PH1La+1 [*(by,B)) by Bg),(1,7)
(1.62)

where p < g,y > 0.

Note 1.6. In the above results (1.58) to (1.62), the branches of the H -function are
suitably chosen.

Property 1.8. The multiplication formula for the H -function is given by:

(ap,Ap)| _ (1-0)c* 8+1 gyem.t —unt |[(Aap),4p)
Hmn[ |<b:,3qp)} = @) T Hyyly [(Z’ ") ‘(A(z,b:),qu)]’ (1.63)

where t is a positive integer, (L, and c¢* are defined in (1.9), (1.10), and (1.22)
respectively, and (A(t, 8,),yr) represents the sequence of parameters

5 8 +1 8 +1t—1
(Tr?yr)a( rt 7)’7‘)7"'3(%7)’7‘)' (1'64)
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For similar results see Gupta and Jain (1969). The following properties of the
H -function follow from the definition itself.

Property 1.9. Fora,b,c € C, there holds the formulae:

, (a,0),(a2,42),....(ap,4p)| _ mn—1[_(a2,42),....(ap,Ap)
Hy'y [Z\@q,sq) ”” } =T -a)H, [Z\@q,gq) e ] (1.65)

where W(a) < 1 andn > 1;

m,n (al,Al)ww(ap,Ap) _ m—1,n (al,Al)ww(ap,Ap)
Hyd [Z (b,O),(bz,Bz),...,<bq,Bq)] =T H)p [Z (b2,B2),...,(bq,Bq)]’ (1.66)

where R(b) > O0andm > 1;

gmn [Z(al,An,...,(apﬂ,Apfl),<a,0)]_ | — [(al,Al),...,wpfl,Apfl)]

pa |*l®1.B1).....(bg Bg) T T(a) P [Fb1BY)..(Bg By
(1.67)
where R {a) > 0 and p > n.
m,n (al,Al)ww(ap,Ap) _ 1 m,n (al,Al)ww(ap,Ap)
Hy4 [Z (bl,Bl),...,(bqfl,qul),(b,O)] T T{-bh) Hy g1 [Z (bl,Bl),...,(bqfl,qul)]’

(1.68)
where R(b) < 1 and g > m.

1.4.1 Derivatives of the H-Function

The following formulas immediately follow from the definition of the H-function
and are useful in the study of fractional integrals and derivatives of the H -function.

d\” _
p—1pgmn [ olap,Ap) N _ _p—n—1ymn+1 (1-p,0),(ap,Ap)
(d_z) S [az (b B0) ]}_Z TTH T g ["Z|(bq,Bq),(1fp+”n,a)

_(_1\np—n—1gm+ln o|lap,4p),(1—p,0)
=(-D" Hyy g+ [“Z |(1—p+n,a),(bq,Bq) :

(1.69)

where a,0 € C,0 > 0.
Lawrynowich (1969) has given the following four formulae for the successive
derivatives of the H -function:

d’ —(Vﬂ) mmn |y (a1,41)s.-(ap,Ap)
i {Z H | G m e ]

,
. YN —0+v 2 pmon [y @1.41)ap . Ap)
= (_B_l) z PUHDY [Z ‘(r-i—bl,Bl),...,(bq,Bq)]’ (1.70)
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where m > 1,y = By forr > 1;

A" 4 5L) o [y @A) (ap,4))
- s Y 1,41)5-5\8psAp
azr {Z PaTHpy [Z |(b1,B1),...,(bq,Bq)i|

,
(7YY e ma [ y 1@, 41) el p,Ap) }

= (Bq) 2 CH G 1 G180 1By Dby B |+ TD
where m < q,y = B, forr > 1;

d" ( _qU-an, @y AT (a Ay)
- a m.n yilar,41),...(ap,4p
dz { L THp [Z (bl,Bl),...,(bq,Bq)]

,
_(_ —r+r Sy o [y (@1 =1 A (ap Ap)
—( A_l) z Hp [ s ] 02

wheren > 1,y = A forr > 1;

R VH [ _y|<a1,A1>,...,<ap,Ap)]
dz" (b1,B1).....(bq,By)

.
(YN ety m,n[_y (al,Al),...,(apfl,Apfl)xap—r,Ap)]
_(A,,) z »THRG |z ‘(bl,Bl),...,(bq,Bq) ;

(1.73)

where p > n,y = Ap forr > 1.
The results (1.70) to (1.73) for r = 1 are immediate consequences of the differ-
ential formulae given by Anandani (1969a).

Remark 1.4. The results of Lawrynowicz cited above are in a compact form and are
convenient for practical application.

Next we give three-term differentiation formulae for the H -function.

{Hmn [ (al,Al)wn,(ap,Ap)]}
‘4z (b1.B1).....(bg.By)

_nlar—1) 21(@1, A0 (@ p Ap)
R LR gt

Ay (51,B1),....(bg .Bg)
(a1—1,41),(a2,42),...(ap,Ap)
+ A_Hmn[ b1.B))lby By } (1.74)
where n > 1;
i {Hm,n [ n (al,Al),nu(ap,Ap)]}
‘4z 2 l(b1 BY).nby . By)
_n@p—1 {Hmn[ (al,Al),...xap,Ap)]}
Ap (b1,B1),....(bgq . Bq)
N yma [_gilan,AD,(ap1,4p-1)(ap—1,4p)
A,,H [ (1.B1)sv by By) } (1.75)
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wheren < p—1;

d o mn [n@AD . (ap.4p)
“az {H [Z (bl,Bl),...,(bq,Bq)]}

771)1 {Hmn [ (al,Al)wn,(ap,Ap)]}
- B1 (B1.B1)swes(Bg.By)

m,n (al,Al)ww(ap,Ap)
~ B S-Hy [ (1+b1,Bl),(bz,Bz),...,(bq,Bq)] : (1.76)

where m > 1;

m,n (al’Al)ww(ap,Ap)
{H [ (b1,B1),....(bgq . Bg) ]}

771) {Hm N [ (al,Al),nu(ap,Ap)]}

Bq (b1.B1)...(bg . By)
m,n (al,Al),~~~,(ap,Ap)
+ B_H [ (bl,Bl),...,(bqfl,qul),(bqﬂ,Bq)] ’ (L.77)

where m < g — 1.
The above results can be proved with the help of the following formulae:

—A1SF(1 —da; — A1S) = (Cll — 1)F(1 —ay — A1S) + F(2—a1 — A1S), (1.78)

Aps o ap—1 1 (1.79)
T(ap,+ Aps)  T(ap+ Aps) T(ap— 1+ Aps)’ '
—B1sI'(b1 + B1s) = b1I'(b1 + Bis) —I'(1 + b1 + Bys), (1.80)
and
Bys by 1
— = + , (1.81)
I'(l—bg — Bygs) TI'(1—=>by— Bys) I'(=by— Bys)
which readily follow from the property of the gamma function
Fz+ 1) =z @). (1.82)

Nair (1972, 1973) has given four formulae for the derivative of the H -function. His
results are the extensions of the formulae proved earlier by Gupta and Jain (1968).
One of the formulae proved by Nair (1972) is the following:

d d s pyma [ k)@ A (ap,Ap)
(xa — cl) (xa — c,) {x Hp,q [zx (b1.B1), by By) ]}
Hm st h (Cl—S,h),~~~,(Cr—S,h),(al,Al),~~~,(ap,Ap)
prratr [ZX 1By ,B)s (b By) (1 =5+ 1,h) . (cr—s+1,h)

(1.83)

where i > 0.
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Whenc; =c¢p =--- = ¢, =0, (1.83) reduces to a result due to Gupta and Jain
(1968, p. 191). Oliver and Kalla (1971) have derived four differentiation formulae
for the H -function which extend the results of Anandani (1970c), which itself are
the generalization of the results due to Goyal and Goyal (1967a). One of the results
proved by Oliver and Kalla is the following:

dr
dx”

, hilar,41),...(ap,Ap)
{lefqn [(Cx + )| Gy By b B ]}

r

N ¢ mp+1 10,1, (ay,A1),....(ap,Ap)
T extdy Hy g+ [(Cx F DYy By b B ) } . (184

where ¢ and d are complex numbers and / is real and positive.

Note 1.7. We note that partial derivatives of the H -function with respect to the pa-
rameters are investigated by Buschman (1974b).

1.5 Recurrence Relations for the H -Function

Gupta (1965) has obtained four recurrence formulae for the H-function by the
method of integral transforms due to Meijer (1940, 1941). One of his results is
given below.

m,n (al,Al)wn,(ap,Ap) _ m,n (al,Al),(a2_1,Al),(03,A3),~~~,(ap,Ap)
(a1 —a2)Hyg [Z (bl,Bl),...,(bq,Bq)] =Hpg [Z (b1.B1).....(bg.Bg) ]

_ Hm,n [Z (al_I,Al),(‘12,A2),~~~,(ap,Ap)]
P4 (b1,B1),-.-,(bg,Bq) ’

(1.85)

where n > 2.

Anandani (1989) has given six recurrence relations for the H -function which
follow as a consequence of the definition of the H -function (1.2). Two such results
are enumerated below:

(bl ,Bl),m,(bq ,Bq)

(141 —a1 By + B1)H, ) [Z (al’Al)""’(ap’Ap)]

_ m,n (a1—-1,41),(a2,42),....(ap,Ap)
= Bl [Z (B1.B1).on by By) ]

(a1,41),...(ap,Ap) i|

+AHLg [Z (1451, B1),(b2,B2)....(bq . By) (1.86)
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where m,n > 1;

s (a1,41),-(ap,Ap)
(bgAq —aqBgq + By)H ' [Z (B1,B1),...(bg,By) }

— Bqu,n [Z (aq—1,Aq),(a2,A2),~~~,(ap,Ap)i|

p.q (b1,B1),...,(bg,Bg)
B ma [ _1(@1,41),...(ap,4p)
AgH [Z (bl,Bl),m,(bqfl,Bq*l)’(bq+1’Bq)i| ’ (1.87)

wheren > 1,1 <m < g — 1.

For further results on recurrence relations of the H -function, see the work of
Bora and Kalla (1971a), Jain (1967), Srivastava and Gupta (1970, 1971), Raina
(1976), and Raina and Koul (1977). A set of contiguous relations for the H -function
are given by Buschman (1974b).

1.6 Expansion Formulae for the H -Function

Expansion formulae for the H -function are given by Lawrynowich (1969), Raina
(1979), and Kilbas and Saigo (2004). The four expansion formulae for the
G-function due to Meijer (194 1a) have been extended to H -functions by Lawrynow-
icz (1969) by using a method analogous to the one adopted by Meijer (1941a) for
the G-function. The results are the following:

(i) Let m,n, p, and g be nonnegative integers such that | <m < g, 0 <n < p.
Further, let A;, j = 1,...,pand B;, j = 1,...,q be positive numbers and
aj, j =1,....,pand bj, j = 1,...,q be complex numbers satisfying the
condition (1.6) and . > 0, where p is defined in (1.9). Then if w and 7 are
complex numbers such that @ # 0 and 1 # 0, then the following results hold:

m,n (al’Al)ww(ap,Ap)
Hyy [’7“) (bl,Bl),...,(bq,Bq)]

1
o L= 1PD) " in [ (@A), ap )
=" Y ey [0l B e b ] (189)
r=0
L
where 7 is arbitrary for m = 1, and for m > 1, [n81 — 1| < 1, arg(nw) =
L L
Brarg(n ") + argo and [arg(177)] < :
m,n (a1,41),..(ap,Ap)
Hy4 I:nw‘(bl,Bl),...,(bq,Bq)]
(bq)oo(’?l%“ DM @1,41),(ap, A p)
— Bg N T ) pgmn ap,Aap)s..»\ap,Ap
=m Z 1 Hpg [") (bl,Bl),...,(bq,l,Bq,l),(r+bq,3q)]’
r=0

(1.89)
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1

L L L
where g > m, |nB4 —1| < larg(nw) = Byarg(nBe )+argw, and [arg(n B [<F;

Hmn [ (al’Al)wn,(ap,Ap)iI
Pq (b1,B1),.-.,(bg,Bq)

(G2 T (1—77 Al) (a1=r,41).a2,42) ... p . Ap)
=1 Z ,,q[ (b1.B)).Abg.Ba) p]’
(1.90)
1 1
wheren > 0, R(nA1) > 1, arg(nw) = Alarg(nAl)+argw and |arg(n1)[<F;

Hm,n [ (al’Al),~~~,(ap,Ap)i|
P (b1,B1),....(bgq . Bq)

(ap 9}

Z(n Ay —1) Hmn[ (al,Al),...,wpfl,Apfl),wp—r,Ap)}
(b1,B1),...(bg . Bg) ’

(1.91)

e e 1
where p >n, R(nir) > %, arg(nw) = Aparg(n4r )+argw and |arg(n1r )| < 3.
By virtue of the following transformation formula for the Gauss hypergeometric
function (Erdélyi et al. 1953, 2.10(1))

F'c)'(c—a—b)
g b;c;z) = g b; b— I;1—
2 1(61, ’C’Z) F(c—a)l"(c—b)z 1(61, ,a+ ¢+ 5 Z)

re)yri@a+5b—-c)

(1-2)¢" P, Fi(c—a, c—b; c—a—b; 1—7),

I'(a)I'(b)
(1.92)
for |arg(l — z)| < @ we find that
i (@)n ML [Z (ap,Ap),(chn,y)}
p+1.g+1 |2l(b+n,y),(b4.By)
_T(—a—b i (@ (=2 mtin [ (ap,Ap>,<c—a,y)]
T Te—b) S atb-ct), nat e [Henn eos
Ta+b—c) — c—b | — g)c—a—btn
n ( ) )3 (c=by (1-2
'(a) = {(c—a—b+1), n!
m+1,n (ap,4p).(b,y)
X Hp\y g [ (cin,;’:) (bq,Bq)] (1.93)

where a,b,c € C,y > 0, |arg(l — )| < 7, N(c—a—b) > 0if z = 1.
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1.7 Asymptotic Expansions

The behavior of the H-function for small and large values of the argument has
been discussed by Braaksma (1964) in detail. Explicit power and power-logarithmic
series expansions for the H-fucntion are given by Kilbas and Saigo (1999, 2004). In
this section we present some of their results which are useful in applied problems.
Asymptotic expansions of the H -function are discussed by Dixon and Ferrar (1936).
Convergence of the Mellin—Barnes integrals are recently discussed by Paris and
Kaminski (2001, p. 63).

Theorem 1.2. Let o and p be as given in (1.13) and (1.9) and let the condition
(1.6) be satisfied. Then there holds the following results:

(i) If u = 0o0rp < 0,0 > 0,|argz| < %na then the H-function has either the
asymptotic expansion at zero given by

Hp'l'(2) = O(2°), |z| = 0, or (1.94)
Hy(2) = O @M, |z — 0. (1.95)
Here,
R(b;
¢ = min [M} : (1.96)
I<j=m | B;

and N is the order of the poles £ ;, in (1.4) to which some other poles of I'(b; +
B;s), j =1,...,m coincide. Also for p<0,a =0

HI (@) = 0@%), |z — 0. |arg(z) < €*, (1.97)
Rb:) R L
0 = min |: (j), ()+2i|, (1.98)
1<j<m Bj I,L

and €* is a constant such that

0<e*<” min  (A;, By). (1.99)

2 1<j<m;m+1<k=<q

(ii) If w < 0or u > 0,00 > 0O then the H-function has either the asymptotic
expansion at infinity given by

Hyo (@) = 0(%), |z| —> oo, or (1.100)
HI (2) = 0 In@) M), [z] - oo, (1.101)
N(a;) -1
d = min [M} (1.102)
1<j=n A;
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and M is the order of the poles w,y in (1.5) to which some of the poles of
I'l—a; —Ajs), j =1,...,n coincide. Also for 1 > 0,0 =0

H M z) = 0(2°), |z] = oo, |arg(z)| <, (1.103)
Ra)—1 RE) + L
p = max [ @)=1 @ 2}, (1.104)
1<jzn| A 1

and € is a constant such that

b4
O<e< — min (A;, Br). (1.105)
2 n+l1<j<p;l<k<m

For n = 0 the H -function, for real argument x, vanishes exponentially for large x
in certain cases. The case m = 0 is also discussed. Let

m 14
t=Y Bj— > A (1.106)
j=1

Jj=n+1

Theorem 1.3.

(i) Let n = 0,0, B, 1,8 and t be given by (1.13), (1.8), (1.9), (1.10), and (1.106)
respectively. Further, let it > 0,a > 0, € be a constant such that 0 < ¢ < =&,
and the condition (1.6) and A;(1 —a; + k) # Ai(l —a; +A),i # j,j =
1,...,n;k, A € Ny are satisfied then for real x there holds the following asser-
tion: We have

H;”’qo(x) =0 (x[m(8)+%]/u) exp |:Cos (z) Mﬁ_ﬁxﬁ} , X = o0o. (1.107)
’ I

In particular,
HES () = O (POTm ) exp[—ppiinii |, x > 00, (1108)

(ii) Let m = 0,a, B, i, and & be given by (1.13),(1.8),(1.9) and (1.10) respectively.
Further, let < 0, > 0;€¢* be a constant such that 0 < €* < % and the
condition (1.6) and B;j(b; + k) # Bi(b; + A),i # jii,j=1,....mk,A €
Ny are satisfied. Then for real x there holds the following assertion: We have

HE’Z(X) =0 (x_[m(SH%]/'“') exp [cos (%) |/L|,3%X_%i| , X — 0+,
: 0

(1.109)

n q
=3 A;— > B,
j=1

Jj=m+1
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In particular,

HOL(x) = ( ‘[m(m%”'“')exp [—mmw ‘%], X 04. (1.110)

Remark 1.5. Power logarithmic expansions in particular cases of the H-function
H(f’l? and Hﬁ’g are investigated by Mathai (1973).

1.8 Some Special Cases of the H -Function

Notation 1.5.

G() =G, (a=G,7 |z ( Z") GoT 2 ( Z:Z;’) Meijer’s G-function

or the G-function. (1.111)

Definition 1.5.
Gl = Gy = G (i) = G (el

0 / {[T7= T s + 9} {[T)—i T(1-a;-5)} o
L{l_[ ’

27 |t DU = by =9 M1y T +9)]
(1.112)
where 0 <m <g,0<n <g;a;,j=1,...,pand b;,j = 1,...,q are complex
numbers and are such that
a;j—bp#0,1,...;j=1,....nsh=1,...,m. (1.113)
The parameters are such that the points
s=—=0bj+v),j=1,....mve Ny, (1.114)
and
s=—(a;—v—=1),j=1,...,n;v e Ny, (1.115)

are separated. Here L is the same contour taken for the H -function defined by (1.2).

A detailed and comprehensive account of the theory and applications of the
G-function is available from the monographs written by Erdélyi et al. (1953,
Sects. 5.3-5.6), Luke (1969), Mathai and Saxena (1973), Mathai (1993c), Prudnikov
et al. (1990, Sects. 8.2 and 8.4). The G-function itself is a generalization of a
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number of known special functions occurring in applied mathematics and mathe-
matical physics. Special cases of the G-function can be found in Erdélyi et al. (1953,
Sect. 5.6), Luke (1969, Sects. 6.4, 6.5), Mathai and Saxena (1973a, Chap. II), and
Mathai (1993c).

Notation 1.6. ,Fy(z) = pFy(ar,...,ap;b1,...,b4;2): Generalized hypergeomet-
ric series.

Definition 1.6.

o0

(@) @p)e &
F,(z) = ,F,(ay,...,a,:b1,...,b4:2) = - 1.116
rFq(@) = pFy(ar p ¢:2) l;::o (b1)k - (bg)x k! ( )

where (@) is the Pochhammer symbol defined in (1.42);a;,b;, e C,i =1,...,p;
Jj=1....q:b; #—v,v e Ny.

Notation 1.7. E(oq,...,ap; B1.....B4:2): MacRobert’s E-function (Erdélyi et al.
1953, p. 203).

Definition 1.7.

. . 1 LB1,.-B
E@..apibr By = Gy 00

I [ T2 Ty +9)

= — Z %ds. (1.117)
2ni Jr Tl T +9)

Notation 1.8. J}'(z): Bessel-Maitland function or Maitland—Bessel function
(Marichev, 1982, Eq. (8.3)).

Definition 1.8.

- (—2)"
Ky —
T} (Z)_Zr(v+nu+1)n!' (1.118)

n=0

Notation 1.9. Jf ,(@): Generalized Bessel-Maitland function (Marichev 1983,
(8.2)).

Definition 1.9.

(o]

uo (1) \H2AH2n
J”J(Z)_,;)F(HWHJF1)r(n+/\+1) (3) (1.119)

Notation 1.10. Z(z): Kritzel function (Krétzel 1979).

Definition 1.10.

o0
Z;(z) = / " Lexp [—l” - ;] dr, ve C,p>0,%(z) > 0. (1.120)
0
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Notation 1.11. K, (z): Modified Bessel function of the third kind or Macdonald
function, see also Sect. 1.8.1.

Definition 1.11.

! = 2 1 —v—1 1
Ko@ =7 | expl=g (4 DB gy < o, (1.121)
2\" [
= 7\1/; (—) / e (2 — )7V 2dr, W) > 0, (1.122)
T (5 — V) Z 1

see Sect. 1.8.1 for more details.
Notation 1.12.
V(@) = p¥y [z‘ EZ:;;: ))] : Wright generalized hypergeometric function
{Wright (1935)).

Definition 1.12.

[17=, T(a, +nd;)
[15_,T(®; +nBj)nt’

o0
(ap,Ap)
2V, [z‘(b:’qu)] => (1.123)
n=0
where a;,b; € C and 4;,B; € R = (—oc,00); A;,B; #0,i =1,...,p,] =
Logs X5 B =20 4, > -1
Notation 1.13. ¢(a,b;z),o0V1(z): Wright function
Definition 1.13.
¢la,b;z) = gV, I:Z‘(b,a)i| = Z ma, b,ze C;uae R,a #0.

n=0

(1.124)

The H -function in the generalized form contains a vast number of analytic func-
tions as special cases. These analytic functions appear in various problems arising
in theoretical and applied branches of mathematics, statistics, and engineering sci-
ences. We present here a few interesting special cases of the H -function, which may
be useful for workers on integral transforms, fractional calculus, special functions,
applied statistics, physical and engineering sciences, astrophysics, etc.

HyY [Z|(b,B) = Bl exp (—z%), (1.125)
Hll,’ll [Z E(l),_ll)j’l) =W+ =TWlfo(v; ;—2),lz <1
(1.126)
102 i Z\4
H |5l )y ageny | = (5) @ 1127
02 [4 ‘( 1) (4 1) | 2 v(@). ( )
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where J,(z) is the ordinary Bessel function of the first kind, see also Sect. 1.8.1.

Z

2 a
Hgy [Zﬂ(%,l),(%L,IJ =2(3) K. (1.128)

where K, (z) is the modified Bessel function of the third kind or Macdonald func-
tion, see also Sect. 1.8.1.

2 oy
2,0 z (a v 1’1) . E a
H1,3 |:Z(a3,1)’<a+b,l>’(av1’1):| - (2) Yv(Z)a (1129)

2 2 2

where Y, (z) is the modified Bessel function of the second kind or the Neumann
function, see also Sect. 1.8.1.

(1—a,1) ['(a) r')
((1),1),(11—c,1)] = %@(d;c;_z) — e

which are called the Kummer’s confluent hypergeometric functions.

Hllzl [Z‘ 1F1(a; ¢;—2), (1.130)

12 [_{(1=a,1),(1=b,1) C(@)T®) o
Hy% el e ]ZWF(“””C’—Z)’ (1.13D)
T(a)T (b
= Mzﬂ b, a;c;—2), (1.132)
N

which are called the Gauss’ hypergeometric functions. The relation connecting
H -function and MacRobert’s E-function is given by

)1 (1,1),(81,1),....(Bg, 1) . .
HlL [Z (al,l),..l.,(ap,l) ’ ] = E@apibr Beia) (1.133)

The relation connecting Whittaker function and the H -function is given by

2
2,0 | ¥ ((p—k+1,1) I -
Hi [Z (P+m+%),(ﬂ—m+%,l)i| =2e 2Wiem(), (1.134)

see also Sect. 1.8.1. We now give the special cases of the H -function which cannot
be obtained from the G-function:

1,1 0,1)
Hiz [_Z‘m,n,(o,a)} = Ea(2) (1.135)

where E,(z) is the Mittag-Leffler function (Mittag-Leffler 1903).

1,1 (0,1)
Hiz [_Z‘m,n,(l—ﬂ,a)] = L (), (1.136)
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where E g(2) is also the Mittag-Leffler function (Mittag-Leffler 1903).

1

1,1 (1-y,1) oy
oy Fia [~2llonr g | = EL5@.90) >0, (1.137)

where E, 5(z) is the generalized Mittag-Leffler function.

1,0
H0,2 I:Z|(0’1),(—V’H)i| = Ji(2), (1.138)

where J/(z) is the Bessel-Maitland function or Maitland Bessel function (see
Marichev 1983, (8.3)).

2
11 [ G+3 o
His [4 0»+%,1),(%,1),(u(x+5)—x—v,u)} =J,,@, (1.139)

where J f ; (@) is the generalized Bessel-Maitland function (Marichev 1983, p. 128,
(8.2)),

1,p (1=ay,41),....(0=ap,4p) _ (ap,Ap)
Hy 1 [_Z (0,1),(1—b1,Bl),...,(l—bq,Bq)] = p¥q I:Z‘(bq,Bq)]

1 [ TOTI-, T — 49

_ 1 o) Sds, 1.140
ami )i T, T(b; — B;s) (m2)ds (1.140)

where ,W,(z) is the Wright generalized hypergeometric function (Wright 1935).

Hyy [z|(0,1),<z,f,])} =pZ(z).z2€C.p>0,veC, (1.141)

where Z} (z) is the Kritzel function (Kritzel, 1979). The following special cases of
the H -function occur in the study of certain statistical distributions.

Hz,O[ @+h -1, @+h-1,)] 27 (1 —gfitht
22 [Cl@=1,1),(@—1,1) 1= T(B1 + B2)
X o Fi{an+Bo—ay, B1; f1+P2;1-2), 17| < 1,
(1.142)
Lo
HY [z Pl R P R N S ) (1.143)
720 @+iD@+3.)] 4 F 21 1:1 1 1
2,2 Z‘(a,l),(a,l) =2 24 gaga 1 =2), | _Z| < L.

(1.144)
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1.8.1 Some Commonly Used Special Cases of the H-Function

(i) Psi function

_d T
V(z) = d—z(lnF(z)) = To (1.145)
= /oo[t_le_l —(1—e e dr. R(z) > 0. (1.146)
0

o0
==y +G-D D [k + D+ y ~ 05772156649 .. .. (1.147)
k=0

(ii) Zeta function (Riemann zeta function)

L@y =Y n7".%R(p) > 1, (1.148)
n=1

tp.a) = (n+a) R(p) > la#0,-1,-2,..., (1.149)
n=0

(iii) Whittaker functions
1
M, .2 :z”+%e_z/21F1 (E—u+v;2v+ 1;1) (1.150)

= e (L ;2 41— 1151
crettik St vi2v 4 L=z (L.151)

rqa+2
_ 1 (1+ Vl) e—z/zzv-i-%/ oY u—1
FG+v+u) TG +v-p) 0

1
x (1— l)”“‘_%dl, N (5 +v+ u) >0, |argz] < 7w (1.152)

T(3+v—pu) 2mi

c+ioo
ra+2v) e_z/zz”—"% 1 /
c—i00
F(S)F(%—i-v—u—s)
ra+2v-—ys)

(—z2)°ds, |argz] < w/2,2v £ —1,-2,...
(1.153)
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r'-2v) rQv)
W@ = =7 Muv@ + =7 Mu—(@, (1.154)
PTGy T TGt y)
1
E—/L;ﬁ v#0,—1,-2,...,2v#0,41,...
=Wy _(2) (1.155)
ha—z/2 00 P
- f‘fi/ eV hTI(1 4 LRy, (1.156)
TG+v—n)lo z
1
Eﬁ(§+v—u) > 0,|argz| <,
Ha—z/2 1 c+100
= — S —/ I'(-s)
F(3+v—p)T(3—v—p)27i Jemieo
1 1
XF(E—i-v—;L—i-s)F(E—v—u—i—s)z_sds (1.157)
3r 1
|argz] < —,—=4+pu+tv#0,1,2,...
2 2
(iv) Parabolic cylinder function
+1 1 Z2
Dy(x) =231z 2W—+H (—) (1.158)
2
= ()" e” 2) (1.159)
Zn
Ly C+l001" r l+s 2N\ S
23 +ig/2 ) G+3) (Z—) ds, (1.160)
2mi F(s -2+ 4 2
|argz| < Z
(v) Bessel and associated functions
o0
=) @z/2)" (z/2)" 22
J = = Fi |1 ;—— 1.161
v ;r!F(V—i-r-i—l) Te+ D%\ Ty (1161
Lo D)y
= — —=—<— (=] ds,—NW)<1,|argz] <mw
Ami Je—ico T (1 + 52) (2) ) |ared
(1.162)
1 ioo ['(—s) Z\Vv+2s
= — — (= ds, 0,0 —1. 1.163
i _l-ool"(v+s+1)<2) 52> 0,00} > (1.163)
o0
/22" (z/2)" 2
v ;r!F(V—i-r-l—l) T+ D\ Ty (1.164)
= e V2], (ze!™?), -7 < argz < /2. (1.165)
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1
272mz=3

b4
In(2) = =—Mom(©2. 1.1
(2) T+ 1) o @ (1.166)
c+ioco F(s—E)F(S-i-E) Z2 —s
Y, 2 2 (—) ds 1.167
O 2 oo Tl T () \ e
-3 <Nw) < -1,
2z ~3
Ki(z) = — Wo v (22) (1.168)
1 c+ioco v v Z2 -s 7
= T o r (s + 5) r (s — E) (Z) ds, |argz| < 5
(1.169)
(vi) Struve’s function
o0
( 1) (Z/z)v+2r+1
H = 1.170
v(2) g 3 RS (1.170)
(z/z)”+1 ( 3 3 z2)
S el A— A (S PRI S (1.171)
r3)rv+32) 2 2 4
(vii) Jacobi polynomials
D 1-
Pn(""ﬂ)(x) mzﬂ (—n,n + A+ 1; 3 X) (1.172)
nH” D 1
M (—n,n+/\;ﬂ+1; +X) (1.173)
n! 2
-1 d”
= CD e 40 L e Py
27 n! dx”
(1.174)
22—nz(n-]i€-a)(n+ﬁ)(x 1)n—k(x+1)k’/\:a+‘3+1.
k=0
(1.175)
(viii) Shifted Jacobi polynomial
R@P) (x)y = P@P) (2x — 1), (1.176)
(ix) Legendre polynomials
P (x) = (x2—1)" = POOx). (1.177)

27! dx™
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(x) Gegenbauer polynomial

(a+d) 2o + 1), p e

C, = .
@i, W
(xi) Chebyshev polynomials
n! (-3~
Ta(x) = Py 2 ()
(1/2)n

= cos(ncos™ ! x).
T)(x) =T,(2x — 1).
(n+ D! (1.1
e,
U (x) =U,(2x —1).

Un(x) =

(xii) Laguerre polynomials

X =0 AR
(@) N e X d
L0 = n!  dxn

_ (@+ Da
- n!

— tim p@d (1= 2,
B—00 n ,3

LO(x) = La(x).

(e—xxn-i-a)

1Fi(—=n;a + 15 x)

(xiii) Hermite polynomials

> d® >

H,(x) = (=1)"¢" @(e ).
dn

He,(0) = (1)"e™2 o0 @02),

X
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(1.178)

(1.179)

(1.180)
(1.181)

(1.182)

(1.183)

(1.184)
(1.185)

(1.186)

(1.187)

(1.188)

(1.189)

In this section, generalized Wright function is studied. Its existence conditions are
presented. In the preceding section the representations of the generalized Wright
function in terms of the Mellin—Barnes integral and the H -function were given.
Conditions for such representations are proved by Kilbas et al. (2002), also see

Kilbas et al. (2006).
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1.9.1 Existence Conditions

Existence conditions for the generalized Wright function are given by Braaksma
(1964, p. 326), also see Kilbas et al. (2002). In this section we will prove the exis-
tence conditions for the generalized Wright function. The main result is given in the
form of the following:

Theorem 1.4. Let p,q € Ny. Further, let a;,b; € C and A;,B; € Ry,i =
L,...,p;j=1,...,9

(i) If i > —1 then the series in (1.190) is absolutely convergent for all z € C.

(ii) If @ = —1 then the series in (1.190) is absolutely convergent for all values of
|z] < B and for |z| = B, NE) > % where |1 and § are defined in (1.9) and
(1.10) respectively.

Proof 1.2. Equation (1.190) is a power series
@t _ N
ap,
BRI ED IS (1.190)
n=0

F_ T(a; + A;n)

i=1

“ T T+ Byt

€ Ny. (1.191)

In order to investigate the asymptotic behavior of ¢, when n — oo we use the
Stirling formula for the gamma function (1.25) to obtain the following relations:

4

na\rAdi L4 1 |
I'(a; + nA;) ~ P (—) AT Pp= (2m)2 A0 2eTY, (1.192)
c

asn —>oofori =1,...,p;

nB; . 1
P+ By ~ 05 (2) B ubi=h 0y = @ BY e (119
€

asn —>ooforj=1,...,9;and

n
nl ~ (2m)} (’1) nte,n — oco. (1.194)
(]

Using the results (1.192), (1.193), and (1.194) into (1.191) it yields the estimate for

¢, in the form

n

(1) LA <, 1

w~R(- : : —[5+4]

n R(e) 1_[1Ajl HIB,- ’ nB2l 00, (1.195)
J= j=
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where p and § are defined in (1.17) and (1.18) respectively and

1
p 4j72 a—aj
R = @mett =t )

engzl(B?.i_ie—b_j)

(1.196)

The theorem now follows from the known convergence principles of the power
series in (1.190). O

Corollary 1.1. Let p,g € No. Leta;,b; € C,A;,B; e Ry,i =1,...,p;] =
1,...,q be such that the condition |1 > —1 is satisfied. Then the generalized Wright
function ,W,(z) is an entire function of z, where (i is defined in (1.9).

Corollary 1.2. Let a be real and b € C in the Wright function ¢(a; b;z) of (1.124).

(i) If a > —1 then the series in (1.124) is absolutely convergent for all 7 € C.
(ii) If a = —1 then the series in (1.124) is absolutely convergent for all |z| < 1 and
for|z| = 1.N(B) > 1 where pu is defined in (1.9).

Corollary 1.3. Ifa > —1 and b € C then the Wright function ¢(a, b; z) defined by
(1.124) is an entire function of z.

Corollary 1.4. If t > —1 and v € C then the Bessel-Maitland function T} (z)
defined by (1.118) is an entire function of z.

1.9.2 Representation of Generalized Wright Function

Notation 1.14.
sRy(a,b;c,w;u;z): Dotsenko function (Dotsenko 1991, 1993) (1.197)

Definition 1.14.

Te) < F(a—i—k)l"(b—i—k%)i

Ria,b;c,o;pu52) = 1.198
2Ry (a,b;c,w; 1 7) M@ o) & Ty T ( )
I'(e) (a,1),(5,2)
=7 e 1.199

T@T () I[Z (.5 } (1159

The existence of the generalized Wright function ,W,(z) defined by means of the
Mellin—Barnes integral (1.140) is given by the following results which yield dif-
ferent conditions for the representation (1.140) with the contours L = L_o,, L =
Lisxand L = L;y. By following a procedure similar to that adopted in proving
the existence conditions of the H -function in Theorem 1.1, the following theorems
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can be established on the contours Lo, L o and L; oo (defined in Sect. 1.1). For a
detailed proof of these theorems, one can refer to Kilbas, Saigo, and Trujillo (2002)
and also to a recent article by Kilbas et al. (2006).

Theorem 1.5. Let p,q € No. Leta;,bj € Cand A;,B; e Ry,i =1,...,p; ] =
1,...,q and be such that the conditions a’;:;k #* —vik,ve Ny,i =1,...,pand
(a; +k)A; #(a; +m)A;, i # j.j=1,...,pik,m € Ny be satisfied. Let either
of the following conditions hold:

w>—1,z#0, (1.200)

w=-1,0<lz <8, (1.201)
1

p=—1ld =B,%E) > 5. (1.202)

Then there exists the generalized Wright function ,Wg(z) defined by means of the
Mellin—Barnes integral (1.140), where the path of integration L = L_ separates
aj+k
4,

I =

all poles givenin s = —v,v € Ny to the left and all poles given by s =
1,...,n;k € Ny to the right.

Theorem 1.6. Let p,q € Ny,a;,b; € Cand A;,B; € Ry,i =1,...,p;] =
1,...,q and be such that the conditions on the parameters in Theorem 1.5 are sat-
isfied. Let either of the following conditions hold:

p<-—1,z#0, (1.203)

w=-11z > B, (1.204)
1

p=—1ld =B.%E) > 5. (1.205)

Then there exists the generalized Wright function ,Wy(z) defined by means of
Mellin—Barnes integral (1.140), where the path of integration L = L separates
all poles as stated in Theorem 1.5.

Theorem 1.7. Let p,q € Ny,a;,b; € Cand A;,B; € Ry,i =1,...,p;] =

1,...,q and be such that the conditions on the parameters as stated in Theorem 1.5
be satisfied. Let either of the following conditions hold:
1 —
p <1, larg(=2)| < Q== 2“) ,Z# 0, (1.206)
1
w=10+wy+ 5 < NR(8),arg(—z) = 0,z # 0. (1.207)

Then there exists the generalized Wright function ,Wy4(z) defined by means of
Mellin-Barnes integral (1.140), where the path of integration L = L;, o separates
all poles as stated as in the Theorem 1.5.
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If we combine the Theorems 1.5-1.7 then we arrive at the following theorem
given by Kilbas et al. (2006, p. 125), which gives the conditions under which the
generalized Wright function can be represented as an H -function by (1.140).

Theorem 1.8. Let p,q € Ny,a;,b; € Cand A;,B; € Ry,i =1,...,p;] =
1,...,q and be such that the conditions in Theorem 1.5 be satisfied, and let y € R.
Let L be the contour which separates all poles as given in Theorem 1.5. Further, let
either of the following conditions hold:

(i) L = L_y and either (1.200), (1.201) or (1.202) holds (1.208)
(ify L = Ly and either (1.203), (1.204) or (1.205) holds (1.209)
(iiiy L = Ly and either (1.206), or (1.207) holds (1.210)

Then the generalized Wright function ,W,(z) defined by (1.123) is represented as
an H -function by (1.140).

The utility and importance of the generalized Wright function is realized in recent
years due to its occurrence in certain problems of applied character. This function
is in the proximity of the H-function so its utility is further increased. Nearly all
the Mittag-Leffler functions and their generalizations can be expressed in terms of
this function; in this connection one can refer to the paper by Kilbas et al. (2002).
Various properties of the Wright function are studied by many authors in a series of
papers, some of which are enumerated below.

Wright (1933) showed the application of the results obtained for the function
¢(a, b; z) defined by (1.124) to the asymptotic theory of partitions. Dotsenko (1991)
developed fractional relations for the Wright function. Asymptotic relations and dis-
tribution of the zeros of this function ¢(a, b; 7) are investigated by Luchko (2000,
2001). Application of this function in operational calculus is given by Mikusinski
(1959) and in integral transform of Hankel type by Gajic and Stankovic (1976)
and Stankovic (1970). Mainardi (1994) derived the solution of fractional diffusion-
wave equation in terms of the Wright function. In this connection, the interested
reader can also refer to the book by Podlubny (1999, Sect. 4.12) and to the sur-
vey paper Mainardi (1997). Scale-variant solutions of some partial differential
equations of fractional order are given in terms of the special cases of the gener-
alized Wright function by Buckwar and Buckwar and Luchko (1998), Luchko and
Gorenflo (1998) and Gorenflo et al. (2000). Analytic properties of the Wright func-
tion with applications are obtained by Gorenflo et al. (1999). Existence conditions
and representations of the generalized Wright function in terms of Mellin—Barnes
integrals and the H -function are obtained by Kilbas et al. (2002). Wright function
representations of the Kritzel function are investigated recently by Kilbas et al.
(2006). Generalized Wright function has been used in the study of generalized
gamma functions by Srivastava et al. (2003). Generalized Wright function as a ker-
nel of an integral transform is recently studied by Saxena et al. (2006). Analytical
continuation formulae and asymptotic formulae for the generalized Wright function
are investigated by Kilbas et al. (20006).
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Exercises

1.1. Prove that if i (§) > 0, then

0 fedor) =2(=)" Klern?),
Gi)  FO08,a,7.—1) = TE) @+ yx)8, R(@ + yx) > 0, |’;—x| <1,

Ol_l 2

(i) f(x;a,a,y,—%)=21—5F<28>a—5exp( X)D_zs[@a)—iyx],

. s o? 1

(iv)  f(x:d,a,y,—2) =T(@E)(2yx)"2 GXP[—&/—X]D—S[OZ@VX) 2],
where f(x;8,a,y,¢) =a? H(i’zo [@®yx|(8, ), (0, 1)] (Buschman 1974a).
1.2. Prove that

—b1 1,n B (ap’Ap)J
BIZ Hp’q |:Z ‘(bq’Bq)

_$e =i |
5 T G s =2 ()
(Braaksma 1964, p. 279)

1.3. Prove that

dr
N a [ 81lap.Ap) N\ _ yma+i 5100.8),(ap.4p)
@ z dz" {H;’rfqn [X ‘(b:,Bq) ]} - Hp+1,q+1 [Z |(bq,Bq)’,)(r,8’; ] ’

dr _
- r , —§Gap,Ap) T _ rppma+1 —§1(1-18),(ap,Ap)
(i) z dz {H;,’fq” [Z |(b:,qu) ]} = (D" Hp ! g [Z ‘(bq,Bq),(lr,)S) ’ ] ,

giving the conditions of validity of the result. Hint: use the formulae

d’ ra+sé
Zr_(ZSS) — ( ) ZS(S’
dz” rad+sé—r)
and
oL oy = CUTCHS0) 5

dz" T(s6)
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Show that

d” s 5| (@p.4p) dmr pymantl §1(=2.8).(ap.Ap)
dzr ‘{Z Hygd [ﬁz ‘(b:,qu)]} = Hp g [51 ‘(bq,Bq),(f—xfb’)]

(Anandani 1970)
1.4. Establish the following identities:

. m,n+1 (,8),(ap,Ap) . m+1,n (ap,4p),(,8)
M) Hyiigh I:Z|(bq,Bq)f)(a-ii)r,8)i| = D" H Y g [z‘(a:r,g),(bq,Bq)]

(Anandani 1970, p. 191)

1

. 40| ((3+a1).(3-a1) N2 1 1
) Hy [z(0%1),(%,1)?(1,,1),(_1,,1) = (3) Was@ehWoup2h).

where W, p(z) and W_, ; (z) are Whittaker functions.
(i) gmat2 [Z| (—o.h),(a—0.h),(ap,Ap) }

p+2,9+2 (bg,Bg),(@—0—v,h) ,(—1—B—0c—v,h)

_ v pgm+1a+1 [ (—oh)(ap,Ap),(a—0,h)
= D Hpb 0 [Z (a—o—v,}:)),(b’;,Bq),(—l—ﬂ—o—v,h)]’

. m+1,n (ap,Ap),(@—B—1,h)
(V) Hpiigm [x (@B (bg. Bg) ]

_ gm+1ln (ap,Ap),(a+1,h) , (ap,Ap)
=Hpiy g |:x|(a:-2,2),(bq,Bq)i| —(B+2H Y [X‘(b:,qu)]

(Anandani 1969).
1.5. Prove that

d d S rym.,;n hlap,Ap)
(ax - Cl) (ax - C’) {x Hy4 [zx (bq.Bq) ]}
s mntr [k ((er——1)ler—S— 1), (ap Ap)
=x"Hp [ [Zx (b Bg)(Cr—8s)seonlcr —5. ) p}’

where 4 > 0 and the symbol %x indicates that the function of x in front of it is
first multiplied by x and then the product is differentiated with respect to x. Hence
deduce the following result:

d d + d +(r—1)
dxx C dXX C e dXX C r e
% {X86+C_1H;'f’qn [the |(amAp)i|}

(bg,Bq)

1. 8et+c—1 gymn+1 he |(1—r=8,h)(ap,Ap)
=ex Hy L+ [Zx ‘(bq,Bq),(l—S,h)

provided e # 0,4 > 0.
(Nair 1972)
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1.6. Establish the following differentiation formulae:

Y niap.Ap)
0 —Hpy [(cx+d) (b:,qu)}
I Gl L i (@p,4,),0,h)
T (ox + d)yr Tptlat [(Cx T )05y By ] ;
o dr m,n i 1 (ap,Ap)_
i) S Hpg _(Cx+d)h‘(bq,8q)_
_ mat1 |1 (@p Ap),(1=1,1) ]
= extdy Trtlan _m\a,hx(bq,sw |
d’ man i 1 (ap,Ap)_
(iii) LT Hpg _(Cx_,_d)h‘(bq,Bq)_
I G L R (=) (ap.4p) |
- (cx + d)T p+1,q+1 (cx +d)h (bq,Bg),(1,h) ’

where ¢ and d are complex numbers, r is a positive integer and 4 > 0. (Oliver and
Kalla 1971).

1.7. Prove the following results:

00 r
: , (@1,0)e(@p—1,4p-1),(apsio)] _ 5aj—1 1 1
(1) HyT [ZAO (bl,Bl),...,(Zq,Bq)p ’ ] =A% Z " (1 - X)
r=0""
Ny Ll [ (al_r,U),(QZ,A2),~~~,(apfl,Apfl),(ap,ﬂa)]
rq ’

2 (b1.B1)....(by . By)
wherel <n < p—1,u > 0,0 > 0and A and 7z are complex numbers.

. , (14a1,0),(a2,42),....(a p—1,4p—1)(ap,u0)
(i)  (ap —pa)H, Y [X BB b By ’ ]

— gmn I:X (1+al,U),(aZ,A2),~~~,(apfl,Apfl),(ap,ua)]
by (b1,B1),...,(bg ,Bg)

, (a1,0),(az,42),...(ap—1,4p—1).(ap+1,n0)
+HpY [X‘(bl,Bl),...,(bq,Bq) e }

where | <n < p—1landpu > 0.

(iii) gmtin (1+ay,0),(az,42),...(ap 1,4 p_1),(ap,u0),(a;+v,0)
p+lq+1 (a1+v+1,0),(b1,8B1),...(bg . By)

_ m,n (1+al,U),(az,Az),m(ar)*"Apil)’(ap,lw)]
- VHpq |:X (bl;Bl),""(bq’Bq)

_pgmmn (al,0—),(02,142),"”(“[)71,Apfl),(ap,ua)]
Hp4 [X (51,B1) s (g By) :

where |l <n < p—1landpu > 0.
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rq (b1,B1),-,(bg ,Bq)

1IN @p-r-1
= — X ~
i
S g [Zx—o |(t11 ,0),(az,42),...(ap—1 aApfl),(ap_r,HU)]
7.4 ’

(b1,B1),....,(bq,Bq)
where | <n < p—1landpu > 0.

i) [xl—; dix%“}r pmon [Zx_o|(a1,a),(az,Az),...,(apfl,Apfl),(ap,ua)}
X

(Srivastava and Gupta 1970)

Hint: The above results can be proved by representing the H -functions on the right
by their Mellin—Barnes representations, taking the common factors out and then
combining the terms.

1.8. Let

d(bi,ap — k) = det [11;11 "PAP k} :

in which the first row of the determinant is written by our notation. The second
row of the determinant is always to be completed with the appropriate A’s and
B’s corresponding to the a’s and b’s of the first row. Further, we employ the no-
tation H[b; + 1] to denote the contiguous function in which b; is replaced by
by + 1, but with all other parameters left unchanged. Similar meanings hold for
all other contiguous H -functions occurring in this problem. In the following results
H will denote the H-function. Prove the following relations of contiguity for the
H -function.

ApHIby + 1= Bilap — 1] = d(b1.ap — ) H. (1.211)
ApHlay — 1]+ A1Hlap — 1] = —d(a1 —1,a, — 1)H. (1.212)
ByHlas — 1] — A1 H[by + 1] = —d(ay — 1, by) H. (1.213)
ByHIby + 1] + BiH[bg + 1] = d(b1. by H. (1.214)
A1H[b1+1]+B1H[a1—1]=d(b1,a1—1)H. (1.215)
ByHlay — 1]+ ApHIbg + 1] = d(a, — 1, b) H. (1.216)
BqH[bl + 1] — BlH[bz + 1] = d(bl,bz)H (1.217)

A2H[a1—1]—A1H[a2—1] :—d(al—l,az—l)H. (1218)
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Ap—1Hlap —1]—ApHlap—y — 1] =d(ap—1,ap-1 — 1)H. (1.219)
By 1Hlbg + 1] — ByH[bg—1 + 1] = —d(bg,by—1)H. (1.220)

d(a, —1.by)Hlay — 1] —d(by —a, — )Hla, — 1]
= —d(ay—1,a,— 1)H[by + 1]. (1.221)

d(a, —1,b)Hby + 1]+ d(bg.by)Hla, — 1]

=d(by,ap— )H[by + 1]. (1.222)
d(ay — 1,b))Hby + 1] — d(bg. by)Hla; — 1]
=d(by,a; — DH[by + 1]. (1.223)

d(ay — 1,bg)H[by + 1] — d(bg. by)Hla; — 1]

=d(by,a; — DH[by + 1] (1.224)
d(ay —1,a,— )H[by + 1] —d(a, — 1,by)Hlay — 1] (1.225)
= —d(by,a; — )H[a, — 1]. (1.226)

d(ba,b3)H[by + 1] + d(b3,b1)H[bs + 1)

— —d(by, by)HIbs + 1]. (1.227)
d(dz —1,az — 1)H[a1 — 1] + d(a3 —1,a, — 1)H[612 — 1]
= —d(a1 — 1,612 — 1)H[Cl3 — 1] (1228)

dlap1—1l,ap2—DHlap—1]+d(ap2—1,ap, —1)H[ap—1 — 1]
=—d(ap—1,ap1—1)H[ap > —1].
(1.229)
d(bg—1,bq-2)H[bg + 1] + d(bg — 2,bg)H[bg—1 + 1]
= —d(bg,bg-1)H[by—» + 1]. (1.230)

d(a,—1,b)Hlapy — 1]+ d(by.ap s — DH[a, — 1]

=—d(ay —lay— DH[b; + 1. (1.231)
d(bg.ar — ) H[bgoy + 1]+ d(ar — 1,by_1) H[bg + 1]

= —d(by_1.b)Hla, — 1]. (1.232)
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d(as —1,ap, —1)H[a1 — 1]+ d(ap —1,a1 — 1)H[az — 1]
=d(a1—1,a,— D Hl[ap —1].
d(by,by)H[by + 1] 4 d(by, b1)H[by + 1]
=d(b1,b2)H[by + 1].

dlap1—1l,a1—DHlap,—1]+d(a1 —1,ap,—1)H[ap1 — 1]
=d(ap-1,ap—1 —1)H[a; —1].
d(bg—1,b1)H[bg + 1]+ d(b1,bg)H[bg—1 + 1]
=d(bg,bg-1)H[b1 + 1].
d(ay —1,by)H|ay — 1]+ d(bg,a; — 1)H[a, — 1]
=—d(a—1,ap — 1)H[by + 1].

d(ba,ap—1)H[b1 + 1]+ d(ap—1,b1)H[bs + 1]
= —d(b1,b2)H[ap — 1].
d(az —1,b1)Hlay — 1]+ d(by,a; — 1)H[az — 1]
= d(@ —1,ay — DH[b; + 1].

d(by,ay — 1)H[by + 1]+ d(ay — 1,b1)H[bs + 1]
=d(by,b2)Hl[a; —1].
d(ap—1 —1,bg)Hlap — 1]+ d(bg,ap — 1)H[ap— —1]
— d(ay — l.ap_s — ) Hby + 1]

d(bg-1,ap —1)H[bg + 1]+ d(ap —1,bg)H[bg—1 + 1]
=d(by,by—1)H[ap —1].

39

(1.233)

(1.234)

(1.235)

(1.236)

(1.237)

(1.238)

(1.239)

(1.240)

(1.241)

(1.242)

(Buschman 1972)

Hint: First establish the basic relations (1.211) and (1.212) given above and then
derive all the others from two of them and using the transformation formula of

H(x) going to H(%).

1.9. Establish the following results associated with the Mellin transforms of the

partial derivatives of the H -function with respect to their parameters.

d

0 M {a—hH;'f’q%x)} — b1 + Brs), m > 0

(i) M {iH;'f’q”(x)} ==y —a; — Ay5),n >0

8a1
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d
i) M | HE 0] = =4ty + Apn < p
14
d
() M| SR 0] = Ao = by = Bys)m < g
q
vy M { a;;l )} (—s)¥ (b1 + B1s),m >0
o) |y )} AP~y — Ars)on >0
(vii) M{%H’””(x)} —sx(=s)r{ap + Aps),n < p
14
d

(viii) M { —H'””(x)} = sy(=s)¥ (1 —by — Bys).m < q
0By

where M denotes the Mellin transform, ¥ is the psi-function and y(s) is given as
O(s) in (1.3). (Buschman 1974a, p. 151).

1.10. Prove that

1,1 [ _|(a,4) S (=1)*z
Hy), [Z (a,A),(O,l)] =4 Z | 4 (et '
(1+%2)

where A > 0.

1.11. Prove that

(1—a,4),(1,1) -1
i [z ] = 4 Z

= Or(1+(a —k— 1))

where A > 0.

1.12. Prove that

d 11 @ (a—4,4)
o <l bom] = His [t 0] 4> 0

1.13. Prove that

1 FOrd-s), o Z*
i ), T —an) O d“,;wwk)'
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1.14. Prove that

1 1-¥ -1
Z,@) = —;Hll,’ll [ZEO,I)'G ﬂ)} ,2€C,2#0,p<0,NRN(W) <0.

1.15. Evaluate |
fl) = —/ I'(s —a)z *ds,
2wl Je

where C is a loop which embraces all the poles of I'(s — a) at the points s =
a—v,v eN,.

1.16. Prove that the Mellin—Barnes integral (Paris and Kaminski 2001, p. 113)

+i
L. y+ioco F(_S)za+sds,
2ni Jy_ico S+ @

defines the incomplete gamma function y (a, z) defined by y(a,z) = fé ta e ds,
where |arg(z)| < 7 and the contour C separates the poles at s = —v,v € Ny from
the pole s = —a (a is not a positive integer).

1.17. Prove that the Wright function (or Dotsenko function) ,Ri(a,b;c;w, i; z)
can be expressed by the Mellin—Barnes integral (Kilbas et al. 2006, p. 123) in the
form

') 1 / LCa—s)I'h -2
L

R b:c: C) — o [ =4
2Ri(@. b, 10 = FosE G 2 T(c—2) (m2yds,

where the contour of integration I = L_, separates all poles of I'(s) to the left
and all the poles of T'(1 — s) and T'(h — %) to the right.

1.18. Prove that (Braaksma 1964, p. 289)

1
oy | ==X 1 e+ O(X_é)], as x — 0o,

V(@)

1
2 5(a—1) _
ngg [x (a,,)} _ (2m) x(l b)

14 q
1
a=q—pb= E ai—E bj+§(q—p+1)-
i=1 j=1

1.19. Prove that the function A" (z) defined by the integral

(n—1)

M = ST _Jf) G )" /1000” — e,
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forn € N,N(y) > % — 1, 9(z) > 0 can be expressed in terms of the H -function as

y+1- ) ay+L ()
H [ (y.0), (0 )i| (271) "2 ().

1.20. Prove that the function A% (z) defined by the integral

(ﬂ) .y y—g —zt
o) = r(+1——)/ @ =1y he

for B > 0,9N(y) > % — 1,%M(z) > 0,0 € C, can be expressed in terms of the

H -function as
(1_(o+1)’1) )
HE3 |2l gy | T Are @

1.21. Prove the following results:
Z\Y
1@ =2(3) K- ).

and

Y
o= — () k.

where K_,(z) is the modified Bessel function of the third kind.

Notation 1.15. Multi-index Mittag-Leffler functions: F < B ) (u-)(Z)'
'Of ’ 1

Definition 1.15. Let m = 1 be an integer, p1,...,0m > 0 and puy,..., [ty be
arbitrary real numbers. By means of “multi-indices” (p;), ({4;), the so-called multi-
index (m-tuple, multiple) Mittag-Leffler functions are introduced (Kiryakova 2000,
p. 244) as

k

> Z
E . (1.243)
()00 = 2 G T By + )

1.22. Prove that the multi-index Mittag-Leffler functions in Definition 1.15 can be
expressed as follows:

_ (1)
By un@ = 1¥m |:Z|(u1,ﬁ),...,(um,$)i|

gyl __o,n
= Hi i1 [ Z(0,1),(1—m,,;l),...,(l—um,ﬂ}n)}'
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1.23. For the multi-index function E/ ,
<ﬁ ),(M,‘)

et al. 2003, p. 369): For p; > O,u; > 0,i = 1,...,m,r € N there holds the
formula

(z) prove the following result (Saxena

r—1 h

FE . — E — < .
0@ = F)00® 2 T )

1.24. Prove the following asymptotic estimates for the Mittag-Leffler function
Ey(2). For 0 < o < 2 show that

1 .k
éexp(za) — Yk ri—an - larg@)| < %7705

Eq(z) ~ —k
- Z;ﬁ’il T(—ek)’ larg(—2)| < %77(2 —a)

as |z| — oo. Further, show that for ¢ > 2 the following asymptotic estimate holds:
N —k

1 1 2nir > Z
Eq(z) ~ o Z exp{zze » } — Z me—ﬂ <arg(z) <7,
r=—N k=1

as |z| — oo, where N = [%a — %], (Paris and Kaminski 2001, p. 189).



Chapter 2
H -Function in Science and Engineering

2.1 Integrals Involving H -Functions

This chapter deals with integrals involving H -functions. We propose to present
the results for Mellin, Laplace, Hankel, Bessel, and Euler transforms of the H-
functions. Further, on account of the importance and considerable popularity
achieved by fractional calculus, that is, the calculus of fractional integrals and frac-
tional derivatives of arbitrary real or complex orders, during the last four decades
due to its applications in various fields of science and engineering, such as fluid flow
rheology, diffusive transport akin to diffusion, electric networks and probability, the
discussion of H -function is more relevant. In this connection, one can refer to the
work of Phillips (1989, 1990), Bagley (1990), Bagley and Torvik (1986) and So-
morjai and Bishop (1970) and the book by Podlubny (1999). In the present book,
fractional integration and fractional differentiation of the H -functions will be dis-
cussed. A long list of papers on integrals of the H -functions is available from the
bibliography of the books by Mathai and Saxena (1978), Srivastava et al. (1982),
Prudnikov et al. (1990) and Kilbas and Saigo (2004).

2.2 Integral Transforms of the H -Function

2.2.1 Mellin Transform
In order to present the results of this section, a few notations and definitions are
given first

Notation 2.1. M{f(t) : s}, f*(s), Mellin transform of f with respect to a
parameter s.

Notation 2.2. M~1{ f*(s); x}: Inverse Mellin transform

A.M. Mathai et al., The H-Function: Theory and Applications, 45
DOI 10.1007/978-1-4419-0916-9_2, (©) Springer Science+Business Media, LLC 2010
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Definition 2.1. The Mellin transform of a function f(z), denoted by f™*(s), is
defined by

fﬂ@=MV@ﬂ=Az“V@Mr>a @.1)

provided that the integral converges. The inverse Mellin transform is given by the
contour integral

1 y+ioco
FxX)= MY x) = o F*(s)x"ds. (2.2)

y—ioo

If f*(s) is analytic in the relevant strip then f(x) is uniquely determined by
f*(s) by using the formula (2.2).

2.2.2 Illustrative Examples

Example 2.1. Find the Mellin transform of Gauss hypergeometric function , F;.

Solution 2.1. By definition (2.1), we have to evaluate the integral

o0
I = / L Fi(a, b e —n)de,
0

where a, b, c € C, min{N(a), R(D)} > R(s) > 0.
If we use Euler integral representation of the hypergeometric function then the given

integral becomes

I'(c)

() 1
I:/ ls_li/ W1 — e + tu) *dudt
o " Tore—p ¢ U

F(C) b 1 c b—1 ts_l
F(b)F(c—b)/ (1= /0 T e

_TET@=5)r(e (' WL ()P dy = L) a—=s)T' ()T (b—s)
T T(@T BT (e—b) Jo T T(@)T (BT (c—s)

(2.3)

for N(s) > 0, N(a—s5) > 0, R(D —s5) > 0,N(c —5) > 0. The interchange of the
order of integration in the above steps is justified under the conditions given along
with the integral. This completes the solution of Example 2.1.

Example 2.2. Find the inverse Mellin transform of the right side in (2.3).



2.2 Integral Transforms of the H -Function 47

Solution 2.2. By virtue of the results (2.2) and (2.3), we find that

. T 1 [(rHeTETa-sTb-s),
2Fi(a, b;e;2) = T(a)T(b) 2i /y_l-oo T(c—ys) (—2)7%ds, (24)
where a, b,c e C, min{f(a), R(b)} >y >0and c£0,—1,-2,--- .;|arg(—2)|< =.

The path of integration separates the poles at s = a + m, s = b+ m from the poles
ats = —m,m € Nj.

Example 2.3. Prove that the Mellin transform of the generalized Mittag-Leffler
function EZ 8 (2), defined by (1.47), is given by

M{Eg’ﬂ(—z);s} _ Ty =) 2.5)

CTWTB—as)’

where R(s) > 0,RN(y —s) > 0;ax € RT,B,y € C,B # 0,—1,-2,... and when
['(y) is defined.

The result (2.5) follows from Example 1.5, and (2.2).

Note 2.1. From (2.5), we see that the Mellin transforms of the Mittag Leffler func-
tions Ey(z) and Eq g(z), defined by (1.44) and (1.45) respectively, are given by

Sl -y
M{Ea(—z),s} = 71"(1 —an) L0 < N(s) < 1, (2.6)
and L)1
M{Eqp(—2):s} = %,o < R(Es) < 1. @.7)

In what follows, the H-functions considered satisfy the condition Eq. (1.6) and
a, B, 1 and 8 have the values given in (1.13), (1.8), (1.9), and (1.10), respectively.

2.2.3 Mellin Transform of the H-Function

In view of the Mellin inversion formula (see, Titchmarsh (1986), Sect. 1.5) the
Mellin transform of the H -function follows from the Definition 1.1). We have

[oe] . (ap,Ap)
s— m,n
/0 X Hp,q ax dx

(by,Bq)

. (T2, T + B9 [T T = a; = 4;9)] .

[ 3=m+1 ra—-os;— BjS)] [l_lf=n+1 Iaj + Ajs)}
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. . : b; 1-%(a;) 1
where a,s € C;— min ‘R(B—’l) < N(s) < max [T’}, |arg a| < s7ma,

1<j<=m 1<i<n 2

a > 0. Further, uN(s) + R(§) < —1, when ¢ = 0,arga = 0 and a # 0.

2.2.4 Mellin Transform of the G-Function

If weset A; = B; = 1, forall i and j and use the identity (1.112), we obtain the
Mellin transform of the G-function.

/oo Xs—le,n |:ax (ap):| d
p.q
0 (bq)
_ o =i+ 9] [ 70—y —9) 2.9)
[1_1?=m+1 T(1—b, —s)] [n§=n+1 T, + s)]’ .

where a,s € C,— min N(b;) < R(s) < 1— max R(a;), |arg a| < %nc*,c* >0
1<j<m 1<i<n

and ¢* is defined in (1.22).
2.2.5 Mellin Transform of the Wright Function

T [1_[’};1 [(a; —AJS)]
[0, T — By9)]

where s € C,0(s) > 0.M(a; —Ajs) >0,j =1,---,p, |arg a] < %nb, b=
L4+ 37 Ai =24 By e > —1and p is defined in (1.9).

o0
_ A
/0 7w, [EZ:’B:))|—61X] dx = a . (2.10)

2.2.6 Laplace Transform

Notation 2.3. F(s) = L{f(t);s} = (Lf)(s) : Laplace transform of f(¢) with
parameter §

Notation 2.4. L™Y{F(s);t} : Inverse Laplace transform

Definition 2.2. The Laplace transform of a function f(¢), denoted by F(s), is de-
fined by the integral equation

F(s) = L{f(t):s} = (L [)s) = /0 e f(0)dt, (2.11)



2.2 Integral Transforms of the H -Function 49

where N (s) > 0, which may be symbolically written as

F(s) = L{f(t);s}or f(t) = L™H{F(s): 1},

provided that the function f(¢) is continuous for ¢ > 0, it being tacitly assumed that
the integral in (2.11) exists.

Definition 2.3. The inverse Laplace transform is given by the contour integral
y+ioco

fty=L7YF(s);t} = 2—71” e’ F(s5)ds. (2.12)

y—ioo

2.2.7 Illustrative Examples

Example 2.4. Find the Laplace transform of the Mittag-Leffler function x#~! Eup
(ax®).

Solution 2.3. We have

o0
L{tﬂ_lEa,ﬂ(ax“);s}z/ e_s"xﬂ_lEa,ﬂ(ax“)dx
0

0o 51 Sl akxak
= xPT C_Sx —dx
/0 Z I'(ak + B)

k=0
i a /oo k+h-1
= N e—sxxa — dx
2Tk + ) Jo
s* P
= a,iﬁ(a) >0,N(B) >0, las™¥| < 1. (2.13)

Note 2.2. We note from the above result that

a—1

L{Eq(ax®:s)} = — -, (2.14)

s
where a,s,a € C, R{a) > 0,R(s) > 0, and |as™%| < 1.
Example 2.5. Find the inverse Laplace transform of s # (1 — as™*)77.

Solution 2.4. We have

L5 (1= a5y 7y = L1 30 O™
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Applying the formula
xbP~ 1
LM77 x) = 1_‘(),,osEC‘Ti(s)>O‘Ti(,o)>O (2.15)
the above line reduces to
ﬂ 1 ()/)k(axa) ﬂ IEV 2 16
Z < Tk + PR a p@X%), (2.16)

where @, a, B, yeC,N(a) > 0, R(B) > 0, R(y) > 0, |as *| < 1 is the generalized
Mittag-Leffler function defined in (1.46).

Remark 2.1. When y = 1, Example 2.5 gives the interesting transform pair
LY Pl—as ™) ix) = xﬂ_lEa,ﬂ(al“), 2.17)

where o, 8,aeC, R(x) > 0, N(B) > 0, and |as™| < 1. For 8 = 1, (2.17) re-
duces to
L7 Y™ N1 —as™) 7L x} = Eg(ax®), (2.18)

where a, aeC, M(x) > 0, |as %] < 1.

2.2.8 Laplace Transform of the H-Function

1

Let either @ > 0, |arga| < 37wa ora =0 and R (8) < —1. Further assume that

a>0; p,a,5eC, o> 0,satisfy the condition

NR(p) + omini<j<m [%7)} >0fore >0o0ra =0, > 0;and

) 1
NR(p) + omin< ; Sm[mg’l{) + %(8)%} > 0,

for @ = 0 and i < 0. Then for N (s) > 0O, there holds the formula

(ap,Ap) +1
. s—o MmN —o
;S H,7 4 |as

(bgshq)

L {x” IH;,”q” |:ax°

(1—0,0),(ap,14p):|

(bq’Bq)
(2.19)

for N(s) > 0,5 € C. (2.19) can be established by virtue of the definition of the
H -function (1.2) and the well-known gamma function formula.
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2.2.9 Inverse Laplace Transform of the H-Function

Due to the importance and utility of inverse Laplace transforms of special functions
in physical problems, we present the inverse Laplace transform of the H-function
in this section.

By virtue of the cancelation law for the H-function (1.56), the result (2.19) can
be written in the form

—1 gym,n (ap,Ap) . - , _gilap,A4p)
L{x” Hp,q+1 |:ax0|(b:;bq’)),(1—p,0)i|’s} =5 PH;'fqn [as o(b:,qu)i|’ (2.20)

If we use the property of the H-function from Mathai and Saxena (1978, p. 4,
Eq. (1.38)) then the desired result follows:

(ap,Ap)
};z} — ool gmn [at‘“\(“”’A”)’(”’“)], 2.21)

L7V s=PH™M | 4s°
y2v] pt+lyq by ,B,
(by.Ba) (bq,Bq)

where p,a,s € C,N(s) > 0,0 > 0, N(p)+0 max;<;i<n [Ai - %] >0, |arga|<

%71(9, 6 = o — 0. Two interesting special cases of (2.21), which are applicable in
fractional diffusion problems, are given below. If we use the identity

1,0
Ho,1 |:x

= x%7%, (2.22)
(er,1)

we obtain

L™ YsPexp(—as®); 1} = t”_lHll,’lo |:at_"

(p,0)
, (2.23)
(0,1)

where N (s) > 0, R(a) > 0,5 > 0. Further, if we employ the identity

HYY |:x } = 2K,(2x2), (2.24)
(3:.1).(-%.1)
we obtain
a2x 20 (0,20)
2L MsTPKy(as®);x} = xPT HT — , (2.25)
(3:.1).(-3.1)

where R(s) > 0,R(a?) > 0,0 > 0, and K, (x) is the modified Bessel function of
the third kind or Macdonald function.
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Remark 2.2. 1t will not be out of place to mention here that one-sided Lévy stable
density can be obtained from the above result by virtue of the identity (Mathai and
Saxena 1973a)

1

Ky (o) = [%]2 e, (2.26)

and can be conveniently expressed in terms of the Laplace transform

o0
/ e P, (x)dx = exp(—sP),p,s € C, R(s) > 0,R(p) > 0, (2.27)
0
where
1 1 (1,1)
Dy(x) = —HY | = , p>0. (2.28)
e x <L.L)
pro

This result is obtained earlier by Schneider and Wyss (1989) by following a dif-
ferent procedure. Asymptotic expansion of ®4(x) is given by Schneider (1986).

2.2.10 Laplace Transform of the G -Function

In what follows, the G-functions involved satisfy the existence conditions. When
A; = B; = 1foralli and j, the H-function reduces to a G-function and conse-
quently we arrive at the following result:

ap
. _ o pgmntl -0
1Sy =8 Hp+1,q as
bq

(1-p,0),(ap,1)
L

p—1  ~m;n o
X Gp’q |:ax

} . (2.29)
(bg.1)

where p,s € C,9(s) > 0,0 > 0,9(p) + omini<;<m N(b;) > 0,|arga| <

1¢*,¢* > 0,c* is defined in (1.21).

If weseto = %,k, A € N in (2.29), we arrive at a result given by Saxena (1960,
p. 402):

L

p—1  ~mn %
X Gp’q |:ax

— Sfp(zn)(lf)b)c*-‘r%(lfk)/\S-i-lkP*%

A(k;l—p),A()»,al),m,A()»;ap)}

kgt g—k
« Hlm,kn-ﬁ-k |: a-s (2.30)

Aptkiqa | 3 (q—pr

A(A3by),....,A(A;hy)

where p, s € C, R(s) > 0, Eﬁ(p)-i-(%) ming <;<m R(b;) > 0, |argal < %nc*, cr>
0, ¢* is defined in equation (1.21) and the existence conditions of the G-function are
satisfied. Here, A(k; b) represents the sequence



2.2 Integral Transforms of the H -Function 53

b b+1 b+k—1
AR 3

keN.

Several special cases of the general result (2.30) can be obtained by using the tables
of the special cases of the G-function (Mathai and Saxena 1973a; Mathai 1993c¢)
but for brevity one interesting case is presented here, associated with the Whittaker
function, given by Saxena (1960, p. 404, Eq. (15))

1
L {x”_l exp (—Eax_§) W,,v(ax_ﬁ);s} = s_p(2n)%(2_k_)“)/\’+%k”_%

Aok
» sz+k,o ans
A2A+k /\)ka

A(A;1-1)
A(2k;1i2v),A(k;p):| ’
2.31)

where p,s € C, R{(a) > 0, R(s) > 0. One interesting particular case of (2.31) can
be obtained by using the identity

1
Wo,i%(x) = exp (—Ex) .
That is,

LA™ exp(-ax™%):5) = 57 (2m) HH DR S

Aok
ars
« G)wi-k,O |:

, (2.32)

OAtk | 3 ik A()L;o),A(k;p)i|

where p, s € C,N(a) > 0,N(s) > 0.

Remark 2.3. The result (2.32) is very useful in problems of physics. Regarding its
application in nuclear and neutrino astrophysics, one can refer to the monograph
of Mathai and Haubold (1988). An alternative derivation of this result based on
statistical techniques is given by Mathai (1971).

2.2.11 K-Transform

Notation 2.5. R,{ f(x); p}: K-Transform

Definition 2.4. The transform defined by the following integral equation

RASF(): p} = g(piv) = /0 (p2)3 K, (px) F(x)dx, (2.33)

is called the K-transform with p as a complex parameter.
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This transform was defined by Meijer (1940) who obtained its inversion formula
and representation theorems. Its inversion formula is given by

—100

1 y+ioco .
G(p) = — / - (px)2 L(xp)g(p)dp, (2.34)
4

where 7,(x) is Bessel function of the first kind defined by

(Z/2)V+2k
Z k'F(v +k+1) 2.35)

2.2.12 K-Transform of the H-Function

Let us assume that either & > 0, |argb| < %na or @ = 0 and N (§) < —1. Further

assume that @ > 0; p,v,a,b € C,o > 0 satisfy the condition

R(p) + RV + o mm [M} > 0,
<j<m Bj

fora > 0, |argd| < %na ore =0, > 0; and

Rb:) NG L
W(e) + M)+ 0 min [%( ) (”2}0,
<j<m

Bj’ u

for@ = 0 and i < 0. Then for N (a) > 0,0 > 0 there holds the formula

oo (ap,Ap)
/ x”_lKV(ax)H;'f’q” bx° dx
0 (bq,Bq)

_2p2—pHmn+2 b z ?
pt2q | P17

The result (2.36) can be computed directly from the definition of the H-function
(1.2) if we use the formula (Mathai and Saxena 1973, p. 78)

o0 +
P1K, (ax)dx = 202a~*T [ £V 2.37)
; 2

(=3 (0=).9),(1=5 (0+v).9),(ap,4p)

} . (2.36)

(by,Bq)

where R (s) > |RWV)|, R(a) > 0. If we apply the definition (1.2) of the H -function
to the given integral then we have
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(ap,Ap)
dx

(by,Bq)

oo
/ xP1 Ky(ax)H,' ) |:bx°
0

1 oo
= — CIGAN / xP7507 K (ax)dxds
0

2mi Liyoo

1 +v-— 2\ 7%
LI — / r (u) O()b™* (—) ds,
2mi Liyoo 2 a

and the result (2.36) readily follows from the definition of the H -function (1.2).

Remark 2.4. When v = :l:% in (2.36) then by virtue of the identity (2.26) one can
obtain the Laplace transform of the H-function with argument 5x°, o > 0.

2.2.13 Varma Transform

Notation 2.6. V(f,k,m,s): Varma transform

Definition 2.5. Varma transform is defined by the integral equation

V(f,k,m;s) = /Ooo(sx)'”_i exp (—%sx) Wi m(sx) f(x)dx, R(s) >0, (2.38)

where Wy ,,, represents a Whittaker function, defined by

Wk,m(z) = Z I,(ll_‘(_iini)m)Mk,m(Z)a (2.39)

m,—m 2

where the summation symbol indicates that the expression following it, a similar
expression with m replaced by —m is to be added. For the definition of M ,,(z)
see, Sect. 1.8.1. This transform is introduced by Varma (1951), who gave some
inversion formulae for this transform.

2.2.14 Varma Transform of the H-Function
Leta >0, |argh| < %na or« = 0and N(F) < —1; further, v,a,k,bp € C,0 > 0,

sn(b,»)} 1

> A
Bj

R(p) + M)+ min [
1<j<m 2

fora > 0,|argd| < %mx ore =0,u > 0and

Nb;) RE) + % .
B; 1

(o) + 1R)| +  min [ ,
<js=m
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for @ = 0 and p < 0 then for N (a) > 0, the following result holds:

(ap,Ap)
dx

(by,Bq)

o 1
—1 ,
/0 xP" " exp (—Eax) Wi v(ax)Hy ) |:bx°

L—v—p0).(3+v—p.0)(ap.4p)

pt+2,9+1 a®

— a—pHm,n-i-Z |:i
(bg,Bq),(k—p,0)

} , (2.40)

which can be computed directly from the definition of the H -function (1.2) and
from the following formula (Mathai and Saxena 1973, p. 79):

To+v+HT(p—v+1)
Frd—k+p)

© 1
/ xP"Lexp (—Eax) Wi (ax)dx =a™" , (241
0

where R (a) > 0, % (p £v) > —1.

Remark 2.5. 1t is interesting to observe that for k = v + % the Varma transform
defined by (2.38) reduces to the Laplace transform (2.11) by virtue of the identity

1 1
Wv_i_%’iv(x) = x"" 2 exp (—Ex) . (2.42)

Consequently the Laplace transform of the H-function (2.19) can be derived
from the result (2.40) by taking & = v+ % . Certain properties of the Varma transform
involving Meijer’s G-functions and Whittaker functions are investigated by Saxena
in a series of papers in Saxena (1960, 1962, 1964).

2.2.15 Hankel Transform
Notation 2.7. H,{ f(x); p}: Hankel transform of order v of f(x).
Definition 2.6. The Hankel transform of a function f{(x), denoted by g(p;v) or in
short by simply g(p) is defined as
o0 1
g = [ ot an fax.p >0 243
0

The inverse Hankel transform is given by

Fx) = /0 () L Gp)g(pdp. RE) > 1. (2.44)

Remark 2.6. This transform is self-reciprocal. It is used in solving problems of ap-
plied mathematics and physical sciences.
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2.2.16 Hankel Transform of the H-Function

Suppose that @ > Oora@ = = 0 and RN (F) < —1. Thenif p,v,b € C,0 > 0
satisfy the conditions

R(p) + RO) + ¢ min [mg")}>—1,

I=jsm j

and

1 Eﬁ(aj) 3
m(p)+61r§f§n[/l—j 1, <3

for R(v) > —%. Then for a, b > 0 there holds the formula

(ap,Ap)
dx

(bg,Bq)

(1—LF 9y (a,,4,),0-L72 . 9)

o
/ xP1 Ju(ax)H ') |:bx°
0

_ 2p_ll_lm,n-i-l b z 7
T ogp P24 a

(2.45)

(bq,Bq)

The result (2.45) can be established with the help of the definition of the H -function
(1.2) and the formula
Aty
r(%)

F(1+%)’

where a > 0, -9 (v) < R(A) < % If we use the definition of the H -function (1.2)
and the result (2.46), then
(aP’AI))
dx

(by,Bg)

o0
/ x* I (ax)dx = 227 1a™H (2.46)
0

o
/ xP1 Jy(ax)H ') |:be
0

1 oo
= CIG I / xP=o571 T (ax)dxds
270 J 1y oo 0

r (p+v—as> s

1 2

- 2ﬂ—la—ﬂ—,/ O(s)—— 2 1 _ps (—) ds.
Liyoo F

2mi <1+ #) a

Interpreting the above result with the help of (1.2), the result (2.45) readily follows.
Whenv = :I:% then by using the identities

J% (x) = (n_zx) sin(x), (2.47)
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and
2
J_1(x) = — ) cos(x), (2.48)
2 X

we arrive at the following results which provide the sine and cosine transforms of
the H -function

00 (ap,Ap)
/ xP1 sin(ax)Hy' )" | bx® dx
0 (bq,Bq)
207w +1 210 (4378 ) ap ) (552 5)
=2y o(2) a9
a® ’ a) lbg.8,)
where a,a,0 > 0,p,b € C; |argh| < %mx;
b; i —1
RN(o)+0 min R —=L)>—-1;%()+ 0 max [M]<l.
I<j<m B 1<j=n Aj
00 (ap,Ap) 2p—1
x?"cos(ax)H™" | bx® dx = J
rq ]
0 (bg.Bq) 4
1 o\ ((52.9) @ a0).(152.9)
x Hylt b (—) : (2.50)
4/ lby,Bg)

. 1.
where a, 2,0 > 0,p,b € C; |argh| < 5ma;

b 1
N(p) + 0 min N (—j) > 0; N (p) + 0 max [M} < I.
1<j<m B 1<j=n Aj
2.2.17 Euler Transform of the H -Function
t (ap,Ap)
/ xPHr — x)"_lH;,'f’q” bx*(r — x)* dx
0 (bg,Bq)

_ p4o—1ggm,n+2 k+t
=1 Hploqer | b1

(1—p,k),(1-0,7),(ap,Ap)
, (2.51)

(bg,Bq),(1—p—0,k+7)
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Let ¢ > 0 and |argh| < smwa or @ > 0,R(8) < —1. The result (2.51) holds
provided the parameters p,0,b € C,k and 7 > 0O satisfy

b b
N(p) + 4k min [‘R (—j)i| >0, N(p) + v min [‘T{( j)i| > 0,
1<j<m B 1<j<m

B;

fora > 0,|argd| < %na ore =0, >0, and

Rb,) RE) + L
N(o) +k min %[ b)) 1O 2}>o,m<p)
1=j<m B; Iz

Nb;) RE) + 1
+7 min Eﬁ|:§n(]) © 2}>O,

1<j=m B, ©  pn

for¢ = 0 and p < 0. The result (2.51) can be proved in the same way if we use the
well-known beta function formula

b _ T(a)T(B)
a—1 _ AB-1 _ _
/0 T —=x)P T dx = 71"(05 B B{«, B). (2.52)

where min{)(«), R(B)} > 0. The result (2.51) has been given by Goyal (1969). As
T — 01in (2.51), it yields the Euler transform of the H -function:

t (ap.Ap)
/ xP~ e — x)"_lH;,'f’q” bxk dx
0 (bgq,Bq)

(1—p.k),(ap,Ap)
— lp+0—1F(O_)Hm,n+1 blk ,

pt+l,q+1

(2.53)
(bg.Bg),(1—p—a,k)

which holds under the same condition as given with the result (2.51) with T = 0.
By an obvious change of variable in (2.53) we arrive at its companion the integral

[oe] (ap,Ap)
/ xP 7 (x — t)"_lH;'f’q” bx* dx
t (bq,Bq)

) (ap,Ap),(1—p,k)
= PO (oY H T | beF :

pt+l,q+1

(2.54)
(1—p=0,k),(by . By)
which holds for p,b,0 € C,R(c) > 0,p € C and k > 0; either @ > 0, | argh| <
moora = 0,N(5) < —1 and the following conditions are satisfied:

k max [M

H g 1
may | }+%(p)+%(o)< |
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fora > 0,|argd| < %na ore =0, <0;and

A; ’

1<i<n

Y 1
k max |:§Ti(al) ! Eﬁ(SL-i- 2:| +%R(p) +Ro) <1,

fora = 0and p < 0.

2.3 Mellin Transform of the Product of Two H -Functions

o0 . ap,Ap) (dpl ,Dm)
§— m,n (o2 mi.nq
/ X Hp,q X le,ql nx dx
0 (bg,Bq)

(eql ,qu)
4 4 (1—eqy —sEq,,0Eq)(ap,Ap)
_ . —spymtnintmg -
=0 "Hprgiq+p |71 ’

(bm,Bm),(l_dpl_SDpl ,UDpl),(bm+l,Bm+l),~~~,(bq,Bq)
1 1 .
where 17,5,z,€ C,0 > 0,0 > 0,0 > 0, |argz| < 7o, |argn| < 37wk, k > 0;

ny P1 mj q1
k=Y "Di—= ) Di-y E— Y E >0,

i=1 i=n+1 i=1 i=m+1

. [iﬁ(bh)} . [m(éj)
— 0 min —  min _—
1<h=m | By 1<j<m ;

} < N(s)

J

1—N(a)) 1-9(d,)
<o max [FO] 4 [0

Remark 2.7. For the applications of this result in the theory of statistical distribu-
tions, see the work of Mathai and Saxena (1969). It can be established with the help
of the definition of the H-function and the result (2.8).

2.3.1 Eulerian Integrals for the H-Function

In this section, certain Eulerian integrals for the H-functions will be evaluated in
terms of the H -function of two variables. In order to present the results, we need the
definition of the H -function of two complex variables introduced earlier by Mittal
and Gupta (1972). The analysis developed here is based on the work of Saxena
and Nishimoto (1994), Saigo and Saxena (1998). To unify and extend the existing
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results on Riemann-Liouville fractional integrals available in the literature, certain
new Eulerian integrals associated with the H -function are investigated by Saxena
and Nishimoto (1994). The importance of the derived results lies in the fact that a
table of Riemann-Liouville fractional integrals can be prepared by using the tables
of the special cases of the H -function given in the monograph by Mathai and Saxena
(1978, pp. 145—151). Further special cases of these integrals can be used in studying
statistical density functions.

Notation 2.8.

(a;50,4;)1,p1:(¢i,vi)1,p2:(ei , Ei)1,p3

X _ 0,n1:mp ,no:m3,n X .
H[t| = g { } - sy
Y y (bjiB;.Bj)1,q1:(d;,8;)1,92:(f;.Fj)l.q3

The H -function of two variables.

Definition 2.7. (Srivastava et al. 1982, pp. 82-83; also see Srivastava and Panda
1976)

(a;50,4;)1,p1:(¢i,vi)1,p2;(ei , Ei) 1, p3

X _ gOnpmanamang [ X
H|: i| - HP1,411P2,42;P3,43

} (2.56)
y

(bj;Bj,Bj)1,q1:(d;,8;)1,q2;(f;,Fj)l,q3

=3 | / B, 1 ()b (1)x° ¥ dsdr, 2.57)

where x and y are not equal to zero. For convenience the parameters (a;; ¢;, 4; )1, p1
and (c¢;, V)1, p» will abbreviate the sequence of the parameters (a1;a1, 41),. ..,
(ap,;op,,Ap)and (c1,¥1),...,(cp,.Vp,) respectively, and similar meanings hold
for the other parameters (b;; B, Bj)1.41 and (d;,8;)1,q2, etc. Here

1L, T —a + a;s + A;l)
[ —n1+1 Ta; —a;s — A: ][ j=1 I'd—56; +B;s+ B;t)]

P(s.t) = (2.58)

M52, T(d; = 8;)II T2, T = ci + yis)]

b1 (s) = %yt DA —dj + 8112041 Dl — 18]

(2.59)

all) = [1_[ 2L T = Fiolllli2, F(l —e; + Eit)] . 2.60)
11 T — 77+ F 0Ty 0 e — Fit)

It is assumed that all the poles of the integrand are simple. An empty product is
interpreted as unity. Further, we suppose that all the parameters a;,b;,¢;, d;, e; and
f; be complex numbers and associated coefficients «;, 4;,B;,B;,y;.8;, E; and
I'; be real and positive for the standardization purposes, such that
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P1 P2 q1 q2
pr=2 ity vi=) Bi—) 8 =0 (2.61)
j=1 j=1

i=1 i=1

P1 P2 q1 q2
pa=> Ai+> Ei—Y B;j—> Fj <0, (2.62)
j=1 j=1

i=1 i=1

J 2 aQ my
Q) =— Z ai—z,ﬁj-i-ZSj
j=1 j=1

i=n1+1
P2 1) D2
- > & +> vi— D>, vi>0 (2.63)
j=ma+1 i=1 i=nr>+1
21 q1 m3
Q=— > A4—-)Y B+ F
i=ni+1 j=1 j=1
p3 n3 p3
— Z FJ+ZEZ-— Z E; > 0. (2.64)
j=m3+1 i=1 i=n3+1

It can be seen that the contour integral (2.56) converges absolutely under the condi-
tions (2.61)—(2.64) and defines an analytic function of two complex variables x and
y inside the sectors given by

1 1
|arg x| < 571821 and |argy| < 571522, (2.65)

the points x = 0 and y = 0 being tacitly excluded.

The conditions given here from (2.61) to (2.65) are the sufficient conditions for
the convergence of the Mellin—Barnes double integral (2.57), for details the reader
is referred to the book by Srivastava et al. (1982).

Remark 2.8. In a series of papers Buschman (1978) has given a detailed analysis
of the sufficient conditions for the convergence of H-function of two variables of a
general character. Simple criteria are provided for the determination of the conver-
gence of certain double Mellin—Barnes integrals in terms of their parameters by Hai
etal. (1992). A systematic and comprehensive account of the double Mellin—Barnes
type integrals or rather H -function of two variables can be found in the book by Hai
and Yakubovich (1992).

2.3.2 Fractional Integration of a H-Function

Theorem 2.1. If min{% (). R(B)} > 0,0, B,y € C,jt > 0,b # a, | “bx

|arg(d +cb)/(d +ca)| < w;¢,n > 0, |argk| < %nqﬁ, then there holds the formula

< 1,
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b (ap.Ap)
/ (=@ b= Nex + Y HYY | k(ex +d) T dx
g (by,By)
= (b—a)* Y ac + d)'T(B)
) A+y:nD:—
x goLmaiLl (?c-tri)” - ,
1,0:pg+1:1,2 (a(f-‘rd)) (al)Al)),..,(ap,Ap);(l—05, 1)
(b1, By).....(ha. B). (1 +y.m; (0. D), (1—a— B, 1)
(2.66)
n P m q
ENIED SRIED L B
=1 j=n+1 i=1 j=m+l

Proof 2.1. To establish (2.66) we express the H-function in terms of the contour
integral (1.2), interchange the order of integration, which is permissible due to abso-
lute convergence of the integrals involved in the process, and evaluate the x-integral
by means of the integral (Prudnikov et al. 1986, p. 301):

b
/ (x—a)* ' (b—x)PV(ex + d)dx

= (ac + dY' (b — )" P B@. po Fy (a, ot B M) |

(ac+ d)
(2.67)

where () > 0, N(B) >0, |[c(a—b)/(ac+d)| <1,|arg(((d + bc)/(ac+d))| <1,
the integral transforms into the form

cla —b)

1
b-a)* 7 (aetd)’ — / O(s)ac+d) s Fy (o, —y—sma+p; o) ) ds,
27i Jr ac+d

If we now employ the formula

2Fi(a,b;c;2) = (—2)°ds,

(2.68)

I'(c) 1 Yioo T'(—s)I'(a + s)T(b + )
T(@)T(b) 2i /y_m T(c+5)

where |arg(—z)] < m and the path of integration separates the poles at s =
0,1,2,... from the poles at s = —a —n,s = —b —n,n = 0,1,..., the result
readily follows from (2.57). O

On applying the identity (1.58), we obtain the following theorem:

Theorem 2.2. If min{di(x), R(B)} > 0, «,B,y € C,u = 0,b # q, |[(a — b)c]/
(ac+ d)| <1, |arg(d + cb)/(d + ca)| < m, P, n >0, |argk| < %nqﬁ, then there
holds the formula
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b
o— — mn ap.4
/a (x = @ (b = )P ex + d) HI'Y [k(cx +dy Eb:B:))] dx

= (b - ac + ' T(B)

(I4+y:inl):—
s | & ae +dy -
« FOmmiL] ac +
L0:g,p+1:12 a(f+d) (1—=>51,B1),..., (=28, By);(1—a,1)
(1—ay,A41),..., (I—ap, 4,), 0 +y.m;0,1),01—-a—41)

(2.69)

When A; = B; = 1 forall i and j, then we obtain the following corollaries
from the above theorems, involving Meijer G-function.

Corollary 2.1. If min{R(«), R(B)} > 0,a, B,y € C,u = 0,b # q, |[(a — b)c]/
(ac + d)| < 1, |arg(d + ¢cb)/(d + ca)| < m; c* > 0, |argk| < %nc*, then there
holds the formula

b
/a (x =@ (b — ) (ex + &y Gy [kex + )7 [j7 Jdx
= (b—a)t* Yac +d)'T(B)
. I4+y:inD:—
0,1:m,n:1,1 m —
X Hl,O:p,q-‘,—l;l,Z 2(?;2) (al,l),...,(ap,l);(l —a 1) . (270)

(bl)l)))(bq)l))(l +)/)77)5(0) 1))(1 —Ot—ﬁ, 1)

Corollary 2.2. If min{N(«), R(B)} > 0,0, B,y € C,u = 0,b # q, |[(a — b)c]/
(ac +d)| < 1, |arg(d + cb)/(d + ca)| < m; ¢* > 0,|argk| < %nc*, then there
holds the formula

b
L (=) (b — 2 (ex + ) G [k(cx +d)" Eijﬂ dx

= (b —a)* " ac+a)yT(P)

- A+y:in1):—
goLnmiLL (ac+ayr -
X0 pt1312 ) A=b,D,....,(1=by, D:(1—0a,1)
(I—-a,D,....»0=a,, D, A+ ym; 0., (1-a—=41)

Q1)

where ¢* is defined in (1.22).

On the other hand, if we use the identity (Mathai and Saxena 1978, p. 4) then we ar-
rive at the following corollaries associated with Wright generalized hypergeometric
functions.

b # a,|lca—b)]/
1 >

Corollary 2.3. If min{f(x), N(B)} > 0,a,B,y € C,u
w2 = 0,7 > 0 and

(ac + d)| < 1, |arg(d + cb)/(d + ca)| <
|argk| < %71 Q then there holds the formula

207
u+
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b (@1, A1), fa 4p)
/a (=" (b =) (ex )7 0y [—k(ex - d) 7 (g | a

=(b—a) T ac +d) TP

. I+y:inl):—
« gorLeL (ac+dy -
L0:pg+1:12 Z(Lb:;) (1 —ay, Ay),..., (1—ap,4p): 1—0a,1)
0,1),(1 = by, B, (1= by, B, L+ ¥, m); (0,1),(1 —a — B, 1)
2.72)

where [ is defined in (1.9).

Corollary 2.4. If min{(x), N(B)} > 0,a,B,y € C,u = 0,k # 0,b # aq,
[[c(@ — B)]/(ac+ d)| < 1, |arg{(d + cb)/(d +ca)l <m; Q=pu+1>0,n>0
and | argk| < %71&2 then there holds the formula

b
o _ (@1,41),....,(ap,Ap)
fa (x—a)* LB —x)f T ex +a) Y, [—k(cx + d)”\(ZLB;)W(b“;qug’ } dx

=(b—a) P N ac + d)'T(p)

lr 1 A+y:nD:— —‘
x HO,l':p,l;l,l ) k(azi—d)" - i
R (1L 1). (b1 B1)..... (bg. Bg) : (1 =0, 1) J '
(a1, A1), ..., (ap. Ap), 1+ y.m; 0. 1)1 -a—=41)
2.73)

where [ is defined in (1.9).

When d = 0, (2.66), (2.69) give rise to the following theorems:

Theorem 2.3. If min{R{(x), R(B)} > 0,a,8,y € C,nu = 0,0 # a,a # 0,
1 — §| < 1, |arg(b/a)| < =, ¢,n > 0,|argk| < %nqﬁ, then there holds the

formula
(a )2 A p)
dx

(by,Bq)

b
/ X (x—a)* b —x)P T H, |:kx_”

=a’(b—a)**P7r(p)

. I+y:nl)y:—
x HO,I‘:m,n;l,.l an - .
1,0:p,q+1;1,2 g —1 (apyAp); (1 —q, 1) J
(bq7 Bq)7 (1 + )/7 77)7 (07 1)7 (1 —a— ;37 1)

(2.74)

Theorem 2.4. If min{f(x). R(B)} > 0,0, B,y €e C,u>0,b#a,a #0,k #0,
|1—§| <1, |arg(b/a)| < 7; ¢p,n > 0, |argk| < %nqﬁ, then there holds the formula
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b
) —1 5 ap,Ap)
fa XV (x —a)* (b —x)P 1y [kx” ‘(Zq,BI;)} dx

=a’ (b =PI p)

1 I+y:nl):— W
0,1:m,m;1,1 T’ -
X Hyi g pt1i10 L% ~ (1= b1 Bi),.... (1— by By (1— . 1) J .
(I—ay, A1),..., (I=ap.4p). (1 +py.m;(0. ), (1—a—41)
2.75)
Alternative form of Theorem 2.1. Let
f@ = @—a)f " ez+ d) HP k(ez + d)™"],
then there holds the formula
D@ = e —a) TP ac + ay
lr . I+y:v,):— —‘
0,1:m,n:1,1 (ac+dy” -
X Hy oy ad1i i‘ % (@ A, (@p. A (1= B, 1) J . (2.76)
(b1, B1),..., (bg. Bg), (1 +v,v);(0, 1), (1—a—p,1)

under the conditions stated along with (2.66) with b replaced by z and 1 replaced
by +v, where ¢ D% is the fractional integral operator, see Chap. 3 for a discussion
of fractional integrals and fractional derivatives.

Alternative form of Theorem 2.2. Let
f@ =G—a)fNez+ d)y HI 7 k(cz + d)"].
then there holds the formula

oD @) = = a)* TP ac + @)

I+y:v1):—
1 -
x HO,lfn,m;l,? k(aii-d)"
Loaptlin2 | g (1= b1, B1),....(1— by, By); (1= B, 1)
(1—ay, A1),..., (I—ap.A4p), 1+yv)(0,1),(1—a—B1)

2.77)

under the conditions stated along with (2.69) with b replaced by 7z and 1 replaced
by +v.

It may be mentioned here that for generalization of the results of this section, one
can refer to the papers by Saxena and Saigo (1998), Saigo and Saxena (1999, 1999a,
2001) and Srivastava and Hussain (1995).

Remark 2.9. On the integration of H-functions with respect to their parameters,
see the works of Nair (1973), Nair and Nambudiripad (1973), Anandani (1970b),
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Taxak (1971). Golas (1968) and Pendse (1970). Integration of products of
generalized Legendre functions and H -functions with respect to a parameter is
discussed by Anandani (1970b, 1971d).

2.4 H-Function and Exponential Functions

The following integrals are evaluated by Bajpai (1970) with the help of the integral

3 r
(cos )%~ exp(iBO)df = udiC) , (2.78)
_% 2a_1F (a+g+1) F ((X—g-‘rl)
where N («) > 0.
% ) (ap,Ap)
CcoS ““expli(k — ol z(e"7 cos B)
( A k+A-2 p i (k )6 H;'fqn i8 A h d6
_% (bq’Bq)
- o \ (ap,Ap), (k)
=gt 2"z , (2.79)
2k+A=2p(py T pHLat (k+4~1,1),(bg,By)

where (k + A —h4E) > 1— i =1,....n,h >0,k 4 € C,u > 0,a>0,
|argz|<%na.

3 .
/ (cos 0)F 42 expli (k — A)O1H ' |:ze’h9 (sec 0)"

T
2

(ap,Ap)
dé

(bq,Bg)
(ap,Ap)(4.h) }

T pgmtle [2’2 (2.80)

T QkFiaT (k) ptLatl

(k+A-1,h),(by,By)
where i(k + A —h4-) > 1— 4 i =1,....n,h >0,k A € Cop>0,a >0,

|argz| < %na.

%
(cos 0)F 42 expli (k — X)O1H " |:z(sec 0)2"

_z
2

(ap,Ap)
de

(bq.Bq)

- . , | A .G
m+1,n

= stz Hptagt |22 : (2.81)

(k+A—1,2h),(by,By)

where i(k + A —h4-) > 1—4£.i=1,....n,h >0,k A e Copu>00a>0,
|argz] < %na. By means of the following integral (Nielson 1906, p. 158)
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,, _xp
T+ 1
/ (sint)%ePldr = = el <. e8
oT1 o—1
0 2T (1+ 28) 1 (14 252)

where N (o) > —1, Saxena (1971a) has established the following results:

(i) Leta > 0,|argz| < %na ora = 0,N(8) < —1 then there holds the formula

(ap,Ap)
dé

(bq,Bq)

a w0\ it | 2 [T A
= oy eXp(_T) pHia+2 | 10 :

/ (sin )7~ te "¢ Fm |:z(sin g)*"
0

(g, (2518 1), (L )

(2.83)

where y, n€C, i >0 are such that R (y)+2h mini<;<m [ml(jbl;’)} >0 fora >0,

Rb;) RE+L
By

|argz| < %na ora =0, >0,and N(y) + 2hmini<j<sm [

> (0fora =0and u < 0.
(ii)

T
. —1_—n6 ggmn i2h6
/0 (sin0)" e " HJ' |:ze

(aP’AI))
do

(bg:B4)

7' (y) 7N ma zel7h (a”’A”)’<l+1;in’h)
=W (——]) i | e ' . (2.84)
2t PR A ey ). (i )
where y,n € C,h > 0,|argz] < %na,a > 0,R(y) > 0.
(iii) Leto > 0,9 (y) > Oor ¢ = 0, R(§) < —1 then
T . (ap,Ap)
/ (sin§)? e b Hy'l' | z(sin 0)%ei2ho dé
0 (bq,Bq)
7 7 4 Zei7'rh (1=y24),(ap,Ap)
e e
2t 27T A Ly (1 o) (1 )

(2.85)

holds for 2 > 0,A > h,y,n € C, such that R(y) + 2A min; < <m [—mébl-_")] >0

1
% ’ m<8;1+2 -0
fore =0and 4t < 0.When/ = 1and A; = B; = 1foralli and j, then the
H -function reduces to a G-function and from the results (2.83) and (2.85) we
find that

fora > 0ora = 0and > 0;and N (y)+2A mini<;j<m [
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(ap)
dé
(bq)

1—y 2—)
7777 2 2 4p
= JTexp (—7) Grate |:z } , (2.86)

b l—y+in 1—y—in
q 7 s 2

T
/ (sin§)” Le 6 G |:z sin” 6
0

where M (y) + 2mini<j<m N(bj) > 0,y,1 € C,c* > 0,|argz| < %nc*,
where ¢* is defined in (1.22) and
Fi4 . ap
/ (sin 0)" TG | 2] | dp
0 by
n nn ap 5
= ——T(¥)exp (——) Gy '™ , (2.87)
2)/ 1 2 P+1,q+1 (bq),17227in

where R (y) > 0, |argz| < %nc*,c* > 0.

2.5 Legendre Function and the H -Function

Letp.z e C,a > 0,|argz| < %na ora =0,N(u) < —1.Further,letp € C,k >0
satisfy the conditions

[0y 1
o)+ & min [ 222 ] > Zpnio

fora > 0,|argz| < %na ora =0,u > 0and

NRp) + & 1m}in
=j=m

R(b;) RE) + 1
B,

}>%mw»

for @ = 0, u < 0 then there holds the formula (Singh and Varma 1972)

(ap,Ap)
dx

(bq,By)

/ 1 (1—x2)P Pr () HI" [z(l — xH)k

1
2 7

() ()

2 (I*Pi%,k),(ap,Ap)
m,n
XH 0o g4 |2

(2.88)

(bq,Bg),(1—p+3.k),(—p—% k)
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For a definition of P,f“u(x) see Sect. 1.8.1. On making use of finite difference

operator E (Milne-Thomson 1933, p. 33 with @ = 1), which has the following
properties:

Eif(a)y= fla+1) (2.89)
E! f(a) = E4EI! fa)]. (2.90)

Singh and Varma (1972) have further shown that

/la — P PR Fy (@1, aus Brs - Brie(l — xB)Y)
—1

(ap,Ap)
dx

x Hp't' |:z(1 — xH)k
(by.By)

2 (@)r - (ew)r ¢

T (2+;—k) ; (1—;—)») ;) B1)r - (By)r 1!

(2.91)

(—p—rd+4 .0 (ap,4p)
mp+2
X Hp s g |2 ,
(bq,Bg),(1—p—rd+% k),(—p—rd—% k)
which holds under the conditions given with the result along with the conditions
that k and d are positive integers, U < V or U = V + 1 and |¢| < 1 and none of
Bi.j =1,...,V is a negative integer or zero. In case A = 0 and v = A, where A
is a positive integer, then the result (2.91) reduces to

1
/_1(1 Y P () Fy @1 B B e (1 — x2))

(ap,Ap)
k dx

(by,Bq)

x H,'w |:z(1 —x?)

— 7 > (@) (ay), c”
() () 2 GG

x H™" 2 [z (2.92)

pt+2,q+2

(1—p—rd k),(1—p—rd k), (ap,Ap)
(bg . By).(1—p—rd+% J),(~p—rd—% k) |’

where P (x) is the Legendre polynomial and the conditions of the validity are the
same as stated in (2.91) with A = 0 and v replaced by A.
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2.6 Generalized Laguerre Polynomials

From the integral (Mathai and Saxena 1973, p. 76) it can be easily shown that

(ap,Ap)
dx

o0
/ x”e_"L,(f) () HT |:zx”
0 (bq,Bq)

B k!

x Hy i |:zn" (2.93)

A(ﬂ;_V),l),(A(n;U_V);1),(ap,Ap):|

(A(;0—y+k),1),(bq,Bq)

where 7 is a positive integer, either ¢ > 0, |argz| < %na ora = 0,R() < —1.

Further, the parameters z, y, 0 € C are such that R(y) +nmini<j<m [%] > —1
- J

g 1
fora >0, |argz| < %mx ora=0, it > 0;and R(y)+nmin; < <p m)(gb;’) , %
- = J

—1 for @ = 0 and p < 0. For a definition of Laguerre polynomials see Sect. 1.8.1.

Remark 2.10. Solutions of certain integral equations involving general H -function
were developed by Galué et al. (1993). It is interesting to observe that the results
given earlier by Kalla and Kiryakova (1990) for the Erdélyi—Kober and Weyl oper-
ators follow easily from the results of this section.

Exercises

2.1. Prove that

(by,Bq)

__ ptc—1 mn+2 o |(1—p,0),(+a+b—c—p,0),(ap,Ap)
=1 T H, 052 [dl ‘(bq,Bq),(l-i-afcfp,(r),(1+b7c7p,(r) ;

t
/ xPHe =)L Fi(a, bie; 1 — ;)H;,’f’q” [dx"‘(a”’A”)] dx
0

(2.94)

where either ¢ > 0,|argd| < %na or ¢ = 0,R(8) < —1 and the param-

eters p,a,b,c,d € C,0(c) > 0,0 > 0 be such that R(p + ¢ —a — b) +

ming < <m [%}’)] > 0 for @ > 0,|argz] < %na ora = 0,0 > 0 and

. Rpb;) RE+I
R(p+ ¢ —a— b) + min<m [snlgb_l)’&

- m }>Of0ra=0andu<0.
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2.2. Establish the following integrals:
@

t 1
oy —1 _ -1 _ mn < (ap,Ap)
rl:[l/(; Xr (1 Xr) 2an (2Xr 1)Hp,q |:(X1X2"'Xl)h (bq,Bq)i|er
(ap, Ap), (1 —ny + %,h),(al +ny + %,h)—‘
:ﬂ%Hm-i_zl’n z ”'(al_nl+%7h)7(al+nl+%yh) ’
pratata [ (bg. Bg). (1. h). (e + 1.1y, ... J
(al7h)7(al + %7}1)

where z,a; € C, either ¢ > 0, |argz| < %na or ¢ > 0,M(8) < —1. [For

a definition of T,(x) see Sect. 1.8.1]. Further, the parameter /4 is such that
N(oy) > hmaxi<j<n [m(‘i{_)_l] >0,r=1,...;tfore >0o0ora=0,u <0
-~ J

. R(a;)—1 RE)+1
and N(a,;) + mini < <m [%(‘15’/_) 1, (ZL+2

:| >0,r=1,...,t fore = 0and

w > 0.
(ii)

S

. -y "
l—[/ XN =x) 2Ty, 2x, — DHYY [Z(Xle"'Xz)h‘EZ:,B:))] dxr
r=170

(I —ai,h), (5 —a1,h),
v (L—a, by, (3 — b)) (ap. Ap)
(bq,Bq),(%—al—nl,h),(%—al +I’l1,h),... ’
(). G )

L yymnt2t
= 7Tzl-lp-i-zz,q-i-zz z

where z,a, € C, either ¢ > 0,|argz| < ima or @ = 0,%(5) < —1. Fur-

2
ther, the parameter /4 >0 is such that R (a;) + A mini<;<m [%] > —1,
- = J

r=1,...,tforad > Oora = 0,u > O,andiﬁ(p+c¥a—b)+

. Rb;) RO+
ming<;<m )(gli')aTZ

use the integral (Prudnikov et al. 1990, p. 681, Eq. (8.4.31.1))

>0,r =1,...,t fore = 0 and ¢ < 0. Hint:

23. Leta,B,y € C,eithera > 0,|argy| < ima ora = 0,%(5) < —1. Further,

2
letn = 0,6 # a, &=k sy M <1 Jarg(d + cb)/(d + ca)| < 7

be such that R (x) + A minj<;<m [mébl-_")] > 0,N(@) + nminj<;<p [-‘ﬁgl__/)] -0

<1,

Rb;) RE+L
By 0w

fora>00ra=O,/Lannd§Ti(a)+/\min15j5m[ i|>0,§ﬁ(a)+

) 1
Nming<;<m [mg’;’) , m(i)fz i| > 0 for o = 0, u < 0 then there holds the formula
- J
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b
_ _ _ A
fa (=N = x)F N ex + ) P [y — ) (b = )7 (ex + )G ax
= (b—a) T Y ac+ d)

(=2, D), 1 +y;v, 1) —

y(o—a)tn
x HO,Z:mf-‘rl_i;_l,O (act+dy —
2,1: 1,4+1:0,1 bh— . —
g clt—e) (@, A1), ... ap, Ap); (1= Bo1)

(I—=a—=g;A+n1); (b, By),..., (bg. By), (1 + v,v);(0,1)

Hence or otherwise show that

b (@pdp)
fa (=@ — 0P H [y (=)t b — x| | dx
= (b—a) T lav

(1= A, ), (I4+y;v, 1) : —

byt
% ppOZma+110 ’7%
2,1:p+1,q+1;0,1t c(b—a)

a

(a1, A1), ..., (ap,Ap); (1 —B.m);—
(I—a—Bih+n1) (b1 Br).....(bg By).(1+ y.0);(0.1)

and give its conditions of validity (Saxena and Saigo 1998).
2.4. Notation 2.9. F3: Appell function of the third kind
Definition 2.8. The Appell function of the third kind is defined in the form

(@)n (D) m (B))n x™ y"
() m+n m!in!

F / b b/, . _ -~ (a)m
3(a7a7 > 7(’7x7y) - Z

m,pn=0

o0
(@)m (DYm x™
= X_% WZFI (a',b'; c/;y)w,

where max{|x|,|y|} < 1. Prove the following result:

b
/ (t —a)* b — Pt +v) (vt + 2)"de

= (b—a)* P~ (au + v)¥ (by + 2)" B(ev, B)

(b—-—au (b—a)y
au+v '’ by+z )’

x F3 (a,ﬁ,—y,—n;a + 8-

where for convergence

(b —a)u
au +v

(b—a)y
by +z

} < 1;b # a, min{R (@), R(B)} > 0.

max {

73

|
|
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2.5. Show that

! o—1 i—1 p(a.f) oy mn hap,4p)
R (B [1——(1—1)}11],,;1 [z(l—z) \(bq’Bq)]dt

_ 2t 1(a+1) L(p) x~ (= V)r (L+a+ 1), r
Z (1 + o) (7)

grmatl [2}, (l—k—r,h),(ap, p) }

pHLg+1 | Z (b, By).(1=A—p—v,h)

where z,A,p € C,h > 0,1 > 0, & > 0.]argz| < Fmo; R(p) > 0.R(A) + &

minlstm I:%(Bb,l)] > 0.

2.6. Prove that
00 shilap,4p)
— b p, p
/0 t pJv(l)Jw([)Hqun I:al |(bq’Bq) i| dr

2—pHm+1 n+1 |: ‘< +ﬂ — h) (ap,Ap), <l+'0+‘i” h) <”+“;"+l ,h>:|
B pHagtl (p.2h).(bg . Bg) :

where J,(-) is the ordinary Bessel function, # > 0,p,v,0 € C,u > 0,a > 0,
|arga| < %na, Rw 4+ v —p 4+ 2h)mini<j<m [méb-’)} > —1 and R(p) >

T
2h maxj<;<n [—m(ﬁ'_)_l ]




Chapter 3
Fractional Calculus

3.1 Introduction

The subject of fractional calculus deals with the investigations of integrals and
derivatives of any arbitrary real or complex order, which unify and extend the no-
tions of integer-order derivative and n-fold integral. It has gained importance and
popularity during the last four decades or so, mainly due to its vast potential of
demonstrated applications in various seemingly diversified fields of science and en-
gineering, such as fluid flow, rheology, diffusion, relaxation, oscillation, anomalous
diffusion, reaction-diffusion, turbulence, diffusive transport akin to diffusion, elec-
tric networks, polymer physics, chemical physics, electrochemistry of corrosion,
relaxation processes in complex systems, propagation of seismic waves, dynamical
processes in self-similar and porous structures and others. In this connection, one
can refer to Caputo (1967), Glockle and Nonnenmacher (1991), Mainardi (1995,
1996), Mainardi and Tomirotti (1997), Metzler et al. (1994), and monographs by
Podlubny (1999), Dzherbashyan (1966), Oldham and Spanier (1974), Miller and
Ross (1993), Hilfer (2000), Kilbas et al. (2006) and references therein.

The importance of this subject further lies in the fact that during the last three
decades, three international conferences dedicated exclusively to fractional calculus
and its applications were held in the University of New Haven in 1974, University
of Strathclyde, Glasgow, Scotland in 1984, and the third in Nihon University in
Tokyo, Japan in 1989 in which various workers presented their investigations deal-
ing with the theory and applications of fractional calculus (see, for details, Ross
(1975), McBride and Roach (1985), and Nishimoto (1991)). The works of Srivastava
and Owa (1989), Kalia (1993), Rusev et al. (1995, 1997), Gaishun et al. (1996) also
deal especially with the subject of fractional calculus.

A comprehensive account of fractional calculus and its applications can be found
in the monographs written by Kiryakova (1994), McBride (1985), Oldham and
Spanier (1974), Miller and Ross (1993), and Ross (1975). In particular, the five
volumes work published recently by Nishimoto (1984, 1987, 1989, 1991, 1996)
contains an interesting account of the theory and applications of fractional calculus
in a number of areas of mathematical analysis, such as ordinary and partial differ-
ential equations, summation of series, special functions, etc.

A.M. Mathai et al., The H-Function: Theory and Applications, 75
DOI 10.1007/978-1-4419-0916-9_3, (© Springer Science+Business Media, LLC 2010
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This chapter deals with the definition and basic properties of various operators
of fractional integration and fractional differentiation of arbitrary order. Among the
various operators studied, it involves the Riemann—Liouville fractional integration
operators, Riemann—Liouville fractional differentiation operators, Weyl operators,
Kober operators, Saigo operators, etc. Besides the basic properties of these opera-
tors, their behavior under Laplace, Fourier, and Mellin transforms are also presented.
Application of Riemann—Liouville fractional calculus operators in the solution of
kinetic equations, fractional reaction, fractional diffusion and fractional reaction—
diffusion equations, etc. are demonstrated. The results are mostly derived in a closed
form in terms of the H -functions and Mittag-Leffler functions suitable for numeri-
cal computation.

3.2 A Brief Historical Background

. . . n . .
In order to give a meaning to the notation ix—% for the nth order derivative, when
n is any number: fractional, irrational or complex, fractional calculus came into

existence. In fact G.A. I’Hopital wrote to G. W. Leibnitz to know the meaning of

3';—% ,whenn = % Leibnitz replied in a letter of 30 September 1695 to 1’Hopital that

“dz x will be equal to x+/dx : x, an apparent paradox from which one day useful
consequences will be drawn”. The name “fractional calculus” is probably due to
I’Hopital’s question “what if 7 is %?” In another letter of Leibniz to J. Wallis dated
28 May 1697, Leibniz discusses Wallis’ infinite product for 7, mentions differential

. 1 S
calculus and uses the notation d2 y to denote a derivative of order %
Lacroix (1819) observed that

dam !

—x" = nix”_’”, neN=123,...; meNg=NU{0}; n=>m.
dxm (n — m)!
(3.1)

Since n! = I'(n + 1) and (n —m)! = ['(n —m + 1), the above equation was written
by Lacroix (1819) in terms of the gamma function in the form

" . T+

n

— = " 32
d)c’”)C F(n—m—i—l)x (3:2)

and then set m = % and n = 1 to obtain

During the eighteenth century, several mathematicians have contributed to the de-
velopment of fractional calculus, which includes Fourier (1822), Abel (1823-1826),
Liouville (1822-1837), and Riemann (1847).
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Gruiiwald (1867) defined the differintegration in terms of the following infinite
series:

e fla—ayN T E Tk -9 x—a
[d(x — a))4 _Nlinoo{ T(—9) I;r(k+1)f(x_k[ N D}

(3.3)

where g is arbitrary. The above definition was further generalized by Post (1930) to
the form

a’ f
dxn

= Jim_ { G DR fx - kSX)} , n € N, (3.4)

k=0

ny n!
k] k' —k)y

The theory of fractional calculus by complex integral transformations approach
has been developed by many mathematicians including Augustin—Louis Cauchy
(1789-1857) and Edward Goursat (1858—-1936). Further, Sonin in 1869 wrote a
paper entitled “On differentiation with arbitrary index” from which the present def-
inition of the Riemann—Liouville operator appears to follow. Letnikov (1872) in his
four papers presented an explanation of the main concept of theory of differentiation
of an arbitrary index which provides extension of Sonin’s work. A detailed account
of the origin of the Riemann-Liouville definition and its applications can be found
in the monograph of Miller and Ross (1993). The works of Davis (1927, 1936),
Love (1936-1996), Erdélyi (1939-1965), Kober (1940), Riesz (1949), Gelfand and
Shilov (1959-1964), and Caputo (1969) may also be mentioned in this connection.

A chronological bibliography of fractional calculus given by Ross is available
from the monograph of Oldham and Spanier (1974, pp. 1-15). Ross (1975) has also
given a brief history and exposition of the fundamental theory of fractional calculus.

where,

3.3 Fractional Integrals

Notation 3.1. ,17,,D";n € Ny : Fractional integral of integer order n.

Definition 3.1.
W) = oD ) = s [ C— T O > a (35)
R N O o '

where n € Njy.
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We begin our study by introducing a fractional integral of order 7 in the form
(Cauchy formula):

D" f)(x) = ﬁ / (c— 0! F)dr. (3.6)

It will be shown that the above integral can be expressed in terms of #-fold integral,

that is,
x X1 X2 Xn—1
D" f)(x) = / dx, / dv, / dvs - / fod. G

Proof3.1. When n = 2, then using the well-known Dirichlet formula, namely

/ab dx /ax flx,y)dy = /ab dy /yb f(x, y)dx (3.8)

Equation (3.7) becomes

/ax dx /axl fH)dt = /ax dtf(t)/lx dx;

= / x(x — ) f()dt. (3.9)

This shows that the twofold integral can be reduced to a simple integral with the
help of Dirichlet formula. For 7 = 3, the integral in (3.7) gives

(aD;3f)(x) = /ax dx; /jl dx, /axz f(Hde

= /ax dxg U; dx, /axz f(t)dt] (3.10)

Using the result (3.9) the integrals within big bracket simplify to yield

W N = | “an [ / Y- t)f(t)dz} . 3.11)

If we use (3.8), then the above line reduces to

x X X _ A2
(an3f)(x)=/a def (1) [/l (X1—l)dxli|=/a S 2!0 f(Hde, (3.12)

O
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Continuing this process, we finally obtain
1 * L 1 * |
DTN = gy [ o = s [ o

(3.13)

It is evident that the last integral in (3.13) is meaningful for any number 7 pro-
vided its real part is greater than zero.

3.3.1 Riemann-Liouville Fractional Integrals

Notation 3.2. 1%, ;D% 1 g‘+ : Riemann-Liouville left-sided fractional integral
of order a.

Notation 3.3. x I, x D%, I} : Riemann-Liouville right-sided fractional integral
of order a.

Notation 3.4. L(a,b): Space of Lebesgue measurable real or complex valued
functions.

Definition 3.2. L(a,b) consists of Lebesgue measurable real or complex valued
function f(x) on [a, b]:
b
L) =311l = [ 1@l < oof (3.14)
a
Definition 3.3. Let f(x) € L(a,b),a € C.R(a) > 0, then

JEF() = (DI F() = 1% F(1) = ﬁ [ et st > s Gas)

is called the Riemann—Liouville left-sided fractional integral of order «.

Definition 3.4. Let f(x) € L(a,b),a € C,R(a) > 0, then

1 b
AF ) =Dy f(x) = I f(x) = @/ (t=x)*" f(yde, x < b, (3.16)

is called the Riemann—Liouville right-sided fractional integral of order «.

3.3.2 Basic Properties of Fractional Integrals

Proposition 3.1. Fractional integrals obey the following property:

I IP0)(x) = (I2TPo)(x) = (12 1%9)(x).
(xlﬁxlf@(X) = (xlf%)(X) = (xlfxllf‘<p)(x). (3.17)
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Proof 3.2. By virtue of the definition (3.14) and the Dirichlet formula (3.8), it fol-

lows that
1 * de 1 Y o(u)du
(o) /a (x == T'(B) /a (t —u)t#

1 * i dr
:W/a du<p(u)/u EEnTTr——— (3.18)

t—u
x—u’

(12 oI29)(x)

If we use the substitution y =

the value of the second integral is

1
(@I (B)(x — uyt—~F

which when substituted in (3.18) yields the first part of (3.17). The second part can
be similarly established. In particular,

(x _ u)a-i-ﬂfl
T+ p)

1
/0 Y1 - ) ldy =

ATTF) = (I JIYF)(x), neN.f@) >0, (3.19)

which shows that the #n-fold differentiation

dxn %

( ¢ 1”+“f) (x) = 12 f(x),n € N,R(a) >0, (3.20)

for all x. When « = 0, we obtain

n

@) = fO0); I ) = < ) = 7). (32D

dx”n
O

Note 3.1. The property givenin (3.17) is called the semigroup property of fractional
integration.

Proposition 3.2. The following result holds:

) b
/ £ I%g)dx = / g0 (I8 f)dx. (3.22)

The result (3.22) can be established by interchanging the order of integration in the
integral on the left of (3.22) and then by using the Dirichlet formula (3.8).

Remark 3.1. Stanislavsky (2004) derived a specific interpretation of fractional cal-
culus. It was shown that there exists a relation between stable probability distribution
and the fractional integral. The relation investigated shows that the parameter of the
stable distribution coincides with the exponent of the fractional integral.
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3.3.3 Illustrative Examples

Example 3.1. If f(x) = (x —a)#~1" then find the value of A2 f(x).
Solution 3.1. We have

1 X
WENW = Fo / (c— 0 — .

If we substitute = ¢ + y(x — @) in the above integral, it reduces to

CB  wipe
NCEY) (x—a) ,
where N (f) > 0. Thus,
r
I F)00) = %o« ), (3.23)

provided «, f € C, min{R (), R(B)} > 0.
Example 3.2. Tt can be similarly shown that

')
e + B)

where g(x) = (b — x)?~1 a, B € C;min{R(), R(B)} > 0.

GIFg)(x) = (b—x)*t-1 x < b, (3.24)

Note 3.2. It may be noted that (3.23) and (3.24) give the Riemann-Liouville inte-
grals of the power functions f(x) = (x—a)#~!and g(x) = (b—x)#~!, min{NR (),
(P} > 0.

Exercises 3.2

3.2.1. Prove that

-1
“x 4 oy = CED g i 1425
Iy £ )0 = T ot F (L —yie + 1),
where N (x) > 0,2,y € C, %‘ < 1.

3.2.2. Prove that

(Lec =0T —2 ) )

T x-—at! . a—x
STt by N lmviatfig—)

where N («) > 0. N(B) > 0,a,B,y € C,

x| < 1.
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3.2.3. Prove that
(2167]) (¥) = €% (x = ) By o1 (ox — Ra).

where x > a,a,A € C,N{(a) > 0and E; 41(.) is the Mittag-Leffler function.

3.2.4. Prove that

T'®)

m(x_a)“+ﬂ_l1Fl (B;a+ B; Ax — ra),

(T2 0 =) 71]) () = e

where ¢, € C, min{N(x), R(B)} > 0.

3.2.5. Prove that

(12 =@ inx - @) ()

N %o« —a)** PP inx —a) + ¥ (B) — ¥ (@ + B,

where ¢, B € C,min{N(x), R(B)} > 0; and ¥(.) is the logarithmic derivative of
the gamma function.

3.2.6. Prove that
(a 19](x — a)2 Jy[A/x — a]) (x) = (;)a (x —a) @tV 2, (AVx — a),

where «,v € C, N(x) > 0,R(v) > —1.

3.2.7. Prove that

(12 = P Bglx = @) () = (v = @) Byl — )]
where 8, u,v € C,R(v) > 0.
3.2.8. Prove that

(012 [x* " sinax]) (x)
xMtv=1 F(M)

T2 T+t [ F1 (s o+ viiax) — 1 Fr(e o+ vi—iax)],

where 8,v € C,a > 0, min{0 (v), R(w)} > 0.
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3.2.9. Prove that

b b b
Iy g)(x) =/ dry / dtp -+ / g(tn)dty = ' / (t—x)""Lg(r)dt, neN.
X 3 tn—1 1)
3.2.10. Prove that Riemann-Liouville fractional integrals , I and I}’ with % (a) >

0 are bounded in L [a, b]. That is

(b —a)™® (b —a)"@

b—a
o I2h|1 < s |[Al[1 || IE A1 <
= r @@ T = @) )

where ¢ € C, R(a) > 0.

[172]]1. (3.25)

3.2.11. Prove that the Riemann-Liouville fractional integral /§, of the H-function
exists and the following result holds:

1 gy |0 (@pAp) +1 p0). (. Ap)
(s e G ) om0 05 )

provideda € C,N(a) > 0,a;,,b; € C,A;,B; >0,i =1,....,p;] =1,....q,
p € C,o > 0. Further let

n p m q
*=>"A;— > A;+) Bj— > B;>0, (3.26)
j=1 j=n+1 j=1 Jj=m+1
or % b
* =o,yu+m(8)<—1;o;“§;5m[ ; )}+%(p)>o, (3.27)
J
and

yo < N(p), where the contour of integrationis L = L;yco. (3.28)

3.4 Riemann-Liouville Fractional Derivatives

Notation 3.5. {a} means the fractional part of number «, 0 < {a} < 1.
Notation 3.6. [a] means the integral part of number .

Note 3.3. We note that
a = {a} + [o].
Notation 3.7. ;D% @; D3‘+ ¢: Riemann-Liouville left-sided fractional derivative

of the function ¢(x) of order a.

Notation 3.8. , DY @, I} ¢: Riemann-Liouville right-sided fractional derivative
of the function ¢(x) of order a.
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Definition 3.5. The left-sided Riemann—Liouville fractional derivative of order o €
C, R(a) = 0 of the function ¢(x) is defined by

D7 ¢)(x) = (Dg, ¢)(x)

1 d\" [~ £)de
Zm(a) $7 n=[R@]+ 1L x>a, (329

where [ («)] means the integral part of 9 ().

Definition 3.6. The right-sided Riemann—Liouville fractional derivative of order
a € C, N(a) = 0 of the function ¢ (x)is defined by

(:D§ 9)(x) = (D 9)()
_ &=t ( d ) ALY

T T —a) \dx G —xpnri T [R()] + 1; x < b. (3.30)

In short, one can express (3.29) in the form

dn
@DFp)(x) = @(alf_afﬂ)(x)a (3.3D)

and (3.30) as

n

d
DF 9)() = (D' I @), (332)

For o € R, the equations (3.29) and (3.30) take the forms
(D% 9)(x) = (DX, 9)(x)

1 d\" [~ r)dt
:m(_x) / (Xfi)%nﬂ, n=le]+1;x<b (333

and
Dy @)(x) = (D ¢)(x)

1y norb

We shall also employ the notations

DN o= (I e=(uIH""p; a>0

Similarly, we have

DY = I, M9 = GIEH e a > 0.
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Remark 3.2. Geometric and physical interpretations of fractional integration and
fractional differentiation were given by Podlubny (2002), also see Nigmatullin
(1992).

Notation 3.9. Q = [a,b],—oc < a < b < 00,2 may be a finite interval, a half
line or a whole line.

Notation 3.10. AC(£2), the space of absolutely continuous functions.

Notation 3.11. AC"($2). If n € N, the space of complex-valued functions /(x)
which have continuous derivatives up to order n — 1 on [a, b] with h#~D(x) €
AC|a, b] is denoted by AC"[a, b]. That is

AC"[a,b] = {h:[a,b] — C and (D""'h) (x) € AC[a,b]}, D = %, (3.35)

where C is the set of complex numbers. It is evident that AC'[a,b] = AC]Ja, b].

We now present some properties of the operators defined by (3.29) and (3.30)
(see Samko et al. (1993)).

Proposition 3.3. Let AC|[a, b] be the space of absolutely continuous functions h on
[a, b]. It is known [see Kolmogorov and Fomin 1984, p. 338] that AC [a, b] coincides
with the space of primitives of Lebesgue summable functions:

h(x) € AC[a,b] & h(x) =c + /x e(t)de, ¢(t) € L(a, b). (3.36)

Hence absolutely continuous function h(x) has a summable derivative h'(x) =
@(x) almost everywhere on [a, b]. Thus (3.36) gives

o(t) = W' (t) and ¢ = h(a). (3.37)

The following lemma can be established with the help of (3.36), which provides
the characterization of the space AC"[a, b].

Lemma 3.1. The space AC"[a, b] consists of those and only those functions h(x),
which are represented in the form

x n—1
M) = —— / (=" p@dt + ) ax—a).  (338)
4 r=0

(n—1)!
where ¢(x) € L(a,b)and c,,r = 0,1,...,n—1 are arbitrary constants. It follows
from (3.38) that
LK)
(p(x)zh(”)(x) and ¢, = &, r=0,1,...,n—1. (3.39)

r!
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The next theorem characterizes the conditions for the existence of the fractional
derivatives in the space AC"[a, b], defined by (3.35)

Theorem 3.1. Ifa € C,%(x) > 0;n = [N(x)| + 1, and h(x) € AC"[a.D], then
the fractional differentiation operators o DS h and x D) h exist almost everywhere on
[a,b] and may be represented in the forms

= K (1)dt
(a DEM)(x) = ; 1"(1+7£za)(x —a)™™* F(n —a) / (x — [)(a) ntl’
(3.40)
and
(r) _1y b ()
(DY) = Z S =y o [
(341)
respectively.

To prove the first part of the theorem, we observe that since #1(x) € AC", conse-
quently the representation (3.38) holds. Using this in the definition of the fractional
derivative , D%/ (3.29) and taking (3.39) into account, the result (3.40) follows. The
second part can be proved similarly by using the Definition 3.6 and the representa-
tion for the function f(x) € AC"[a, b] of the form (3.38):

(— )"

0=

/ (1 —x)"~ 19(t)dt+Z( e, (b—x)", (3.42)

where

(r)
01y = f™ (1) ande, = / r'(b). (3.43)

Corollary 3.1. Ifu € C,0 < R(a) < 1,a # 0, and h(x) € AC|a, b], then there
holds the relations

o h(a) X W dt
O vl fear R A o B
and
o 1 h(b) bop'(nydr
(DE) = Fi o {(b_x)a -/ (t—x)"‘] (3.45)
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Lemma3.2. Ifa € C,N(a) > 0 and h(x) € Ly(a,b),1 < p < oo, then the
Sfollowing formulae

(DY JI%h)(x) = h(x) and (; D¢ IFh)(x) = h(x). R(@) >0  (3.46)

hold almost everywhere on [a, b].

Remark 3.3. The above assertion shows that the fractional differentiation is an op-
eration inverse to fractional integration from the left.

Lemma 3.3. Ifa, f € C,3(a) >N (B) > O, then for h(x) € Lp(a,b), 1 <p<oo,
the composition relations

D JIh)(x) = JAZPh(x) and (DY L1Zh)(x) = 12 Ph(x), (3.47)

hold almost everywhere on [a, b].

The first part in (3.47) readily follows from the results (3.40), Theorem 3.2 and
Lemma 3.2. The second part can be proved similarly.

Notation 3.12. 41%(L ) : Space of functions.
Notation 3.13. I (L p) : Space of functions,
Definition 3.7. The space of functions , /(L ,) is defined by

LI (Lp) ={h:h=ali¢:9 € Lpa, b}, (3.48)

fora € C,M(x) > 0andl < p < co.
Definition 3.8. The space of functions I (L ;) is defined by

AP(Lpy)=1th:h= Iyp:9 € Ly(a,b)}, (3.49)

fora € C,M(x) >0 and 1 < p < oc.

Theorem 3.2. Let ¢« € C,R{(a) > 0,n = |N(@)| + 1 and let hy_o{x) =
(« 127%h) (x) be the fractional integral of order n — a, defined by (3.15). Then the
following results hold:

() IFh(x) € IE(Lp), 1 = p < 00, then
(a1%,D%h) (x) = h(x). (3.50)

(ii) If h(x) € Li[a.b] and hy_o(x) € AC"[a.b], then the formula

@

(aI%aD2h) (x) = h(x) — ; T +D

(x—a)y"/, (3.51)

holds almost everywhere on [a, b].
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3.4.1 Illustrative Examples

Example 3.3. Prove that

(DI["D(x) = %XV‘“JX >0,yeC,R(y)>—-1,x>0, (3.52)

Solution 3.2. We have

1 dn X L
D¥[tY = — V(x -0 de
DD = T g [ =D
L'y +1 -
= — 04 1)yx’ e
F(y+n+1—a)(y @+ Dnx
F'y+1) 4
= 7 , 3.53
To+1-o (39
fory € C,N(y) > —1.
Note 3.4. Itis interesting to observe that for y = 0, (3.53) yields
X—Ot

which is a surprising result and indicates that the fractional derivative of a constant
is, in general, not equal to zero. Thus it is not difficult to show that

(b—x)""
rd—a)’

(x—a)™®

WDID0) = T s

and (, D¥1)(x) = 0<% <1. (3.55)

Example 3.4. Prove that

X
Iy (x) = ———=I[Inx —y =y (v + D],
where y is the Euler’s constant and ¥ (z) = FF/((;).

Solution 3.3. We have

(oIY[Int])(x) = ﬁ /Ox(x — )" nr de.

If we use the substitution { = xu, then

1 1
(oIY[Int](x) = m/o xV (1 —u)" Hnx + Inu)du

. xVInx n xV
T Tw+1) T

1
/ (1 — )’ ' Inudu.
0
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We know that

/wa«4w*hmn=3wﬁwmm—ww+ﬁn (3.56)
0

where o, f € C,N(x) > 0,R(B) > 0. Applying the formula (3.56) for « = 1 and
noting that ¥ (1) = —y, we see that

v

@wmmm=f§iﬁ

lnx—y—y¥@+ 1)

Similarly, we can prove the result in the next example.

Example 3.5. Prove that

%

(DM 1D(x) = =2 inx—y =y (~v + L]

(1-v)
Example 3.6.
t x ¢
(oD D (x) = mlﬂ(h 1 —a;ax).
Solution 3.4. We have
o0 ar
(o D5 lexp(an)])(x) = Z Fonf(xr)
r=0
Za T(r+1) o

_rzoﬁl"(r—a—i—l)

x—a
=—1FL (I;1 —«a; .
F(l_a)l 1 (L o ax)

Remark 3.4. One can unify the definitions of Riemann-Liouville fractional integral

defined by (3.15) and Riemann—Liouville fractional derivative defined by (3.29) of
arbitrary order @, @ € C, N () # 0,n € N, in the form

g fo (k=™ f(0)de, Rw) <0

3.57
(L) 12 ) (), R@) > 0n—1 <R@) <n, )

(DY ) (x) =

which is called differintegral of f of order «. This process is also called fractional
integro—differentiation. (Butzer and Westphal 2000)
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Exercises 3.3

3.3.1. Prove that

I'(p+ HxP™®

(oD Ix? expl@n)]) () = 1 s

1Fi(p+1Lp—a+lax),

where o, p € C,R(p) > —1.

3.3.2. Prove that

To(z) = 77 V2217077V, DT WD (sin o).
3.3.3. Prove that

Y(x) = -y +Inz—T(x)z" ¥oD} ™ (Inz),

where ¥ (x) is the logarithmic derivative of the gamma function and y is the Euler’s
constant.

3.3.4. Prove that
v(a,z) =T (a)e“o D “(exp2),

where y (a, z) is the incomplete gamma function.

3.3.5. Prove that
(oD2 20, 064) (1) = 2756 b 0 (e,

where u € C, 9 (n) > —1.

3.3.6. Prove that

re)

Fi(a.biciz) =
2Fi(a,b;c;2) T (b)

ZI_CODf_C [Zb_l (1 _ Z)_a]-
3.3.7. Establish the result

T+ 1
(DY[x*2Fi(a,b;c; )] (x) = T @+1) TV Fa(A+1,a,b;c; A—v+ 15 x),

G—v+1)

where A,v,a,b,c € C,NA) > -1, (A —v) >—1land ¢ # 0,—1,-2,...; and
|x|] < 1.

3.3.8. Prove that
(«DY oIS (x) = h(x).
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3.3.9. Prove that
@D? 120 (x) = 1E P h(x),

where ¢, B € C, min{N («), R(B)} > 0, h(x) € L{a,b).

3.5 The Weyl Integral

Notation 3.14. (WEZ, 1%, 1% Weyl integral of order a.

Definition 3.9. The Weyl integral of f(x) of order «, denoted by (W2, is de-
fined by

Woo /)x) = (Lo F)x) = UZ ) ()
_ 1 e _ a—1 _
= m/x (t—x)"" " f(@)dt, —oc<x<oo (3.58)

where « € C, R(a) > 0.

Notation 3.15. D& , D% : Weyl fractional derivative.

[o ol

Definition 3.10. The Weyl fractional derivative of f(x) of order o, denoted by
x D&, is defined by

(DLW = %)) = " (5] (2 s)

_ w4\ 1 ®© f(nde
= () g [ e e
(3.59)

wherem — 1 <a <m; me N,aeC.

3.5.1 Basic Properties of Weyl Integrals
Proposition 3.4. The following result holds.
| ewrveac= [Tyw (wzee)an Goo)
0 0

Equation (3.60) is called the formula for fractional integration by parts. It is also
called the Parseval equality. Equation (3.60) can be established by interchanging
the order of integration.
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Proposition 3.5. Weyl fractional integrals obey the semigroup property. That is

(sWe WL F) () = GWEE )00) = (W W) (),

Proof 3.3. We have

(e )= o [

1
X —_—
T'(B)

Using the modified form of Dirichlet formula (3.8), namely

/l (u— l)ﬂ_lf(u)du.

a a a
/ dr (¢ —x)‘H/ (u—0)P7 Fuydu = B(a,ﬁ)/ (u—0)* 1y
x ¢ ¢
and letting a — oo, (3.62) yields the desired result
(+W2 W) ) = CWET ().

The second part of Eq. (3.61) can be similarly proved. [

3.5.2 Illustrative Examples

Example 3.7. Prove that

e—kx

A(X

(+W27) () =

where N («) > 0.

Solution 3.5. We have

(x Wo"é[e_“])(x) ﬁ /xoo(l —x)*le™Mdr, A > 0,

—Ax fele) —AXx
€ 1 €
— u® 1e )uudu — )
T @) Jo Ae

Example 3.8. Find the value of (ng‘o[e_)“x]) (x),A > 0.

(3.61)

(3.62)

(3.63)
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Solution 3.6. We have

m
wme —AXx
xWe €

e R b

= () e e,
X

)
|

Exercises 3.4

3.4.1. Prove that

(WL expa /0D (6) =~ 00— i),

where A,v € C,0 < (v) < R(A).
3.4.2. Prove that
(Wal* T exp(—an)(x) = 7 2 (x/a)" % exp(—ax/2)K,_y (ax/2),
where R (ax) > 0,v e C,RN(v) > 0.
3.4.3. Prove that
W™ Eg, (ax P)() = x7V B (ax7),
where min{) («), R(B), N(y)} > 0; «,B,y € C,a € R.

3.4.4. Prove that the Riemann—Liouville fractional integral /* of the H -function
exists and the following relation holds:

(ap, Ap) _ o
o ]) 0=

. p—1 ggm,;n o
(I_t HyY [z

m+1,n o]
XH 0 G [x

(ap7Ap)7(1 —p,U) i|
(I1-p—a,0),(bg.By)|’

provided ¢ € C,NR(x) > O and further the constants a;,b;, € C,4;,B; > 0
i=1,....,p; j=1,...,9,p € C,o > 0 satisfy

2= )+ e <1

and 1 + yo > 3i(p) + N(a); the contour of integration being L = L;y 0.
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3.6 Laplace Transform

In this section, we derive the Laplace transforms of fractional integrals and fractional
derivatives which are applicable in certain problems associated with fractional reac-
tion, fractional diffusion fractional reaction—diffusion, etc.

3.6.1 Laplace Transform of Fractional Integrals
We have
1 X
OO = 1) = s [ =0T roa G

where v € C, R (v) > 0.
Application of the convolution theorem of the Laplace transform to (3.64) gives

v—1
L{oI’fisy=1 {ﬁé} L{f@):s}
=s7VF(s), (3.65)

where s,v € C, R(s) > 0, R(v) > 0.

3.6.2 Laplace Transform of Fractional Derivatives

Letn € N, then by the theory of the Laplace transform, we know that

dn n = n—r— r
L{dxnf:s} =5 F(s)—;s AR (3.66)
n—1
=s"F(s)= Y _s" "7V 0y), (3.67)
r=0

where s € C,N(s) > 0 and F(s) is the Laplace transform of f(z).
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By virtue of the definition of the Riemann-Liouville fractional derivative, we
find that

d” _
L[oD§fis]=L { dx”ol;z af2s}
n—1 n—r—1
= SnL [Olg_af;s] — Zsrwolz_af(0+)
r=0
n-l dJe—r-1
=s"F(s)— Y Ser(OJ,_) (3.68)
r=0
n ) de—r
=s"F(5) = )8 o f(04), (3.69)
r=1

‘ d
:s"‘F(s)—Zs’_lD“_’f(O+),(D = a), n—1<owo=<n,

r=1

(3.70)

where N (s) > 0.

3.6.3 Laplace Transform of Caputo Derivative

Notation 3.16. ngC‘ f : Caputo fractional derivative of f ().

Definition 3.11. The Caputo fractional derivative of a casual function f(7) (that is
f(t) = O0fort < 0) with @ > 0 was defined by Caputo (1969) in connection
with certain boundary value problems arising in the theory of viscoelasticity and the
hereditary solid mechanics in the form

EDLFHx)=oI77" d(i:n F(x) = D707 ™ (x) (3.71)
_ 1 Y pyrmant p _
“Th—a /a (x—1) fMndt,n—1<a<n (372
= d”f’ ifo =n,neN. (3.73)
dx”

From the Egs. (3.65), (3.67) and (3.71), it follows that

L{§D2 fish = OO O ), (3.74)
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On using (3.66) and (3.73), we see that

n—1
L{§ DY fish =570 [s"F(s) DI (m)}

r=0

n—1
:s"‘F(s)—Zs"‘_r_lf(r)(0+),n—1 <a<mn, (3.75)
r=0
where ¢, s € C, R(s) > 0, R(x) > 0.
Note 3.5. From (3.71), it can be seen that

ED* A =0, (3.76)

where A is a constant, and whereas the Riemann—Liouville derivative

At™¢

DéA= ——
Ot T T —w)

a#1,2,..., (3.77)

which is a surprising result.

Remark 3.5. In arecent paper, Freed and Diethelm (2007) have extended the Fung’s
elastic law to one that is appropriate for the viscoelastic representation of soft bio-
logical tissues, and whose kinetics are of fractional order.

3.7 Mellin Transforms

Notation 3.17. M (0, 00), : a subspace of L ,(0, 00).

Definition of the subspace M, (0, 00) : M (0, 0o) denotes the class of all func-
tions f(x) of L,(0,00), with p > 2, which are inverse Mellin transforms of
P

functions of L,(—0c,00);q = st

Theorem 3.3. The following result holds true.
rdi—a-—s)

) f*G+a), (3.78)

M(I¥f)(s) =

where s,a € C,0(a) > 0and R(a + 5) < L.
Proof 3.4. We have

M (17 f)(s)

* s—1 1 ‘ a—1
/0 Z m/o (z—1) f()dedz (3.79)
t

—L = s—=1, _ ~Na—1
_F(a)/o f(l)dt/ 2 H{z—1)" "dz
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Setting z = t/u, the z-integral becomes
1
pets—1 / w1 —w)* ldu = t* B, 1 —a — 5), (3.80)
0

where N («) > 0, N (a + 5) < 1. The result (3.78) now follows from (3.80). O
Similarly, we can establish the following result:

Theorem 3.4. The following result holds true:

I'(s)

M (IS5 f) (5) = N RAALE (3.81)
_ T®
= Toq a)f (s + @), (3.82)

where s,a € C,N(a) > 0, R(s) > 0.

3.7.1 Mellin Transform of the nth Derivative

Theorem 3.5. Ifn € N, then

M{f(”)(t);s} = (-1)" N L) To_m M O =k, (3.83)

where s € C,0(s —n) >0

Equation (3.83) can be proved by integrating by parts and using the definition of
the Mellin transform.

3.7.2 Illustrative Examples

Example 3.9. Find the Mellin transform of the Riemann-Liouville fractional deriva-
tive o Df¥.

Solution 3.7. We have

oD f =D} oD f = (0Df ol %) f. (3.84)
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Therefore,

-H*r
M) ) = T

_ =D rd—(s—a)) o
T T(-—mIT1—s+n) M{f@y:s —ai, (3.86)

M (oI “f)(s—n), n—1<Ra)<n (385

where ¢, s € C, R(s) > 0, R(s) < 1 + R(x).
Example 3.10. In a similar manner, we can prove

., _ (=D)"T(s)sin[z (s — n)]
M (oD} f)(s) = I'(s — o) sin[m (s — a)]

M{f(t):s —a}, (3.87)

where &, s € C, R (s) > 0, R —5) > —1.

Exercises 3.6

3.6.1. Find the Mellin transform of the Caputo derivative.

3.8 Kober Operators

Kober operators are the generalization of Riemann-Liouville and Weyl opera-
tors. These operators have been used by many authors in deriving the solution of
single, dual, and triple integral equations possessing special functions of math-
ematical physics, as their kernels. These operators (/(q ;) f)(x), are also called
Erdélyi—Kober operators.

3.8.1 Erdélyi-Kober Operators

These operators are applicable in deriving the solution of certain integral equations
involving special functions of mathematical physics which possess a Mellin—Barnes
type integral representation. In this connection, refer to the works of Fox (1961,
1963, 1965, 1971), Saxena (1966, 1967, 1967a), Narain (1965, 1967), Nasim
(1983), Habibullah (1977), and others. For further details see the survey paper en-
titled “Operators of fractional integration and their applications” by Srivastva and
Saxena (2001).

Notation 3.18. I[f(x)], Ila,n: f(x)], Eg;’f, L% f.(IY, £)(x) : Erdélyi-Kober
fractional integral of the first kind.
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Notation 3.19. RIEGo)], Rlee. & f(0)], Ko £ KE* £ (Ko (). (K(@.£F) (0):
Erdélyi—Kober fractional integral of the second kind.

Definition 3.12.
If] = Llewn fO] = EGLf = 1P f = (L, /)) = (L. n) ()
_ XI:ZO;)" Ox (x = )% F()de, o, € C:R(@) > 0, (3.88)
Definition 3.13.
RIf(0)] = Rl & f(0)] = K§E f = KO f = (Ko )(0) = (K(@.0) /) (x)
= % :Oz—?—“(z —x)*7 1 f(ndr,a, ¢ € C;R(w) > 0. (3.89)

Equations (3.88) and (3.89) exist under the following set of conditions :

1 11 1
f €Ly0,00),N()>090>—N)>——+-=1p=>1
q pr 9q

When 1 = 0, (3.88) reduces to Riemann-Liouville operator. That is
199f = x"%I%f. (3.90)
For ¢ = 0, (3.89) yields the Weyl operator of the function 1~% f(¢). That is
KX f = WA £ (). (3.91)

Theorem 3.6. (Kober 1940) If a,n,s € C,0(@) > 0,.N(n —s5) > —1,f €

L,(0,00), 1 < p <2(or f € My(0,00), a subspace of L ,(0,00) and p > 2),

N(n) > —é; % + é = 1, then there holds the formula
rad+n-ys)

MU@D O = 5o oM U@ 6o)

The proof of (3.92) can be developed on similar lines to that of Theorem 3.3. In
a similar manner, we can establish

Theorem 3.7. (Kober 1940) If a,5, € C,Ra) > 0N +s5) > 0,f €
L,(0,00),1 < p <2(or f € Mp(0,00), a subspace of L ,(0,00) and p > 2),
N() > —%; % + 1 =1, then there holds the formula

=

r'e+s)

MA{R(,0)f}(s) = m

M {f(x);s}. (3.93)
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Semigroup property of the Erdélyi—Kober operators has been given in the form
of the following theorem, which can be proved in the same way:

Theorem 3.8. Ifa,n € C,%(x) > 0,R(n) > max{—%,—é};f € L,(0,00),8 €
L4(0,00),1 < p <2(or f € My(0,00), a subspace of L,(0,00) and p > 2),
% + é = 1, then there holds the formula

/0 (0) (L@ n: 1)) (¥)dx = /0 FO) R@.n:g) (Odx.  (3.94)

Remark 3.6. Operators more general than the operators defined by (3.88) and (3.89)
are defined by Galué et al. (2000) in the form

@.0,7 R a—1 .
U N = s / M — 0% f()dt,a,n € C:R(@) > 0. (3.95)

Exercises 3.7

3.7.1. For the Erdélyi—Kober operators defined by

—2a —27

o = 22 M-t poan

where N («) > 0, establish the following results (Sneddon 1975):

@) 1, x f(x) —fzﬂ 1Y, (if(X)
+
(11) Iﬂﬂt n+o,f T In at+f T In-i—otﬂlﬂa

(iii) (In,a) P = I:—Hx —a

Remark 3.7. The results of Exercise 3.7.1 also hold for the operator, defined by

K;,af(x) / ( 2 2)0( 1 —20( 2n+1f(l)dl

F( )
where N («) > 0.

3.7.2. Prove that the Erdélyi—Kober fractional integral ,;" . of the H-function exists
and the following result holds:

+ -l pgmmn |0
(Iﬂ,ﬂt[ HP,q |:l

o—1 mp+1 o
=X Hp g | Y

(@p, Ap) :|)

(b 80) )
P_777U)7(ap714p) i|

(bq7Bq)7(1_P_a_777U) ’
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provided @, € C, M (a) > 0, and further the constants a;,b; € C,4;,B; > 0,
i=1,....,p;j=1,...,q,p € C,o > 0 satisfy

min [m(b])

1<j<m B
J

i| + N(p) + min[0, R(n)] > 0.

and yo < —R(p) — min[0, R(n)]. (Here the contour of integration is L = L;y 0.

3.7.3. Prove that the Erdélyi—Kober fractional integral K, , of the H-function ex-
ists and the following relation holds:

(ap, Ap) :|)
(g, By 1)

(ap7AP)7(1_IO+a+ 777U)i|
(1 _p+ ﬁyU)y(bquq) ’

— p—1lgymn o
(Kﬂ,al HP,q |:l

_ o1l ggm+ln o
=X H G | X

provided @, € C,M(a) > 0, and further the constants a;,b; € C,4;,B; > 0,
i=1,....,p;j=1,...,q,p € C,o > 0 satisfy

max [m(aj)_l

1<j<n A; i|+m(:0) <1+ 3%(n)

and 1 —yo > R(p) — R(n).

3.9 Generalized Kober Operators

Notation 3.20. Ia, B,y :m,k,n,a: fO0)l, I[f(x)]
Notation 3.21. Ja, B,y : m,k,8,a: f(x)], K[f(x)]

Notation 3.22. R[f(x)], R [‘zﬁ ;’ f(x)}

s Mo

Notation 3.23. K[f(x)]. K [O"ﬁ ;’ f(x)}

¢, p,
Leta,B,y,k,n,¢,0,p€ C,x € Ry.
Definition 3.14.
If)] = 1le, B,y :m,k,na: f(X)]
kx—n—L X ark
= F , svs—— | 7 f(0O)de, 3.96

where , I (-) is the Gauss hypergeometric function.
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Definition 3.15.
K[f(o)] = Klo, B,y :m. k.8 a: f(x)]

kxt o axk
= ——— cage ——1
= T —a)/x 2 Fi (a,ﬁ tmiyi—p )z f(de.  (397)

Operators defined by (3.96) and (3.97) exist under the following conditions:

i p=1lg< oo,%-i— é =1,larg(l —a)| < 7,k > 0.

() Rl —a) > -—m, N1 > -1/, X)) > —-1/p. Ny —u—-Bf—m)>—-1,me
No;y #0,-1,-2,...

(iil) f € Lp(0,00).

The equations (3.96) and (3.97) are introduced by Kalla and Saxena (1969).

Remark 3.8. It is interesting to note that for y = f,a = k = 1, the equations
(3.96) and (3.97) reduce to the generalized Kober operators introduced and studied
by Saxena (1967b).

Definition 3.16.

RI/()] = R [“’ﬁ 3 f(X)}

0,p,a:

_ t°(x — )", Fy [a,ﬁ; yia (1 — 5)} fyde. (3.98)
L)y Jo o
Definition 3.17.
. a, B,y :
K[f(x)] =K [ ¢ o f(X)}
¢ ]
= % i 1P — x)P L Fy [a,ﬁ;y;a (1 - ;)} fHde. (3.99)

The conditions of the validity of the operators (3.98) and (3.99) are given below:

1) P217q<oo,%+é=1,|arg(1—a)|<n

(i) R(o) > -1/, R(&) > —1/p, R(y—a—P) > 0,R{(p) >0;y #0.—1,-2,...
(iii) f € L(0,00).

Remark 3.9. The operators defined by (3.98) and (3.99) are given by Saxena and
Kumbhat (1973). For multidimensional generalized Kober operators associated with
Gauss hypergeometric function, which provides an elegant multivariate analogue of
the operators (3.98) and (3.99), see Saxena et al. (1990).

When « is replaced by a/¢ and ¢ — oo, the operators defined by (3.98) and
(3.99) reduce to the following operators associated with confluent hypergeometric
functions:
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Definition 3.18.

RU@M=R[ﬂVﬂﬂ@}=nmR[“ﬁ”ﬂfwﬂ

o,p,a: o—00 o,p,aja:
x"oP ¥ t
= x-—0rlo [ﬁ;y;a (1 — —)} f(Hde.  (3.100)
Cp) Jo X
Definition 3.19.

KU@M=K[ﬁ”:fwﬂ

¢op.a: 2 K[ aﬁy:'f(x)}

= asoo L, p,aja:

b
C(p) Jx

where N (p) > 0, R(¢) > 0; and (B, v; z) is the confluent hypergeometric function
(Erdélyi et al. 1953, p. 248).

oot—t—p(, —x)*'® [ﬂ; yia (1 - ;)] f@de,  (3.101)

Many interesting and useful properties of the operators defined by (3.98) and
(3.99) are investigated by Saxena and Kumbhat (1975), which deal with relations of
these operators with well-known integral transforms, such as Laplace, Mellin, and
Hankel transforms. Equation (3.98) was first considered by Love (1967).

Remark 3.10. In the special case, 0 = 0, when « is replaced by @ + f, v by o and
B by —n, then (3.98) reduces to the operator (3.102) considered by Saigo (1978).
Similarly, (3.99) reduces to another operator (3.104) introduced by Saigo (1978).

3.10 Saigo Operators

An interesting extension of both the Riemann-Liouville and Erdélyi—Kober frac-
tional integration operators was introduced by Saigo (1978) in terms of Gauss’s
hypergeometric function. In a series of papers, Saigo (1978, 1979, 1980,1981),
Saigo et al. (1992, 1992a), Saigo and Raina (1991), Srivastava and Saigo (1987),
Saigo and Saxena (1998), and others obtained several interesting properties of these
operators and then applied in many problems. In this section, we present definitions
and certain important properties of Saigo operators. Following Saigo (1978), we de-
fine the following generalized fractional calculus operators associated with Gauss
hypergeometric function in the kernel.

Notation 3.24. 1 &’rﬂ . Left-sided generalized fractional integral operator.

Notation 3.25. 1%#7 : Right-sided generalized fractional integral operator.
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Notation 3.26. Dgf V. Left-sided generalized fractional derivative operator.

Notation 3.27. D%P : Right-sided generalized fractional derivative operator.

Leta,f.n € C, and let x € N the generalized fractional integral and gener-
alized fractional derivative of a function f(x) on 4 are defined in the following
forms:

Definition 3.20.

x—e—B px

r@ Jo (x—0)*LF (Ol-i-ﬁ, —na;l— é) f@)de, () >0
(3.102)

U ) =

d o
= g P ) (), R (@) < 0in = [R(-e)] + L.

(3.103)

Definition 3.21.

1

a.B, -
ASP1 N = 1o

/oo(t—x)“_lt_“_ﬂzFl (a T R f) F(6)dt, R(@) > 0
§ (3.104)

= (—1)”£C—nn(lf‘+”’ﬂ_””’f)(x), R() <0;n=[R(-a)]+1. (3.105)
Definition 3.22.
(PP () = Uy 7P ()

B (di) ULt ) (). @) > 0 = RG] + 1.

(3.1006)
Definition 3.23.
(DEPY f)(x) = (IZ47PF7 £) (x)
- (_%)n (1ZeFm=B=matn £y R(w) > 0 = [R(w)] + L.
(3.107)

For f = —a, the operators defined by (3.102), (3.104), (3.106) and (3.107) re-
duce to the classical Riemann-Liouville fractional calculus operators for R (¢) > 0,
namely the Riemann-Liouville operator I§ , defined in Sect. 3.2 by the equation
(3.15), the Weyl operator /¢, defined in Sect. 3.4 by the equation (3.58) and the
fractional derivative operators DS‘+ and D¢, defined below by the Eqgs. (3.109) and
(3.111) respectively.
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Notation 3.28. DS‘+ : Riemann-Liouville left-sided fractional derivative of order «.

Notation 3.29. D? : Riemann-Liouville right-sided fractional derivative of order «.

Definition 3.24.
®,— « d [te+1 1—a+[R(w)]
(D" () = (DE, f) () = (a) (1074 f) (). x> 0
(3.108)
d [R(x)]+1 1 x f(l)
- (3) Fi—atr D@D Jo G nem@ "
(3.109)
Definition 3.25.
(D& £)(x) = (D% f) () = (—i)m(m]+1 (1= £) (6),x > 0
- - dx B ’
(3.110)
d [R(e)]+1 1 1) f(l)
B (‘E) e e ). (e 40
(3.111)

where the symbol [¢] means the integral part of a real positive number ¢ that is the
largest integer not exceeding ¢. In particular for real @ > 0, D, and D take the
interesting forms

(D" () = (DE, f) () = (%)M+1 (1070 7) o,

(a1 e
B (a) r(1 —{a})/o (x_,){a}dt’ x>0 (3112

and

d [ee]+1
(D™ f)(x) = (D f)(x) = (‘a) (17 r) 0

d [a]+1 1 00 §10,
z(‘a) Fan ERCA .

where {¢} denotes the fractional part of ¢, thatis {¢} = ¢ — [¢].

If we set B = 0, then the operators defined by (3.102) and (3.104) yield the
Erdélyi—Kober operators, defined by (3.88) and (3.89) respectively.
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3.10.1 Relations Among the Operators

We note that the relation connecting the operators (3.102) and (3.104) is given by

(=05 [ ]y o =t ([ s)) (5) e

To prove the result (3.114), we observe that if we start from its left hand side then
by a simple change of variable, we obtain the desired result.

When = —a, in (3.114), it gives the relation between the operators (3.111) and
(3.58) given by Kilbas (2005):

(s o= (o~ )

vt (g o)) (3) =t s e o) 5):

(3.115)

On the other hand, for § = 0, we obtain the relation between the operators (3.88)
and (3.89) as

(1o [3]) 0= (Kzar [3]) o= (127 170 ()
=x" (L[ fO0)) G) : (3.116)

Note 3.6. We observe that the operators (3.106) and (3.107) are inverse to the oper-
ators (3.102) and (3.104):

DEPT = (18P M1 and DEEN = (12Fm)71 3.117)

3.10.2 Power Function Formulae

By making use of the following integral

! ()T (p)T ‘—a—b

/xp_l(f—x)c_lel (a,b;c;l—f)d)c= OL@Ip+c—a )t”+c_1,

0 t Flo+c—a)l'(p+c—b)
(3.118)
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where p,a,b,c € C,R{(p) > 0,R(c) >0,R(p+c—a—>b) > 0and

oo o—lre _ ne—l b _ rard—p—alfl—p—a—->0) 4.,
[ xPTH x — ) L Fi(a, bl x)dx Tl —p—a(1—p—0) t ,
(3.119)

where p,a,b,c € C;9(c) > 0,0 (p+¢) < 1,N(p + a + b) < 1, we obtain the

following power function formulae for the operators (I (‘;‘J’rﬂ ’") and (I .p ”’):

@B A A+ Ad+A+n-8) ;.4
(15 )(x)_l“(1+/\—ﬁ)l“(1+/\+a+n)x , (3.120)
where @, B,nand A € C,N(x) > 0 and R(A) > max{0, NP —n)} —1;
o,B,n A _ 'g-1Hr'in-21) A-B
(1_ ‘ )(x) = Tora s " (3.121)

where , 8,7, and A € C, R(x) > 0, R(A) < min{R(B), R(n)}. orif R(x) < 0O;
0<NMa)+n <1and N(A) < min{R(B) —n, N(n)}, where n is a positive integer.
For B = —«, (3.120) and (3.121) give rise to the formulae

o A . F(l + /\) Ata
(Io+l )(X) “Ti+ita) +a)x , (3.122)
where o, 4 € C.M(x) > 0, R(A) > —1; and
N
(Iﬁ‘t_)“) (x) = %x‘“, (3.123)

where o, 4 € C.R(A) > R(x) > 0.
Similarly, for § = 0, we obtain

+ 4 _ d+a+m
(lwz )(x)_ ETE (3.124)

wherea, A,n € C,R (A +1n) > —1 and

rm-2

(K,;at)“) (x) =
where ¢, 4,7 € C,R(a) > 0,R(n) > R(A).

The discussion in the next two sections is based on the work of Saigo et al.
(1992).
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3.10.3 Mellin Transform of Saigo Operators

Theorem 3.9. If «,B,n € C.N(a) > 0, and R(s) < 1 + min[0, R(n — B)], then
the following formula holds for f(x) € Lp(0,00) with 1 < p < 2or f(x) €
M, (0, 00) with p > 2:

prapa,. N\ _ TA=9T—-F+1-y3) ,
M{x Lo} "f,s}— F(l—s—ﬁ)l"(a—i—n—i—1—s)M{f(x)’s}’ (3.126)

where M (0, 00)is defined in Sect. 3.6.

Theorem 3.10. If o, 8,1 € C,R(¢) > 0, and N(s) > —min[N(B), R(n)], then
the following formula holds for f(x) € Lp(0,00) with 1 < p < 2or f(x) €
M, (0, 00) with p > 2:

Brapas \_ LTB+TO+s) .
M{x 1° "f,s} = F O Tw B M s (3.127)

3.10.4 Representation of Saigo Operators

A representation of Erdélyi—Kober operators (3.88) and (3.89) in terms of the
Laplace transform operator L and its inverse L™! was given by Fox (1971, 1972).
Certain relations connecting L and L™! operators, and fractional integration oper-
ators of Saxena (1967) were derived by Kumbhat and Saxena (1975) generalizing
the results of Fox (1971, 1972). In this section we present certain representations of
the Saigo operators by L and L™!.

Theorem 3.11. Let o, 8,1 € C,R\{(a) > 0,.M(—B) > Oand R(n) < 0. Ifa
function f(x) satisfies the following conditions:

(i) f(x) € L(O.0)

(ii) y~2 f(y) € L(0,00),where f(y)isofboundedvariation near the point y = x

(iii) M{{(x);s} =F(s) e L(3 —ioco, 1 +ioo)

(iv) yP~3 I(‘;‘_;_ﬂ’"f € L(0,00) and yﬂlgf’"f is of bounded variation near the
point y = X, then there holds the relation

I(l)x_;_ﬂ,ﬂf — xe—B-ny-1 [t_a_”L {XﬂL—l [["L {x”_ﬂ f(x)}]}] . (3.128)

Remark 3.11. For B = 0, (3.128) reduces to a result given by Fox (1972, p. 198).

Theorem 3.12. Let o, 8,1 € C,R{(a) > 0,R(B) > 0.and R(n) > 0. If a function
J(x) satisfies the following conditions:
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(i) f(x) € L(O.0)
(it) y~2 f(¥) € L(0, 00), where f(y) is of bounded variation near the point y = x
(M)Mquypzn@eL@—wmg+u@
(iv) yP=2 1% f € L(0,00) and yP 1% f is of bounded variation near the
point y = X, then there holds the relation

a,fB, _—a2-—n+1y—-1 | —a— Br—1 -1 l
et e (O]

(3.129)

Remark 3.12. For B = 0, (3.129) reduces to a result given by Fox (1972, p. 199).

Exercises 3.9

3.9.1. Let @* > Oor ¢* = 0 and yu + N(E) < —1. Further, let o, 8,7 € C,
N(x) > 0, R(B) # R(n); p € C and k > 0 satisty the conditions

[mw;)
B

N(p) + k min

1<j<m

i| + min[0, R(n — )] > 0.
J

fora® > 0ora™* =0,u > 0, and

R(b;) RNE) + 1
Bj’ u

R(p) +« 1£nji£m |: } + min[0, R(n — B)] > 0,

for @* = 0 and p < 0. Then show that the generalized fractional integration / (‘;‘J’rﬂ o

of the H -function exists and there holds the formula

_ Ay)
JeBa o1 gmon [tx (ap, Ap }) (x)
( O+ P4 (bq, Byg)
— Bl gmn+2 XK (1_:07’()7(1+,3_77_P7K)7(ap714p)
pt2.q+2 (bq7Bq)7(1+,3_va)7(1_10_“_777’<) ’
(3.130)

where i, 8, 2™ and y are defined by (1.17), (1.18), (3.26), and (3.28) respectively.

3.9.2. Let either ¢® > O or ¢* = 0 and yu + N(8) < —1. Further let o, 8,7 €
C,N(x) > 0,R(B) # NRN(n); p € C and k > 0 satisfy the conditions

Eﬁ(al-) -1

4

N(p) + k max [

1<i<n

} < 1+ min[R(B). ()]
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fora® > 0ora™ =0,u <0, and

N(p) + k max

1<i<n

R@)—1 RE) + 2
A

} < 14 min[R(B), R(n)],

for ® = 0 and i > 0. Then show that the generalized fractional integration / @B
of the H -function exists and there holds the formula

(ap. Ap) })
(b8 )
(aP7AP)7(1 _107’()7(1 + o +;B + 77_107K)i|
(1_IO+:37K)7(1_10+777K)7(b4’B4) ’
(3.131)

B 0—1 gmn |«
(I_ t Hp,q [l

_ wo—B—1gggm+2.n K
=X Hpogva | X

where o* is defined in (3.26).

Note 3.7. In Exercise 3.9.1, left-sided generalized fractional integral / (‘)x BT of the
H -function is considered, whereas Exercise 3.9.2 gives the right-sided generalized
fractional integral /%#7 of the H -function.

393. Leta,B,ne C.R(@) >0,N(a+B+n#0,peC,k>0.Leta® >0o0r
a* =0, and yu + N(8) < —1 satisfy the conditions

[iﬁ(bj)
B;

N(p) + « min

1<j<m

} + min[0, R(a + B + n)] > 0.

fora® > 0,or@* =0, > 0, and

N(p) + k min

1<j<m

1
[m(bj), W) + z} + minf0, (e + B+ )] > 0,
B, "

for ¢* > 0 and u < 0. Then show that the generalized fractional differentiation
Dgf ' of the H -function exists and there holds the formula

(@p.Ap) })
by B0 1)
(1 _107’()7(1 _p_n_a_137K)7(aP7AP)i|
(bq7Bq)7(1_P_,37’<)7(1_P_777K) ’
(3.132)

B0 o1 gympn | &
(oxtno-sm |

_ WP+ B-1 ggmn+2 K
=X H, 754

where a* is defined in (3.26). Hence or otherwise show that the Riemann-Liouville
fractional derivative D f of the H -function exists and the following result holds:
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ot o | @A)
(D it [’ e B D(x)

(1=p,0),(ap, Ap)

— xp—a—le,n-H |:xo
(bQ7Bq)7 (1 - IO + a,U)

pt+l,q+1

i| , (3.133)

provided ¢ € C, % (a) > 0, and further «.f,n € C,R(a) > 0,N(x + B+ n) # 0,
p € C,o0 > 0;eithera™ > Oora* = 0,and yu + N (5) < —1 satisfy the conditions

N(p) + 0 min [

1<j<m

L

J

fora® > 0and @* = 0, u > 0, and

R(b;) RE) + 1

R(p) + 0 min [ (j), ©) 2}>O
1<j=m | Bj U

for a™ = 0, n < 0, ™ is defined in (3.26). (Kilbas and Saigo 1998)

3.9.4. Let either ¢* > Qor @® = O and yu + N(8) < —1. Furtherlet o, B, € C,
N() >0,pe C;N(a+H+n)+ [N(a)]+1 # 0, and ¥ > 0 satisfy the conditions

Eﬁ(al-)— 1i| <1,
A

4

(o) -+ max[ N (8). [N(@)] + 1 —90(e + )] + x max [

fora®™ > 0ora* =0,u <0, and

Yy — 1
() +max[R(B). [%(@)]+ 1. = (@+m)] +x max {m(a;)' 1’m(82+ 2} 1

for «® = 0 and u > 0. Then show that the generalized fractional differentiation
D%B-1 of the H-function exists and there holds the formula

B, 0—1 gmn |k
(D_ t Hp,q [l

X [x“

Hence or otherwise show that the Riemann-Liouville fractional derivative D% of
the H -function exists and the following relation holds:

(ap, Ap) ”n —1 gym+2,
(b:,Bj) () = )P

(ap,Ap).(1—p, k), (1 —p—B+n.k)
(1_:0_,37’(),(1—,0+Ol+77,;<)7(bq7Bq)i|' (3.134)
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o0 m,n g (a 7A )
(D STHE [‘ (by. By) D(")

= (_1)[9%(a)]+1xp—a—1Hm+1,n [x"

(ap,Ap).(1—p,0)

P+1,q+1 (1_P+a76)7(bq7Bq)

i| , (3.135)

provided ¢, 8,7 € C,RN (@) >0, N+ B +1n) #0,pe C,o > 0, furthera* > 0
ora® =0, and yu + N(§) < —1 satisfy the conditions

[Eﬁ(aj) -1

N
(p) + 0 max Y

1<j=n

} @) > 0,

fora* > Oora* = 0, u < 0; while

Np)+o max

<j=n

Raj)—1 RE) + 3
[W’) O 2} — 19} > 0.
4
for «* = 0 and 1 > 0 where {R()} is the fractional part of R(w).
(Kilbas and Saigo 1999)

Note 3.8. In Exercise 3.9.3, we consider the left-sided generalized fractional deriva-
tive Dgf T of the H-function, whereas Exercise 3.9.4 provides the right-sided

generalized fractional derivative D%#-7 of the H -function.

Note 3.9. It is observed that the result of Exercise 3.9.1 also holds for the general-
ized fractional integro—differentiation 7/, (‘)x A7 of the H-function defined by (3.103).

Similarly the result of Exercise 3.9.2 also gives the generalized fractional integro—
differentiation /%87 of the H -function defined by (3.105).

Remark 3.13. Certain properties of the Riemann-Liouville fractional calculus op-
erators associated with generalized Mittag-Leffler function are obtained by Saxena
and Saigo (2005). Saigo-Maeda operators of fractional calculus associated with
Appell function F3 (Saigo-Maeda 1998), which are the generalizations of Saigo
fractional Calculus operators, are studied by Saxena and Saigo (2001), which pro-
vide the extensions of the theorems given in this section (Exercises 3.9.1-3.9.4). For
further results on Saigo-Maeda fractional calculus operators, refer to the papers by
Saxena et al. (2002) and Kiryakova (2006).

3.9.5. With the help of the following chain rules for the Saigo operators

B, .8, B+38,
P I £y () = AP £y (),

and
(LB [Y3940 £ (x) = (1547 B+ £) (),
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derive the inverses

-1

(I(t)x;ﬂn) _ Io—f’—ﬂ’“"‘”, (3.136)
and 1

( ,g,ﬂn) — [~@—Batn (3.137)

3.9.6. Establish the following property of Saigo operators called “integration by
parts”

[ e (7o) war = [T eeo (=00 coax. a3

3.9.7. Show that

L)l (o+n-p)
Fo-pT(c+a+n

bx
X 38, (1,77—,3-1-1,—c;1—13,a+;7+1;_7).

(I(‘;‘J’rﬂ’"x"_l(a + bx)c) (x) =a°

Also give the conditions of validity of this result.

3.11 Multiple Erdélyi-Kober Operators

Fractional integration operators associated with the H-functions are studied by
Saxena et al. (1974), Kalla (1969), Kalla and Kiryakova (1990), Srivastava and
Buschman (1973). A detailed and comprehensive account of fractional integra-
tion operators and their applications studied by various authors during the last four
decades can be found in the paper of Srivastava and Saxena (2001). The discussion
in this section is based on the work of Galué et al. (1993).

Notation 3.30. 1 ((g :)) ((ji ; - Multiple Erdélyi—Kober operator of Riemann-Liouville
type.

Notation 3.31. C,: Space of continuous functions.

Notation 3.32. K ((;’1:)) ’((g:))n Jf(x): Multiple Erdélyi—Kober operator of Weyl type.

Notation 3.33. C ;* : Space of continuous functions.
Definition 3.26. Space of functions C,, is defined as

Co={f(x) =xPf7(x): p>a, f7(x) € C[0,00)}
with & =% _ [~ (yk + 1)] (3.139)
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Definition 3.27. Space of functions C, is defined as

Car = {f(0) = 29g(x):q <0, € C(0.00): [g]<Ag] witho"= min ()
(3.140)

Definition 3.28. A multiple Erdélyi—-Kober operator of Riemann-Liouville type is

defined in the form

— ) Br)
I[f(x)] =1 Bo). (/\k),mf(x)

1 y4m,0
fo Hm,m |:’4 (Vk"‘l_ll_kfll_k)'lﬂ i|f(x“)d“
- ifzrln Sk > 0. (3.14D)
f(x), if 8 =0 and A =Br,k=1,...,m,

i+ +1= g 5T

where m € ZT,B8r > 0,8 > 0, and yx,k = 1,...,m are real numbers.

Furthermore
21 21
Z P Z Z -
o M o Pr
and f(x) € Cy, where Cy, is defined by (3.139), and
a > max [—Ag(yr + D]
1<k<m

The definition (3.141) can be rewritten in the familiar form :

m

Ve + 8+ 14 4
( P mﬂk)l f(dr.

(6),65¢) L["gmo| ! ‘

I X) = — H™ _

B0 ) X/O mam |y ()’k 41— L L)
(3.142)

Remark 3.14. 1t is interesting to note that for Ay = B¢,k = 1,2,...,m, we obtain
the operator defined by Kalla and Kiryakova (1990). If, however, we set m = 1 and
Br = A,k = 1,...,m, we obtain a slight variant form of Erdélyi—Kober operator
defined in (3.88). The following properties of this operator holds.

3.11.1 A Mellin Transform

M {I(Vk),(Sk) f(x)s} _ ﬁ P +1- i M{f(x);s} (3.143)
(B)s (i), T — 5 o ’
) (Axc)m ey D0+ 8+ 1= 5)
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where

Tl &1 ,
I; vl I; 5> 0 and N (s) < lg}clélm[/\k(l + 7o)l

3.11.2 Properties of the Operators

Some basic properties of the operator defined by (3.141) are given below:

m L
J006) o _ [ T+ 1+ £) W (3.144)
(Bic) (A ),m bl T(ye + 68 + 1+ ﬁ) ’ ’

where R (p) + max;<g<m[Ax (1 + v&)] > 0.

Vi), @r) 7 (T (k) T @D (GO ()T
Loy urml o) @om O = Lipoym eom e men () (3.145)

where
n

o1k o ek o M o Pe
max) <g<m([l — Ak (Y& + 1)] <0 < maxy<f<n [k (t& + 1) — 1], and

(!

The inverse of the operator / ((5 ]’:)) ((fi % 18 given by

< (wA)2).

ARCS I k8 ()
(1G506),) e = TR0 p), (3.146)

The results (3.143) and (3.146) are useful in deriving the solutions of a certain
class of integral equations.

Definition 3.29. Another multiple Erdélyi—Kober fractional integral operator of
Weyl type is defined by

0o 1 1 \n
() () wo | 1| @+ + - o))
KIf()] = K F) = / o |t FCeuydu,
(616 S L R ICAE e
(3.147)

if > ag > 0,and f(x),ifox =O0and g = &,k =1,...,n, where
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ne N, e >08>0,0p >0and i,k = 1,...,n are real numbers, f(x) € Ca*,
where C, is defined by (3.140) and

a* < min (&)
1<k<n

The definition (3.147) can easily be put in the familiar form :

KG9 po = [T Hp
(Sk) Ex)n . n.n

provided that

o+ =,
Ek+ AT }f(t)dt (3.148)
tk ’Ek

Xn:ak > 0.
k=1

Remark 3.15. 1t is interesting to note that for ¢, = &,k = 1,2,...,n, we obtain
the operator defined by Kalla and Kiryakova (1990). If, however, we set # = 1 and
gx = &,k = 1,...,n, we obtain a slight variation of the Erdélyi—Kober operator
of Weyl type defined in (3.89). The following properties of this operator holds.

3.11.3 Mellin Transform of a Generalized Operator

It can be easily seen with the help of the Mellin transform of the H -function given
by the equation (2.8) that

@ " T+ )
M { ((glf)) ((g:))nf(x) } l_[ Wki]ﬁi)M{ﬂx); s}, (3.149)
k=1 &k

where

n 1 n

Z_—Zi>0and mlglx( &eti) < N(s).

ok o e

The power function formula for the operator K ((;k)) ((gk))n is given by
T(te — &)
(w) () Lp _ LR T
K(gk),(ék),nx - ]}j[l F(‘L’k + o — ﬁ)x ’ (3150)

where M (p) < min; <g <[t &x]. Further

(@) (0 60) @@ GO
Ko (e0m K. Goom T ) = Kioom om0 apymn X G-15D)
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where
n n m m
1 1 1 1
B=Y -y is0y -y a0
i Sk o ek o vl
max (—Axyr — 1) <0 < min (§,1¢ + 1),
1<k<m 1<k=<n
and

1
x| < —wB.
|argx] < -

Finally, the inverse of the operator K ((:]’:)) ((g:))n is given by

@) \ ! (e (e
(K@f),(s:),n) ) = Kigyoym S (3.152)

Remark 3.16. Solutions of certain dual integral equations involving general H -
functions have been developed by Galué et al. (1993) by the application of the
operators (3.141) and (3.147). It is interesting to observe that the results given earlier

by Kalla and Kiryakova (1990) for the multiple Erdélyi—Kober and Weyl operators
follow easily from the results of this section.

Remark 3.17. Representations of fractional integration operators of multiple
Riemann-Liouville and Weyl type defined by (3.141) and (3.147), in terms of the
Laplace and inverse Laplace transforms, are recently obtained by Saxena et al.
(2006). Integral formulae for the H-function generalized fractional integration op-
erators discussed in this section are derived by Saxena et al. (2004a, 2007). Integral
formulas for the generalized Erdélyi—Kober operator of Weyl type, defined by the
equation (3.147), are recently evaluated by Saxena et al. (2005).



Chapter 4
Applications in Statistics

4.1 Introduction

Special functions are used in almost all areas of statistics. Statistical densities are
basically elementary special functions or product of such functions. Hence, the the-
ory of special functions is directly applicable to statistical distribution theory. While
studying generalized densities, structural properties of densities, Bayesian infer-
ence, distributions of test statistics, characterization of densities and related studies
of probability theory, stochastic processes and time series problems, and special
functions and generalized special functions in the categories of Meijer’s G-functions
and H -functions come in naturally.

When looking at multivariate and matrix-variate distributions, the theory of
special functions of matrix argument is directly applicable. Functions of matrix ar-
gument in the categories of matrix variable gamma, type-1 beta and type-2 beta, are
the most commonly used special functions in current statistical literature.

In this chapter, a brief introduction to the applications of H -functions in statisti-
cal distribution theory will be given. Problems which fit directly into the definition
of an H -function are dealt with in this chapter. With the knowledge of the basic ma-
terials discussed in this chapter, the reader will be able to tackle more complicated
situations of applications of special functions in statistics. Only the real variable
case is discussed in this chapter.

4.2 General Structures

General structures in statistical literature where H-function will be applicable are
many. The simplest of the structures are products and ratios of statistically indepen-
dently distributed positive real scalar random variables. A real scalar random vari-
able x is said to have a generalized gamma density when the density is of the form

Mx"‘_le_"xﬂ, x>0,a>0a>0p8>0
fy=17(%) 4.1

0, elsewhere.

A.M. Mathai et al., The H-Function: Theory and Applications, 119
DOI 10.1007/978-1-4419-0916-9_4, (© Springer Science+Business Media, LLC 2010
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Note 4.1. Usually, in statistical problems, the parameters are real; hence, we will
assume that the parameters a, «, and f are real.
Let
U= X1Xp - Xf, 4.2)

where x; has the density in (4.1) with the parameters a; > 0,c; > 0,8; > 0,j =
1,2,--- ,k and let x1,--- , x; be statistically independently distributed. Note that
for B; = 1 in (4.1), one has the standard gamma density. Hence, if y; has the
density in (4.1) with 8; = 1, then a density of the structure in (4.1) can be created

by considering x; = yf'j,j =1,---, k. Hence,

Wt = yfl ...ylfk, 4.3)

and u in (4.2) can be studied by using the same procedures. If one is interested
in deriving the exact density of (4.2), then one of the methods, and possibly the
easiest way, is to compute the Mellin transform of the density of u. If the unknown
density of u is denoted by g(u), one can evaluate the Mellin transform of g(u),
without knowing g(u), by making use of the independence properties of xp,--- , Xg.
In the standard terminology in statistical literature, let £ denote the mathematical
expectation, then E (x”), when x has the density in (4.1), is given by

+h
r(5)
, for (o +h) >0, 4.4)

r(4)as

where 91 (-) denotes the real part of (-). Thus, when « and /4 are real, this expected
value or the ~Ath moment of x can exist for some negative value of /4 also such that
«a + h > 0. Due to statistical independence,

E(xM) =

E@") = [EGDIEED] - [EGD]

aj+h
r (%)

k

- nﬁ R +h)y>0, j=1,... k. (4.5)
= w;\ B

’ lr(ﬂ_;)“jl

But, with 4 replaced by s — 1, one has the Mellin transform of g(u). That is,

E(us_l)z/o g (u)du

1
LT (%) d
ZHM JL’ Eﬁ(aj+s—1)>07 j=1,...,k. (4.6)

5 L B
J=1 F(ﬂj) a;’
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Then, the unknown density g(u) of u is available from the inverse Mellin transform.
That is,

c+ioco
glu) = i/ [E@ H]u™ds, i =+/—1, ¢>—a; +1, j =1,k
k ﬁ c+ioco k N —s
el (ot (11
{U ) L {EF o) -

( - L),]:l k}, 0<u< o0, «.7)

and O elsewhere, is the density of u.

Note that for §; = 1, j = 1,---,k, the H-function in (4.7) reduces to a
Meijer’s G-function G0 p () Further, for spec1a1 values of k, one can evaluate (4.7)
in terms of elementary spemal functions.

Note 4.2. Since statistical densities, in general, can be written in terms of elemen-
tary special functions and the H -function is a very generalized special function, one
can represent almost all densities, in current use, in terms of H -functions.

Note 4.3. Special cases of the gamma density in (4.1) include the following:

(a) Weibull density (8 = «);

(b) chisquare density (8 = 1,a = i,a =Z.m=12--)
(c) standard gamma density (,3 =1);

(d) exponential density (8 = 1,a = 1);

(e) folded Gaussian (f = 2,0 = 1);

(f) chidensity (8 =2, =1,n=1,2,---);

(g) Helley’s density (8 = 1,a =1, a = ZF)h

(h) Helmert’s density (8 = 2,a = ;75,0 =n—1>0);

(i) Maxwell-Boltzmann density (8 = 2,a = 3);

(j) Rayleigh density (8 = 2,0 = 2).

Note 4.4. When x in (4.1) is replaced by |x|,—oc < X < 0o, we obtain more
generalized densities. The most important special cases will then be the Gaussian
(B = 2,a = 1) and the Laplace density (f = 1,a = 1).

4.2.1 Product of Type-1 Beta Random Variables

A real scalar random variable is said to have a real type-1 beta distribution, if the
density is of the following form:

M a—1 _ ﬂ—l
A = ) Tarp* T A= 0<x <la>0.§>0
0, elsewhere,

(4.8)
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where the parameters @ and f are assumed to be real. The following discussion
holds even when « and f are complex quantities. In that case, the condition becomes
N(x) > 0 and N(G) > O where N (-) means the real part of (-). The ~th moment of
x, when x has the density in (4.8), is given by

F'@+h) T(@+pP)

By
ECD = T Tat B0

N(e + h) > 0. (4.9)

When « and / are real, the moments can exist for some negative values of % also
such that & + 2 > 0. The Mellin transform of f;(x) is obtained from (4.9), by
replacing 4 by s — 1 for some complex s.

Consider a set of real scalar random variables xi,--- ,xz, mutually indepen-
dently distributed, where x; has the density in (4.8) with the parameters (@, 8;).
j =1,--- ,k and consider the product

Uy = X1X3 ++* Xg. (410)

Then, the Mellin transform of the density g1 (u) of u; is obtained from the property
of statistical independence and is given by,

/0 g (e = B = [E]- (B

k

:l—IF(aj-i-s—l) I'(a; + B;)
I(ej) T+ +s—1)

Jj=1

k

_ (e +8)) C TE+s—1)
B l_ll INGT)) l_[F(aj+,3j+S—1)

(4.11)
j= j=1

Then, the unknown density g1 () is available by taking the inverse Mellin trans-
form of (4.11). This can be written in terms of a Meijer’s G-function of the type
G,I;’IS (-). We can consider more general structures in the same category. For exam-
ple, consider the structure

up =x'x% e xFy; >0, =1,...k (4.12)
where x1, ..., X are mutually independently distributed as in (4.10). Then, observ-
ing that

E@™) = EG) S EGPC ) B (4.13)

k

R U IR
N l_[ INCT)! l_[F(aj+,3j_Vj+yjs)

, (4.14)

Jj=1 Jj=1

Eﬁ(aj—yj+yjs)>0,j =1,---,k,



4.2 General Structures 123

the density g5 (u2) of uy is available by taking the inverse Mellin transform, that is,

k i k
T(a; + B 1 fetic® T(e;—y; +yjs _
gz(uz) = l_[ M _/ - ( J J J ) uzsds
iop D) i Jemioo oy T(@j + B =¥ +7;9)
k
F(aj + ,Bj) k,0 (aj+B;—vj.v;)i=1,-k
=@y e [eal om0 < <1
j=1 /
(4.15)
Observethatwheny; =1, j = 1,--- , k, the H-function reduces to the G-function.

The case in (4.15) is slightly different from x; having a generalized type-1 beta den-
sity and then considering the product x; - - - x¢. Suppose x; has a generalized type-1
beta density given by

o
yavy

5(3.8)
) = 1 —ax? >0,

x4 11 —ax?)f1 0 < x <a_%,a >0,8>0,y >0,a >0,

0, elsewhere,
(4.16)
where B(-,-) is a beta function

. (“,5) r(¢)re

Z =——"——a>0,>0,vy>0.
rlr(er)

If x follows the density in (4.16), then the (s — 1)th moment of x is given by,

[ r(e5=) r(s+#)
E(x 1):/0 x lfz(x)dxza%ry(%)r(#Jrﬂ). (4.17)

Let, x; have the density in (4.16) with parameters (a;,o;,8;,v;),j = 1.--- .k
and let xp,--- , x; be independently distributed. Then, if

usz = X1+ X, (418)
then

(4.19)
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The density of u3, denoted by g3(u3), is available from the inverse Mellin transform
in (4.19). That is,

e
k a?.ir<ﬁ ) . . ("‘.1"1 .¢) N
(13)= J v, T h Bl a? o us|) By )=tk
g3 M3)— o kk aq ---ak us
, (%
J=1 (V.i) (

Yj
aj—1

. 1 .

;’1’ v ),]—1,...,k

1 1

0<al --alfus <1, (4.20)

Note that (4.20) is different from (4.15).

4.2.2 Real Scalar Type-2 Beta Structure

A real scalar random variable x is said to have a type-2 beta density, if x has the
density

T(a+8) La—1 —(a+B)
B L 1 14+ x ,0<x<oo0,a>0,8>0
fa(x) = { rwr@* ) > p 4.21)

0, elsewhere.

Then, the Mellin transform of f3(x) is given by,

o _ =1, Tla+s—DT(E—-—s+1)
[, s = B = SR
for RMa+s—1)>0,RB—-s5+1)>0. (4.22)

This is obtained from the normalizing constant in (4.21) by observing that @ + 8 =
(¢ +s—1)4+ (B —s + 1). Asin the previous cases, consider

ug = x7' e x, (4.23)
where y; > 0,---, yx > 0, with x; having the density in (4.21) with the parameters
(j,B;).j = 1,--- ,k and xy,--- , x¢ are independently distributed. Then, as in

the previous situations, the Mellin transform of the density g4(u4) of uy is given by

k
0 T ; s —v) T R .
/0 uﬂ_1g4(u4)du4 = E(ui—l) — 1_[ (@, ‘;(VOZ; vi) T8 szé 5) + VJ)’
i=1 J J
’ (4.24)

for M(a; —y;+vjs) >0 NP +v; —v;5) >0, j=1-- k.
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Then, by taking the inverse Mellin transform in (4.24), one has the density,

1 ke [ ((=B;=y;¥), =1
, i =YisYi)s J=10k
Hyy [“4‘

k
= - . 0 .
galua) 1131 Ce)I(B;) (@j=v;.vj)s j=1.k ] VS e =00

(4.25)
As illustrated before, the density of a product of generalized type-2 beta random
variables will be different from (4.25). A generalized type-2 beta density has the
form

yavT(2+p)
TTEOT®
=1 g50a>07y>0, (4.26)

x4 N1+ ax?)y" @) 0 < x < 00,0 > 0,

0, elsewhere.

Thus, for all such special cases mentioned in Notes 4.2 and 4.3, the procedure

discussed in this section is applicable. Observing that negative moments of the form
E(x™"), h > 0 are available from E (x") with & replaced by —/ if E(x~") exists.

4.2.3 A More General Structure

We can consider more general structures. Let,

X1X e+ Xy

W= ———, (4.27)

Xr4+1 - Xk
where x1, -+ , Xz are mutually independently distributed real random variables hav-
ing the density in (4.1) with x; having parametersa;, a;, 8;, j = 1.--- , k. Then,
EW" = EGIECE - EGMHEGT) - E(h), (4.28)

provided the right side in (4.28) exists. Then, from (4.4) we have,

E(stl) = ﬁ w ﬁ &

r

_

j=1 o) Bj i—=r 41 (04_;) Bj
F( )aj =T (%) a

L h=s—1 4.29)

J
a

a;}_’}, (4.30)
)
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fora; +5s—-1>0,j=1,---,r,aj—s+1>0, j =r+1,---,k. Hence,

the density of w, denoted by g*(w), is available from the inverse Mellin transform.
That is,

1 ctioco | 7 o —1 s k a; +1 s
* =c"— r(= + —) r (]— - _)
grw) = " o— e—ico {Jl;ll ( B; Bi } {jﬂi—l B; Bj

1 —s

;
MTi=a’
X = —w ds,i =+=1, max (1—-a;)<c< min (a;+1)
7 J=ler j=rt1,
k 3 i
Mi=+14
o, +1
- (—~—. ), j=r+1,k
= H T sul, 7Y L0<u<oo @.31)
1
M a;’ 5
where § = — =7 _ = r o 4.32)
E; put
M= t1a, M= T <’5’ )]
Remark 4.1. In statistical applications, sometimes, the variables xp,---,x; are

independently and identically distributed. In this case, the parameters in (4.28)—
(4.32) will be such that a; = a, f; = B, a; = « for some a, 8, « and for
j=1,- k.

Remark 4.2. In (4.27), we took x;’s belonging to the generalized gamma density in
(4.1). But, we could have considered w consisting of x;’s belonging to (4.1), (4.8),
(4.12), (4.21), (4.23), and (4.26) or mixed cases provided E (w*~!) exists. Then, the
density of such a general structure will be available by taking the inverse Mellin
transform of E(w*~!). The density of w can be written in terms of an H -function.
More of such cases are contained in the pathway model to be discussed in the next
section.

Exercises 4.1

4.1.1. If x is areal scalar variable having a generalized gamma density then evaluate
the Laplace transform of the density of % and show that this Laplace transform can
be written as a H -function. [Hint: Evaluate the integral

o0 » o
c / e % x¥ e P4y,
0

where c¢ is the normalizing constant and p is the Laplace parameter.]

4.1.2. Show that -
¢ / x TV lempx=hxT g
0

also leads to the same result as in Exercise 4.1.1.
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4.1.3. Show that the Laplace transform of % in a generalized type-2 beta density,
that is

o0
c / e~ X"l + a(@ — DX "aTdx,
0

fora > 0,6 > 0,0 > 1,y > — ,ﬁ — yT-i-l > 0, is an H -function, where ¢ is a

normalizing constant in the density.

4.1.4. Evaluate the integral
e 1
c / e P + a(e — x ) F Tdx,
0

fora > 1,a > 0,6 > 0 and write down the conditions for the existence of the
integral. Interpret it as a Laplace transform.

4.1.5. Let x; and x; be independently distributed type-1 beta random variables with
the parameters (a1, B1), and (22, f2), respectively. Let u = x}' xJ2. Give the con-

ditions under which u is distributed as a power of a type-1 beta random variable.

4.3 A Pathway Model

A general density that was introduced by Mathai (2005) is a matrix-variate pathway
density. The scalar version of the pathway density in the real case is the following:

n_
fx)=cx"[l—a(l—a)|x]’]" %, 8 >0,7>0,a>0, l—a(l—a)|x|* >0,
(4.33)

and fx(x) = 0 elsewhere, where c¢ is the normalizing constant. When o < 1 the

range of x is
1 1

[a(l —a)]s [a(l —a)]s

As o moves toward 1, the range becomes larger and larger, and eventually —oc <
x < oo when @ — 1. Thus, for @ < 1, (4.33) remains as a generalized type-1 beta
family of densities. When @ > 1, we can write | —a = —(¢ — 1), ¢ > 1, and then
l—a(l —a)|x|® = 1+a(@—1)|x|%, —oc < x < o00; then, the density in (4.33)
becomes a generalized type-2 beta family of densities. When o — 1, either from
the left or from the right,

(4.34)

lim [l —a(l - o)|x[] T = emenl®, (4.35)

In this case, (4.33) becomes a generalized version of the density in (4.1). Thus, the
model in (4.33) switches into three different families of densities, represented by
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three different functional forms, namely the generalized type-1 beta, type-2 beta,
and gamma families. Then, @ becomes a pathway parameter. As can be expected,
¢ in (4.33) will be different for the three cases @ < 1, @ > 1, and « — 1, and the
respective densities are the following:

A =c x'[l—al—a)x)]T%, a<1,a>0,8>0 57>0, (436)
1

- <X < ——, and f(x) = 0, elsewhere,
[a(l — )]s [a(l —a)]s
A =c X" [L+a@—D|x"#7,a>0,8§>0,n>0, a>1,
—oc < X <00, 4.37)
) =cs|x[Pe M 450, 050,8>0, —oc <x < o0, (4.38)

where the conditions on y will be available from the normalizing constants ¢y, ¢z,
and c3, and these constants are evaluated with the help of type-1 beta integral, type-2
beta integral, and gamma integral, respectively, and they are the following:

§lat =) F'T (B + 2 +1)
‘= 1 ,a<l,y>-l,a>0,n7>0,8>0,
2 ()T (2 + 1)
(4.39)
Sla(—1 VT-HI' _n_ 1
. [(+1 )] (a_il) s lys_1 nl_% 0
4 7 Y o —
2F(T)F<E—T)
§>0,n>0,a>0, (4.40)
§ (an) v
63=L,8>0,a>0,y>—1,n>0. 4.41)

+1
2T (VT)

4.3.1 Independent Variables Obeying a Pathway Model

Consider k-independent real scalar variables, distributed according to the pathway
density in (4.33) with different parameters. Let, u = x1x5 - -- x;. We can compute
the density of u by following the procedure in Sect. 4.1. To this end, let us look at
the (s — 1)th moment of x in (4.33). This will have three different forms depending
upon the cases ¢ < 1, ¢ > 1, and @ — 1, and these are available from (4.39),
(4.40), and (4.41), respectively. That is,



4.3 A Pathway Model 129

_ 1
E(x]’™h) = =

r
T 5
fore <1,a>0,7>0,y+s>0,6§>0,y+1>0, (442)
+ +1
L () r(& -
y+1 +
R CO RS
fora>1,a>0,7>0,y+s5>0,
1
n_YES Y b0 (443)
o—1 8 o—1 1

+
r(5)
= s fora>0, n>0,y+s>0,y+1 > 0. (4.44)
(5”7) 5 (T)

The density of |u| = |x1---x¢| = |x1]|---|xk] is available by inverting
Elul*™' = Elxi T E o ™ E g

Let the densities of |u| for@ < 1, @ > 1 and @ — 1 be denoted by g1 (Ju|), g2(|u|),
and g3 (|u|), respectively. Then,

E @ et
g1(lul) = l_[ r(yﬁrl) F( 8; +1—a+1)

Jj=1 ]
XL c+ioo l_lr(yj+s) 1
271 Je—ioco =1 5]' F(ylg+s+ i +1)
|u| ™
X ds

Tk, @y (1 — )™

for — : <u < ; ,
ko5 5 ko5 5
(lj=1a,” AT=a)®) (Tj=1a;” A=a)®)

a<la; >068;>0,y;+1>0,9;>0,j=1,--- k,

and O elsewhere.
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[a;(a—1)]% 1
=111 (hl r(m )
]—1 E} o— 8_1'
= (A=gy+5h ) =1k
k,k 8 a—1 ] 8_
x Hi Ha ull N . (4.46)
(5 )=k
—oc<u<oo,oz>1,aj >0,8;>0,y; +1>0,7;>0,j=1,--+ k.

1

5.1

&M%-H@@H)H@<H%m>www)fhk’

j 5 A
—oc<u<oo,a; >0,n;>0,y;+1>08;>0,j=1,--- k.
(4.47)
Remark 4.3. When§; = 1,j = 1,--- ,k or when 5~ = m;,m j=12 , the

H -functions in (4.45)—(4.47) become Meijer’s G- functlons When 8 =m;,m; =
1,2,---,onecanexpand I'(m;s)and I'(m ;y; + = 1 5 T 1+m;s)in (4 45),I'(m )
and I (Ot_1 mi(y + s)) in (4.46), and I (1 ;5) in (4.47) by using the multiplica-
tion formula for gamma functions. Then, the coefficients of s in all gammas become
=+1, thereby the H-functions reduce to G-functions.

Exercises 4.2

4.2.1. Let « be the pathway parameter in a real scalar version of the pathway model.
By using Maple/Mathematica, draw the graphs of the model for varying values of o
and for fixed values of the other parameters.

4.2.2. Show that
F) = ex? 1+ ay (@1 — DX FT[1 4 a(@n — D=2 38T

where x > 0,1 > 1,02 > 1,41 > 0,a2 > 0,81 > 0,8, > Oand f(x) = O for
x < 0 can create a statistical density. Then, evaluate the normalizing constant c.

4.2.3. In Exercise 4.2.2,let ¢y < 1 and a» > 1. Then, can f(x) still form a density?
If so, evaluate the normalizing constant c.

4.2.4. In Exercise 4.2.2, show that

Jim f(x), lim f(x), ~lim  f(x),

—>1,0p—>1

can create statistical densities. Evaluate the normalizing constants in each case.
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4.2.5. Consider the normalizing constant ¢ in Exercise 4.2.2. Show that ¢ goes to the
normalizing constants in each case in Exercise 4.2.4 under the respective conditions.

4.4 A Versatile Integral

This section deals with a general class of integrals, the particular cases of which
are connected to a large number of problems in different disciplines. Reaction rate
probability integrals in the theory of nuclear reaction rates, Kratzel integrals in ap-
plied analysis, inverse Gaussian distribution, generalized type-1, type-2, and gamma
families of distributions in statistical distribution theory, Tsallis statistics and super-
statistics in statistical mechanics, and the general pathway model are all shown to
be connected to the integral under consideration. Representations of the integral
in terms of generalized special functions such as Meijer’s G-function and Fox’s
H -function are also given.
Consider the following integral:

flzalz) = /Ooox”_l[l + B — DT 4+ 28— DxP BT (4.48)

fora > 1,8>1,21 20,20 >0, >0,p>0,R(y + 1) > 0,

1 y+1 1
L) s o0 (— =)0
%(a—l 5 )> ’%(ﬁ—l p)>

= /Oooifl(x)fz (Zx—z) dx, (4.49)

where N (-) denotes the real part of (-).

1) =X+ L@ = DX a7, () =[1+ (B—Dx] 5T, (4.50)

with Mellin transforms

A
i
—

_ yT), 4.51)

r{&E)r
My (s) = [SZyH(a—l)y?]—l <8 )F

7)o

My, (s) = [p(B—1)»]™! ) (%) g (ﬂ% _ %) (4.52)

—
,_.
S | =

Eﬁ(y+s)>0,§ﬁ(

and

Eﬁ(s)>O,ER(L—£) > 0.
a—1 p
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Hence, the Mellin transform of f(z2]z1), as a function of z,, with parameter s is the
following:

Mp(ye)(8) = Mg (s)My, ()

S S L e ke
§ @ — )5 I ()
r(3)r(-4 -2
1 ()r (st —3) (4.53)
pB-D7 T (5)
form(y+s)>o,m(L—y+s)>o,m(s)>o,
a—1 1
‘R( ! S)>O > 0,20 >0
. y < , L .
-1 1 2

Putting y = % in (4.48), we have

flz) = /0

Evaluating the Mellin transform of (4.54) with parameter s and treating it as a func-
tion of z;, we have exactly the same expression in (4.53). Hence,

(o]

y ); S S U 0 1=
T[l-ﬁ-zl(a—l)y [7a=T[1+25(B — )y?] B-1dy. (4.54)

Mf(Z2|Zl)(S) = Mf(z1 122) (s) = right side in (4.53). (4.55)

By taking the inverse Mellin transform of M r(,|;,)(s), one can get the integral
f(z2]z1) as an H -function as follows:

Theorem 4.1.
_ 1 L 0-z5+%.H.0-445.D
flzla) = ¢ HSS [lez(a_ D6 = 1)’J‘(z L)l(o oo } (420
88/ p
where

¢ =épzf (@~ 1)¥,
and H,'J'(-) is a H-function.

The integral in (4.48) is connected to reaction rate probability integral in nuclear
reaction rate theory in the nonresonant case, Tsallis statistics in nonextensive statis-
tical mechanics, superstatistics in astrophysics, generalized type-2, type-1 beta, and
gamma families of densities and the density of a product of two real positive ran-
dom variables in statistical literature, Kritzel integrals in applied analysis, inverse
Gaussian distribution in stochastic processes, and the like. Special cases include a
wide range of functions appearing in different disciplines.
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Observe that f1 (x) and f»(x) in (4.50), multiplied by the appropriate normalizing
constants, can produce statistical densities. Further, f1(x) and f,(x) are defined for
—x¢ < a < 00,—o¢ < B < o0o. When ¢ > 1and z; > 0,6 > 0, f1(x) multi-
plied by the normalizing constant stays in the generalized type-2 beta family. When
a < l,writinga — 1 = —(1 —a),a < 1, the function fi(x) switches into a
generalized type-1 beta family and when o — 1,

Ly

lim1 Ji(x)y =e a1 4.57)
o—

and hence f;(x) goes into a generalized gamma family. Similar is the behavior of
J2(x) when f ranges from —oc to co. Thus, the parameters @ and f create pathways
to switch into different functional forms or different families of functions. Hence, we
will call @ and B pathway parameters in this case. Let us look into some interesting
special cases. Take the special case f — 1,

fizalar) = /0 R e - Dadymarem2 Ty (4.58)
@>1,21>02>08>0,p>0Puty=1

fiGlz) = /0 Ty B -y TTe 2 dy (4.59)
a>1,21>0,20>0,8>0,p>0.Leta — 1in (1)

fa(zalz1) = /ooxy‘le‘ffx"[l +25(B — Dx~P] B 1 dx (4.60)
B> (i,zl > 0,22 >0, >0,p>0.

F ) = /oox_y_le_zrfxa[l +25(8 — 1)xp]_ﬁdx 4.61)
B >(i,zl >0,220>0,6§ >0,p>0.Takea — 1,8 — 1in (1)

f3(z2lz1) = / ooxy‘le‘z'f’“'s‘zgf"dx (4.62)
21 >00,z2 >0,8>0,p>0.

o0
f3(z ) = / e g (4.63)
0

21>0,22>0,>0,p>0.

4.4.1 Caseofa <lorf <1

When o < 1, writing @ — 1 = —(1 — ), we can define the function

g () =1 +2@—DxT a1 =21 =21 —)x¥]Ta,a < 1, (4.64)
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and g1 (x) = 0 elsewhere. In

134
for[1 =221 —a)x®] > 0, < 1 = x < —L
z1(1—a) 8
this case, the Mellin transform of g; (x) is the following:
: 1
/Zl“*"”g xS — z? (1— a)xs]ﬁdx

I (s) = /0 g dr = |

(4.65)

y+s>r(¢+l)
My +5)>0,a< 1,8 >0.

1 r (T =
1 +
= 1+ %)
(4.66)

S — o)t T (%

Then, the Mellin transform of f(z2|z1) fora < 1, 8 > 1is given by
r(s\yr(-L —s

1
L) r(5h)

1—a

I +1)
B-D - F 1 (4

Mzzlm (5) =
spz3a "
N
RN -) - 0.
P

SR()/+s)>O,§R(s)>O,§R(5_1

Hence, the inverse Mellin transform for ¢ < 1, > 1is given in

Theorem 4.2. Fora < 1,8 > 1

1
=2 T 1
f(Z2|Z1)= - (1 az ) ,
Spzl (1 — o) 5T (ﬁ)
N et D
xHyy |z21z2(l—a)8(B—1)~ ,
0.1).(%.1)
0 5°8
(4.68)

1
. = +1 1
lim f(z2]z1) = (yl @ l Hﬁ’z() |:le2(1 —)s
. pizy (1= )3 ©O5G)
1 1 (1-g5.1
HY) [mm(ﬁ — 1)ﬂ<0 1 ‘y"? } (4.70)
)Zl < 3 ’(3’3)
(4.71)

lim f(z2]z1) =
a—1 p8T (ﬁ

<0,é>e(§,,‘s)}

2,0
0,2 | %122

li = ——H
im  f(z2lz1) P&)l/

a—>1,—1
In f(z2]|z1),if B < 1, we may write f—1 = —(1—f), and if we assume [1—1’2)(1—,3)

x"’]ﬁ >0 = x> z2(l - ,3)%, then the corresponding integrals can also be

evaluated as H-functions. But, if ¢ < 1 and B < 1, then from the conditions
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1
l—zf(l—a)xs >0=>x<———and -5 (1-f)x? > 0= x > zz(l—ﬁ)%
z71(l —a)s

the resulting integral may be zero. Hence, except this case of @ < l and < 1, all
other casesof o > 1,8 > 1; < 1,8 > ;0 > 1,8 < 1 can be given meaning-
ful interpretations as H -functions. Further, all these situations can be connected to
practical problems. A few such practical situations will be considered next.

Remark 4.4. In the integrals in (4.48), (4.58)—(4.63), the exponents of x are taken
as (6,—p) or (=8, p) with & > 0,p > 0. The cases where the exponents of x are
(8, p), (—8,—p) with § > 0, p > 0 are not considered so far. But, these cases can be
done by using the convolution property

g(z) = /Ooo xf1(z1x) f2(x)dx. (4.72)

Remark 4.5. The convolution integrals in (4.49) and (4.72) can be interpreted easily
in terms of independently distributed real scalar positive random variables when f;
and f> are densities. Let x; and x5 be statistically independently distributed real
scalar positive random variables with densities fj(x1) and f>(x,) respectively. Let
u=xyxpandv = % Then, the densities of u and v are respectively given by

) = / %fl ()5 () dv 4.73)

and

() = / (%) o (1)dx. “4.74)

These are the two convolution formulae in (4.49) and (4.72), respectively. The den-
sities g, (1) and g, (v) are available from the inverse Mellin transforms also. That is,
whenever the Mellin transforms exist and invertible,

E@™ = EGSHEMNS™) = hy(s), say 4.75)
EWV ™Y = ETHE@I™) = ha(s), say. (4.76)
Then .
1 c¢+ioo
gu(u) = — hi(s)uds, 4.77)
271 Je—ioco
and
¢’ +ioo
&) = — ho(s)vds. (4.78)

2mwi Jer—ioo
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4.4.2 Some Practical Situations

(a). Kriitzel Integral

For§ = 1,25 = z,z; = 1 in f3(z2]z1) gives the Kriitzel integral

o0
f3(z2|z1) = / XV le™ ¥ gy, (4.79)
0

which was studied in detail by Kritzel (1979). Hence, f3 can be considered as gen-
eralization of Kritzel integral. An additional property that can be seen from Kriatzel
integral as f3 is that it can be written as a H -function of the type H &’20 (). Hence all
the properties of H -function can now be made use of to study this integral further.

(b). Inverse Gaussian Density in Statistics

Inverse Gaussian density is a popular density, which is used in many disciplines
including stochastic processes. One form of the density is the following (Mathai
1993c, page 33):

X

et
fx)=cx72e 2\ ") #£0,x> 0,1 >0, (4.80)

1A . . . ;
where ¢ = 7~ 2elul. Comparing this with our case f3(z1]z2), we see that the inverse
Gaussiandensityistheintegrandin f3(z1|zz) fory = %,p =120 = % ﬁ), =1,

71 = % Hence, f3 canbe used directly to evaluate the moments or Mellin transform
in inverse Gaussian density.

(c). Reaction Rate Probability Integral in Astrophysics

In a series of papers Haubold and Mathai studied modifications of Maxwell-
Boltzmann theory of reaction rates, a summary is given in Mathai and Haubold
(1988). The basic reaction rate probability integral that appears there is the follow-
ing:

oo _1
I :/ x¥lema¥—zx 2 (x. (4.81)
0

This is the case in the nonresonant case of nuclear reactions. Compare integral /;
with f3(z2|z1). The reaction rate probability integral I, is f3(z2|z1) foré =1,p =
1

%,127 = z. The basic integral [; is generalized in many different forms for various
situations of resonant and nonresonant cases of reactions, depletion of high energy
tail, cut off of the high energy tail, and so on. Dozens of published papers are there
in this area.
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(d). Tsallis Statistics and Superstatistics

It is estimated that on Tsallis statistics in nonextensive statistical mechanics, over
1200 papers were published during the period 1990 to 2007. Tsallis statistics is of
the following form:

o) =il + (@ — Dx]"aT, (4.82)

Compare fy(x) with the integrand in (1). For z = 0,6 = 1, andy = 1, the inte-
grand in (4.48) agrees with Tsallis statistics fx(x) given above. The three different
forms of Tsallis statistics are available from fy(x) fora > 1, < 1, anda — 1.
The starting paper in nonextensive statistical mechanics may be seen from Tsallis
(1988). But, the integrand in (4.48) with z = 0,z; = 1,a > 1 is the superstatis-
tics of Beck and Cohen, see for example Beck and Cohen (2003), Beck (2006). In
statistical language, this superstatistics is the unconditional density in a generalized
gamma case when the scale parameter has a prior density belonging to the same
class of generalized gamma density.

(e). Pathway Model

Mathai (2005) considered a rectangular matrix-variate function in the real case from
where one can obtain almost all matrix-variate densities in current use in statisti-
cal and other disciplines. The corresponding version, when the elements are in the
complex domain, is given in Mathai and Provost (2006). For the real scalar case, the
function is of the following form:

) = c*|x) [ —a(l —a)|x|*) 7, (4.83)

for —oc < x < 00,a > 0,7 > 0,8 > 0, and ¢* is the normalizing constant. Here,
f(x) for @ < 1 stays in the generalized type-1 beta family when [1 — a(l — @)
|x|8]ﬁ > 0. When @ > 1, the function switches into a generalized type-2 beta
family and when ¢ — 1, it goes into a generalized gamma family of functions. Here
a behaves as a pathway parameter, and hence the model is called a pathway model.
Observe that the integrand in (4.48) is a product of two such pathway functions so
that the corresponding integral is more versatile than a pathway model. Thus, for
7o = 01n (4.48), the integrand produces the pathway model of Mathai (2005).

Exercises 4.3

4.3.1. By normalizing the integrals in (4.58) to (4.63), create statistical densities
corresponding to the integrands in the six equations.

4.3.2. Evaluate the /~th moments for the six densities in Exercise 4.3.1.
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4.3.3. Write down the Ath moments in Exercise 4.3.2 for # = 1, 2 and compute the
variances of the corresponding random variables.

4.3.4. Using Stirling’s approximation on the gammas in (4.67), derive the corre-
sponding Mellin—Barnes representations in (4.69)—(4.71).

4.3.5. Evaluate the series form in (4.71) for % =2, % = 3.



Chapter 5
Functions of Matrix Argument

5.1 Introduction

Particular cases of a H-function with matrix argument are available for real as well
as for complex matrices. For the general H -function only a class of functions is
available analogous to the scalar variable H -function. Real-valued scalar functions
of matrix argument is developed when the argument matrix is a real symmetric
positive definite matrix or for hermitian positive definite matrices. We consider only
real matrices here.

We will use the standard notations to denote matrices. The transpose of a ma-
trix X = (x;;) will be denoted by X’ and trace of X by tr(X) = sum of the
eigenvalues = sum of the leading diagonal elements. Determinant of X will be
denoted by |X|, a null matrix by a big O and an identity matrix by I = I,. A
diagonal matrix will be written as diag(A1,...,A,) where Aq,...,A, are the di-
agonal elements. X > 0 will mean the real symmetric matrix X = X' is positive
definite. Definiteness is defined only for symmetric matrices when real and her-
mitian matrices when complex, X > 0 (positive semidefinite), X < 0 (negative
definite), X < O (negative semidefinite). A matrix which does not fall in the cate-
gories X > 0, X > 0,X < 0,X < 0is called indefinite. fX f(X)dX means the

integral over X. ff f(X)dX means the integral over 0 < A < X < B, thatis,
X=X>0A=A4">0,B=B">0,X—A>0,B—X > 0and the integral is
taken over all such X.

It is difficult to develop the theory of a real-valued scalar function of a general
matrix X. Even for a square matrix A rational powers will create problems. For
example even for an identity matrix, even a simple item such as a square root will
create difficulties. If the existence of a matrix B such that B> = A is taken as the
square root of A then consider

10 —-10 10 -1 0
We have then
A=D1, A5=1, A3=1, A3=1.

A.M. Mathai et al., The H-Function: Theory and Applications, 139
DOI 10.1007/978-1-4419-0916-9_5, (© Springer Science+Business Media, LLC 2010
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Thus A;, A, Az, A4 are all candidates for the square root of a nice matrix like an
identity matrix. But if we confine our discussion to the class of positive definite
matrices, when real, and hermitian positive definite matrices, when complex, then
A; is the only candidate for the square root of /5. In this class of positive definite-
ness, several items can be defined uniquely. Hence the theory is developed when the
maltrices are positive definite when real.

5.2 Exponential Function of Matrix Argument

Hypergeometric functions, in the scalar case, are special cases of a H -function. For
example
0Fo(: 1£x) = e, (5.1)

when x is scalar. The corresponding function of matrix argument is
oFo(::£X) =), (5:2)
where X is a p x p positive definite matrix. For any type of integral operations on

(5.2) we need to define differential elements and wedge product of differentials.

Definition 5.1. Wedge product of differentials. Wedge product or skew symmet-
ric product of differential elements dx and dy will be denoted by dx A dy, where
A = wedge, and will be defined by the relation

dx Ady = —dy Adx. (5.3)

That is, if the order is changed then it is to be multiplied by (—1). This will then
imply that
dxAdx =0,dx Adx Adx =0,dy Ady =0,

and so on. An interesting consequence is there when products of differentials are
taken. If X is a p x ¢ matrix, X = (x;;) then the wedge product of differentials is
the following:

Notation 5.1.
dX:dx11/\dxlz/\---/\dxlq/\dle/\---/\dqu. (54)

If X = X’ and p x p then there are only w free elements in X because
x;; = xj; foralli and j, and then

dX =dxig Ao Adxp Adxpp Ao AdXxpp Ae- AdXpp. (5.5
Thus

/ F(X)dX = / F(X)dX = F(X)dX
X X=X'>0

X=0
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will mean that the integral is taken over all X > 0.

/O . J0dx = /0 ' F(X)dX

will mean the integral over all X = X’ > O such that ] — X > 0. Now we are
in a position to define an integral analogous to a gamma integral in the scalar case.
Consider

Tp(e) = /X . X[ P et x (5.6)
=X'>0

where X is p x p real symmetric and positive definite. For p = 1, (5.6) corresponds
to the gamma integral. How can we evaluate (5.6)? This requires some matrix trans-
formations and the associated Jacobians. For simplicity let us look at functions of
two scalar variables x; and x,. Let

y1 = fi(x1,x2) and y2 = f2(x1,x2).
Then from basic calculus

d d d d
dy; = id)cl + idxz anddy, = ﬁdxl + ﬁdxz.
8x1 3X2 8x1 3X2

Now if we take the wedge product of the differentials we have

a a a a
dyy Ady, = [%dxl + %d)(2i| A [%d)ﬁ + %d)@}
1 2

af1 0 daf1 o
_ | L d oo,
aX13X2 3X23X1

by using the results dx; A dx; = Oand dx; A dx; = —dx; A dx,. Then
dyi Ady, = ﬁ ;fﬁ dx; A dxy
3)C1 3)C2
= dY = J dX, 5.7

where dY = dy; A dy,, dX = dx; A dx; and J is the Jacobian or the determi-
nant of the matrix of partial derivatives. In general, if we have a transformation of
Xi,...,Xp goingto y1,...,yp then

dY =dy; Adys Ao Adyp = J dX, dX =dx; A--- Adxy,
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-|(&)
an

where the (i, j)th element in the matrix is the partial derivative of y; with respect
to x;.
J

and

; (5.8)

Example 5.1. Evaluate the Jacobian in the linear transformation ¥ = AX where X

is px1,Y is px1, Ais p x p nonsingular constant matrix and X is of distinct real
scalar variables. Verify the result for

1 01

A=|111

1-12

Solution 5.1. When |A| # O the transformation is unique or one-to-one. ¥ =

AX = X = A7'Y where A7! is the unique inverse of A. The transformation
is of the form

Y1 =dainx; +---+dipxp

dy;
: = an =4y
Yp =ap1X1 + -+ dadppXp
= o _ A= J =|A|
X S
That is,
dY = |A|dX ordys A+~ Adyp = |Aldxy Ao Adxp.
When
101 101 101
A=[111|,|4=/111/=]01 0/=1
1-12 1-12 0-11
Hence, in this case,
dyir A Adypy =dxg A Adxp.
This may be stated as a theorem.
Theorem 5.1.
Y = AX = dY = |A4|dX, (5.9)

where X and Y are p x 1,|A| # 0, X is of distinct real scalar variables.

If X isa p x g matrix of distinct real scalar variables then the wedge product of
the differentials in X, denoted by d X, is given by

dX:dxll/\dxlz/\---/\dqu. (510)
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5.3 Jacobians of Matrix Transformations

We considered one linear transformation involving a vector of variables X going to a
vector of variables ¥ through a nonsingular linear transformation ¥ = AX, |A| # 0
and we found the Jacobian to be |A|. Now we consider a few more elaborate linear
transformations and some nonlinear transformations.

Let X be a m x n matrix of distinct real scalar variables and let A be a m x
m nonsingular matrix of constants. Consider the transformation ¥ = AX. Let
X(l), - ,X(”) be the columns of X. Then

Y =AX = AXD,.., X"y = axD, ..., 4Xx")

=W, . . Ymy,

where Y (1), oY ) are the columns of Y. Then we can look at the transforma-
tion as

Yy AXM

7@ Ax ™

Then from Theorem 5.1,

ay @ . ay @

mz ,l:l,...,n,WZO,l;ﬁ].

The matrix of partial derivatives is of the following form:

= | = 4",

LOO---AJ 00---A
Hence we have the following theorem:

Theorem 5.2. Let X be a m x n matrix of distinct real scalar variables or func-
tionally independent real variables. Let A be a m X m nonsingular constant matrix.
Then

Y = AX = dY = |A|"dX. (5.11)
In Theorem 5.2 we had a premultiplication of X by a constant nonsingular matrix

A. Now let us consider a postmultiplication. Let B be a n x n nonsingular constant
matrix. Then what will be the Jacobian in the transformation ¥ = X B? This can be
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computed exactly the same way by considering the rows of X. Let X(1y,..., X(m)
be the m rows of X. Then

voxoz| OV
LX<m) LX(m)BJ LY (m)J

where Y(1), ..., Y(m) are the m rows of Y. Now we can look at the long string

!/ 'y’
{Y(l)—‘ IVBX(I)—‘
!/ !/ !/
Yin) [ 5%
and apply Theorem 5.1. The matrix of partial derivatives will be
B O---0 B O.--0
Do =l rLL | =B =B
0O0---B 0O0-.-B
Hence we have the following result:

Theorem 5.3. Let X be as in Theorem 5.2 and let B be a nonsingular nxn constant
matrix. Then
Y =XB = dY = |B|"dX. (5.12)

Combining Theorems 5.2 and 5.3 we have the following result:

Theorem 5.4. Let X, A, B be as in Theorems 5.2 and 5.3. Then

Y = AXB = dY = |A|"|B|"dX. (5.13)

Example 5.2. Let X be a m x n matrix of functionally independent real variables.
Let M, A, B be constant matrices where M is m x n, Ais m x m, B is n x n with
|A| # 0,|B| # 0 and further, let A = A’ > 0,B = B’ > 0 (positive definite
matrices). Consider the function

f(X) = ¢ e MAX=M)BX=M)T (5.14)

where f is areal-valued scalar function of X, ¢ is a scalar constant and tr(-) denotes
the trace of (-). Evaluate [, f(X)dX.

Solution 5.2. We wish to evaluate the total integral of f(X) over all such m x n
matrices X. From the theory of matrices we know that a positive definite ma-
trix A (definiteness is defined only for symmetric matrices when real and hermitian
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matrices when complex) can be written as A = A; A} with |[4;| # 0 where 4] =
transpose of A;. We also know that for any two matrices P and O,

aw(PQ) = w(QP),

whenever PQ and QP are defined, where P Q need not be equal to QP. By using
these two results we can write

tr[A(X — MYB(X — M)'] = t[A; A\ (X — M)B, B (X — M)']
= 4} (X — M)B1 B}(X — M) 4]

=u(YY) =) 3 ¥

i=1 /=1
where
Y = A{(X — M)B, = dY = |A,|"|By|"d(X — M) = |A|>|B|2dX
by using Theorem 5.4. Note that
Al = |41 47| = ||| 4] ] = |A1)? = |47, d(X — M) = dX,

since M is a constant matrix. Also from the theory of matrices we know that for any
matrix G, tr(GG’) = sum of squares of all elements in G. Hence

/ f(XHdX = C/ o tlAX—M)B(X-M)']
X b

= clA7 8B [ e ay
Y

m n 00 )
—clar# Bt [T [ eany
-0

i=1j=1

IS

— _m mn
=clA]"2|B[ 27 2,

since

e 2
/ e dr = /7.

—0
Hence if f(X) is a density function then
4|2 18|12
C = mn
=

T

; (5.15)
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then the total integral is 1 and ¢ in that case is called a normalizing constant and with
this ¢, f{X) becomes a density because by definition f(X) > 0 for all X, when
¢ > 0 since it is an exponential function. The density in (5.14) with ¢ in (5.15) is
called a real matrix-variate Gaussian density.

In Theorem 5.4 our matrix X was rectangular. If m = 7 then X is a square matrix
with m? real scalar variables. If X is symmetric then there are only w distinct
elements in X because x;; = x;; for all i and j. What will happen to the Jacobian
if we have a transformation of the type ¥ = AXA’, |A| # 0,X = X’? This result
will be stated here without proof.

Theorem 5.5. Let X = X' be p x p and of functionally independent real variables
except for the condition X = X'. Let A be a p x p nonsingular constant matrix.
Then

Y = AXA' = dY = |A|PTdX. (5.16)

One way of proving this result is to represent the nonsingular matrix A as a prod-
uct of basic elementary matrices and then look at the transformations successively.
For example, let A = E1E,--- E; where Eyq, ..., E; are some basic elementary
matrices. Then

Y = AXA' = E,---ExXE} --- E}.

Now look at the transformations
Yy = ExXE, Yo =E  1E,_|,....Y, = E\ Y1 EY,
and evaluate the Jacobians successively.
dY, = JidX, dYs = JodY, = J»J1dX,

and so on. For more details on this and for other Jacobians see Mathai (1997).

5.4 Jacobians in Nonlinear Transformations

For a p x p positive definite matrix X of functionally independent real scalar vari-
ables consider the integral

(o) = /X_X/>0 X[ e gx, (5.17)

For p = 1, obviously (5.17) is the integral representation for the gamma func-
tion I' (). Hence I' () in (5.17) is a matrix-variate version of I'(«). The integral
in (5.17) can be evaluated by using a triangular decomposition of X as X =
TT' where T is a lower triangular matrix. This transformation X = TT' is
not one-to-one. There can be many values for #;’s for given x;;’s. But if we
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assume that the diagonal elements in 7 are positive, that is, 7;; > 0, =
1,..., p then the transformation can be shown to be one-to-one. Take a case of
p = 3, write X, T,TT’ explicitly and verify this fact. Taking the x-variables in
the order X1, X12,...,X1p, X22,...,X2p,*+ , Xpp and the f-variables in the order
1,021, .., 1p1, I22, 132, ... ,1pp We can easily see that the matrix of partial deriva-
tives is of a triangular format with the diagonal elements 7;; appearing p times, 75
appearing p — 1 times and so on and 7, appearing only once and a 2 appearing a
total of p times in the diagonal. Hence we have the following result:

Theorem 5.6. Let X = X’ be a positive definite matrix of functionally independent
real scalar variables except for the symmetry condition. Let T be a lower triangular
matrix with distinct real elements with the diagonal elements t;; > 0,j =1,..., p.
Then

p
_ ’ —_ P pt+1—j
X=TT' =dX =2 ||tjj dT.

j=1

Then by applying this triangular decomposition of X into f;;’s, observing that

14
_ A 2
XI=1tT1 =[] 1]
j=1

w(X)=u(TT) =1+ (G +15,) +-+ (0 +--+1;

and integrating out one has the following result:

Tpe) ==""% Tl (a - %) ..T (a - pT_l) R(@) > pT_l. (5.18)

Notation 5.2. T p(c): Real matrix-variate gamma function.

Definition 5.2. Real matrix-variate gamma function is defined by (5.18).

The equation in (5.17) gives the integral representation for the real matrix-variate
gamma function, where N (-) means the real part of (-).

In a similar fashion one can define a real matrix-variate beta function. To this end
we can start with

T @Ty(8) = | / xje S eeaxy [y Pt e gy,
X>0 Y>>0

where X and Y are p x p positive definite matrices. Then

r,,(a)r,,(ﬁ)zf / X |25y | e v X+ D g x A gy,
X>0JY>0
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Make the transformation U = X + Y. Then
Y=U-X=|Y|=|U-X|=|U|I -U2XU"2|.

Thenput Z =U ~2 XU~ for fixed U and integrate out X to obtain
L@, (8) = Tpat p) [ (2131 2p~F oz sa0)
zZ

Notation 5.3. By(a, B): Real matrix-variate beta function.

Definition 5.3. B, (c, B) is defined as

Tp(@)Tp(B)

AN T

= B,(B.0), N (@) > pT_l,m(ﬁ) > pT_l. (5.20)

One integral representation is given in (5.19). By changing Z = I — W we can
have one more representation. That is,

Bp<a,ﬁ>=/0 P et (5.21)
< <
:/0 Yo Z|* - )P (5.22)
<[t <<

These two representations are known as type-1 integral representations for a real
matrix-variate beta.

Another nonlinear transformation that we need is about a nonsingular matrix
going to its unique inverse. The result will be given here without proof.

Theorem 5.7. Let X be a p x p nonsingular matrix of functionally independent
real variables. Let Y = X!, the regular inverse of X. Then, ignoring the sign,

Y = X! = dY = |X|7?PdX for a general X
= |X|7?*tV4X for X = X'
= |X|~?V4X for X = -X'. (5.23)

This can be proved by making the following observations: For any 8,
Xx'=1> i(XX—I) = i(1) =0
B 36 G

But
3 3 9
— (XX H=x[—=—x"1 —X1x'=o0.
ae( ) [ae 1+ [ae ]
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Hence by taking differentials on both sides the matrices of differentials, denoted by
(dX) and (dX ') are connected by the relation

AOHX '+ XdX H=0= @dxH=-xtdx)x L (5.24)

Then by taking the wedge product of the differentials on both sides, keeping in mind
that X! does not contain differentials and hence behaves like a constant when
taking wedge product of differentials on both sides, we have the result in (5.23).

With the help of Theorem 5.7 one can have other representations for real matrix-
variate beta function from the type-1 integral representations in (5.21) and (5.22).
For the W or call it X in (5.21) consider the transformations

U=(I-X)2X(I-X)2andV = UL

Then the integral representations for B, (c, ) reduce to the following:

By(@. f) =/ Ul 1 4 U@ gy
U=U’>0
= / VB T 4 v etBgy, (5.25)
V=V'>0

The representations in (5.25) are called type-2 integral representations for a real
matrix-variate beta function.

5.5 The Binomial Function

In the real scalar case, when we take the Laplace transform of a negative exponential
function or a gamma function we obtain the binomial function. For example, for the
scalar variable x > 0 and for the scalar parameter ¢

Ly (1) = /0 e ™ f1(x)dx, (5.26)

is the Laplace transform of f;(x) defined for x > 0. If we take the Laplace trans-
form of the gamma type function
X% 1 e X

S2(x) = W

,x >0,

we have

L (l)—L 0Oe_’xx"‘_le_xdx
2T T@ U

=0+ %forl +¢>0.
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This is the binomial function or | Iy hypergeometric function. The Laplace transform
in the matrix-variate case, analogous to the multivariate Laplace transform, is de-

fined as
|X |a—”T+l e—tr(X)

Ly (T*) = / eI X) gy, (5.27)

X=X'>0 Cp(e)
where |
T% = (), by = Sty d # Jo Uy = 1.t = Ui
foralli,j =1,..., p. Then
Lp(T*) = |1 +T* % = |T*™ 1 + T, (5.28)

for T* = T* > 0and I + T* > 0. Then the hypergeometric function ; Fy with
matrix argument U will be defined as

\Fole; :U) = |1 -U|™for0 < U < I. (5.29)

Observe that O < U < [ implies that U = U’ > 0,1 — U > 0 which means
that the eigenvalues of U are in the open interval (0, 1). We can make one more

observation on
0Fo (1 i=X) =e "),

and
1Fo(a; 5 =X) = |1 + X%,

that we obtained so far. Consider the integral of the following type:

/ 1X|P~ 5 F(X)dX = / 1X[P 5 e XX = T,p(0),  (5.30)
X=X'>0 X>0

and
Lp(p)Tp(a —p)

Lp(e)

for R(p) > pT_l, N —p) > pT_l. The integral in (5.31) is evaluated by using the
type-2 integral representation for a beta function in (5.25).

/ X 1P~ 5T+ X|7edX = , (5.31)
X>0

Notation 5.4. M ¢ (p): M-transform of f.

Definition 5.4. The generalized matrix transform or M-transform of a real-valued
scalar function of the real p x p matrix X = X > 0 is defined as

Mo =[x e, (532)

whenever M ¢ (p) exists, where /* is a symmetric function in the sense f(AB) =
f(BA) for all matrices A and B where AB and BA are defined.
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Thus a class of functions f will have the M-transform M ¢ (p) for the arbitrary
parameter p. For example, when f is the ¢ Fy or ; Fy we have the M-transforms
given in (5.30) and (5.31).

5.6 Hypergeometric Function and M-transforms

Notation 5.5. Fs(ay,...,a;;b1,...bs;—X): Hypergeometric function of
matrix argument —X .

Definition 5.5. A hypergeometric function of matrix argument —X with # upper
and s lower parameters is defined as the class of symmetric functions f having the
following M-transform:

{1_[§=1 rp(bj)} r {1_[§=1 Tpla; — P)}

My(p) = 1— P01, (5.33)
{1_[,-=1Fp(aj)} {1_[,-=1Fp(bj _P)}

whenever the gammas on the right exist, where p is a parameter, and ay,...,dq,

and by, ..., bg are the upper and lower parameters of the hypergeometric function,

which will be written as
f=+Fs(ar,...,ar;b1,...,05;—X).

In (5.33) it is assumed that f is a symmetric function in the sense f(AB) =
f(BA) for all A and B whenever AB and BA are defined. An implication of this
condition is the following: Let O be an orthonormal matrix such that Q Q' = I =
Q0’0 and Q'XQ = diag(Ai,...,A,) where A1,..., 4, are the eigenvalues of X,
where it is assumed that the eigenvalues are distinct, then

fX) = f(XI)= f(XQ0") = f(Q'XQ)
= f(D), D = diag(A1,...,Ap), (5.34)

or f(X) becomes a function of the p eigenvalues only. Thus, under the condition of
symmetry on f(X), this function of the £ (p2+1) real scalar variables in X becomes
a function of p variables, namely the p eigenvalues of X, which by assumption are
real, distinct and positive.

There are other definitions for a hypergeometric function of matrix argument.
All definitions have the basic assumption that the function is symmetric in the

above sense. One definition based on the Laplace and inverse Laplace pair gives
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+Fs(ay,...,ar;b1,...,bs : X) as that function satisfying the following pair of
integral equations:

r+1Fs(a17---7ar7C;b17---7bs;_A_1)|A|_C
1

=T () e—tr(AU)rFs(al,...,a,;bl,...,bs;_U)|U|c—”T+‘dU
p U=U'>0

(5.35)
rFS+1(a17'“ 7ar;b17"' 7bS7C;_A)|A|C_pT+l

r
p(©) / "D Fo(ay,.. . arby,... by —Z 7Y Z|"dZ.
R(Z)=Zp>0

r(p+1)
(5.36)

B 2mi)” 2

Under certain conditions the function , Iy defined through (5.35) and (5.36) can be
shown to be unique. From this definition also the explicit forms are available only
for ¢ Iy and | Iy. Others will remain as the solutions of a pair of integral equations.

The third definition available is in terms of zonal polynomials, which are certain
symmetric functions in the eigenvalues of X = X’ > 0. For zonal polynomials and
their properties see Mathai, Provost and Hayakawa (1995). Here ; Iy will be defined
as the following series:

FFS(a17"'7ar;b17"'7bs;X)

A @k (@) Cx(X)
=L X Gk B 30

where K = (k1,....kp)k =k +---+kp

P ; —
oe=Mie-5),

j=1

and Cg(X) is the zonal polynomial of order k. In this definition, , Fy is available
explicitly for all » and s but zonal polynomials of higher orders are extremely dif-
ficult to evaluate and hence the practical utility of (5.37) is limited. The uniqueness
of , Iy, defined through (5.37), can be established by showing that (5.37) satisfies
the pair of integral equations (5.35) and (5.36). For more details on (5.35), (5.36)
and (5.37) and some applications see Mathai (1997).

Observe that H-functions and Meijer’s G-functions, in the scalar cases, are
defined in terms of their Mellin—-Barnes representations. If we want a series rep-
resentation then we have to take into account all the poles of the integrands in the
Mellin—Barnes representations. Obviously the poles can be of all sorts of higher or-
ders and then the series representations will be quite complicated involving, gamma,
psi and generalized zeta functions as well as logarithmic terms. For a general expan-
sion for the G-function see Mathai (1993c). The same procedure can be followed to
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obtain a series expansion for a H -function. This will be more complicated. Hence
if we wish to extend the definition in (5.37) to a H -function of matrix argument it
is extremely difficult because the series form need not correspond to the same in
the scalar variable case. For the very special case of simple poles for the integrand
in a Meijer’s G-function one can obtain a series form in terms of hypergeometric
series in the scalar case. If the series form is replaced by (5.37), the series form
in zonal polynomials, still the procedure will not be correct because in I',(a + )
itself the alternate gammas produce poles of higher orders, namely the poles of
I'a+s), T'(a+s—1),... are of higher orders and similar is the case for the poles of
Mo+s— %), Fao+s— %), ... Hence the procedure of making use of (5.37) is also
not suitable for extending the definition to matrix variable case for a H-function.
Therefore looking for a class of functions by using M-transforms may be the most
convenient way of extending the definition to a matrix-variate H -function.

The above considerations lead to one important question. Is there a unique func-
tion which can be called the multivariate version of a given univariate function? The
answer is obviously a big “no”. There can be infinitely many multivariate functions,
where the marginal functions yield your specified univariate functions. We can con-
struct many examples.

Example 5.3. Nonuniqueness of multivariate analogues. Show that the following
two bivariate functions

. 1 _(x2—2pxy+y2)
(1) fl(x7y710): € 1o )
w1 —p?

for 1 —p% > 0,—oc < x < 00,—00 < ¥ < 0o where p is a constant and

(11) f2(x7y) = alfl(x7y7pl) + - +akfk(x7y7,0k),

for0 < o; < 1,1—,Ol-2 >0,i =1,...,k,01 +---+ar = 1 yield the same marginal

functions 5 5
e ¥ e’

f(x) = ﬁa and g(y) = N

for —oc < x < 00, —0Cc < y < 00.

Solution 5.3. Let us consider the marginal function of x from fi(x, y, o) by inte-
grating out y. Consider the exponent, excluding —1.

2
V1—p?
Yy = px
V1I=p?

dy = /1 — p%du for fixed x.

1—p2

=x2+u2,u=
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Hence
/oo 1 e—ljﬂz (x2—2pxy+y2)dy
—o0 /1 — ,O2
2
(&) 2 y—0ox
:/ 1 b () 1y
—o0 w4/l — p2
e—x2 © e—x2
= / e “du=
T S 7
Similarly

/_OO Si(x,y, p)dx = N

Thus for the given function

2
ex

7

fx) =

—oCc < X < 00,

one can take f;(x, y, p) for all p such that 1 — p?> > 0 as a bivariate analogue.

Now, look at the process above. When we integrate out y from f>(x, y, p) we

obtain

2 2

— 2
x e ¥ e

e
“E T NN
since @1 +--- 4+ o = 1. Thus all the classes of functions defined by f, can also be
considered as bivariate extensions of the univariate function f(x).

This example shows that for a given univariate function there is nothing called a
unique bivariate or multivariate analogue. There will be several classes of functions
which can all be legitimately called the multivariate analogues. Hence looking for
a unique multivariate analogue for a given univariate H -function is a meaningless
attempt. Looking for a nonempty class of matrix variable functions, where when
the matrix is 1 x 1 or a scalar quantity the functions reduce to the one variable
H -function, is the proper procedure. Keeping this in mind, the following classes of
functions are defined as G and H -functions of matrix argument.

—X

-+ o

5.7 Meijer’s G -Function of Matrix Argument

Let f1(X) be a symmetric function in the sense f(AB) = f(BA) for all matrices
A and B whenever AB and BA are defined. Let X be a p x p real positive defi-
nite matrix with distinct eigenvalues A; > --- > A, > 0. Consider the following
M-transform with the arbitrary parameter p.
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Definition 5.6. Meijer’s G-function of matrix argument in the real case. Let
f1(X) be such that

[ xp acoex = ) (538)
where
¢ (o) = {S 7=1Fp(b;;’)_)} {1?’;:1 tr (:JTH — 4 _.p)} . (539)
{ j=m+1Lp ( 7 b P)} {H,=n+1 Tpla; + P)}

Whenever the right side exists the class of functions defined by (5.38) and (5.39)
will be called Meijer’s G-function of matrix argument in the real case where I',(:)
is the real matrix-variate gamma function.

Note that when p = 1, f1(X) reduces to Meijer’s G-function in the real scalar
variable case. One can extend the same idea and define a H-function of matrix
argument as follows:

Definition 5.7. H-function of matrix argument in the real case. Let f,(X) be
a symmetric function in the sense f>(AB) = f2(BA) for all matrices A and B
whenever AB and BA are defined. Let X be a p x p real symmetric positive definite
matrix with distinct eigenvalues A; > --- > A, > 0. Let p be an arbitrary parameter.
Consider the following integral equation:

_ptl
/X OIXI” 7 H(X)dX = ¥(p), (5.40)
=
{ T=1Tp(bj + ,31':0)} {H’}=1 Tp (pTH —4j - O‘J'P)}
Vo) = = — , . (54D
{ j=mt11p (T —bj — ﬁjp)} {nj=n+1 Lpla; + O‘J'P)}
withe;,j =1,...,r and B;,j = 1,...,s real and positive. Whenever the right

side in (5.41) exists the class of functions f>(X) determined by (5.40) and (5.41)
will be called the H -function of matrix argument in the real case.

For p =1, (5.40) reduces to H-function in the real scalar case. Fora; = 1, j =
l,...,rand 8; =1,j =1,...,s the class of functions f>(X) reduces to the class
of functions f;(X) defined through (5.38) and (5.39) and the H -function reduces
to a G-function.

5.7.1 Some Special Cases

Whenm = 1,n=0,r =0,5s =1,by =0, 8; = 1, (5.40) reduces to the equation

/X 0 X173 £(X)dX = Tp(p). (5.42)
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One solution for (5.42) is obvious, namely,
f(X) =D

-1
because for N (p) > PT

|y e ax ),
>0

Hence we may define ¢ Io( ; ; —X) by the integral equation in (5.42). On the other
handif m = 1,n = 0,r = 0,5 = 1,01 = a,p; = 1, then (5.41) reduces to
I'y (@ + p). Then the equation

+1 -1
/X . |X|p_pr2(X)dX = I'p(a + p), for R(a + p) > pT
-

gives one solution as
LX) = X" Fo(; ;—X).

Letm =1,b; = 0,81 = 1,n = r,s isreplaced by s 4 1 then (5.40) becomes

(10007 (25 )~ 0)}

Mot (550 0)]

For p = 1, (5.43) corresponds to Wright’s function and hence we will call the
class of functions f>(X) determined by (5.43) as the Wright’s function of matrix
argument in the real case.

Wheno; =1,7 =1,...,rand §; = 1,j = 1,...,s then comparing (5.43)
with (5.33) we have

Murs (520

/X . IXI”‘pTHfz(X)dX =T,(p) (5.43)

LX) =
M= rs (5 - 5))
+1 +1 +1 +1
 Fy (pT—al,...,pz —ap;p > —bl,...,p——bs;—X)

(5.44)

or the hypergeometric function of matrix argument in the real case. When r =
I, s = 1 in (5.43) we may call the corresponding f>(X) as the generalized
Mittag-Leffler function in the real matrix-variate case. Classes of other elementary
functions can be defined by taking special cases in (5.39)—(5.44). The theory of
H -functions of matrix argument can be extended to complex cases also, that is,
when the matrices are hermitian positive definite. Some preliminaries in this direc-
tion may be seen from Mathai (1997).
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Exercises
5.1. Let xq,...,xp be real scalar variables. Let y; = x1 +---+ Xp, y2 = x1X2 +
X1X3 +- -+ Xp—1xp (sum of products taken two at atime), - -+ , ¥ = X1 X -+ Xp.

Forx; > 0,j =1,..., p show that

-1 p
dyi Ao Adyp = l_[ l_[ [x; —x;| ¢ dxg A Adx,.
i=1 j=i+1

5.2. Consider the general polar coordinate transformation

X1 =rsin¢91,
X; =rcosficosby---cosf; qsinb;,j=2,....,p—1,

Xp =rcosfcosth---cosby 1,

forr >0,—7 <0, <%,j=1,....,p—2,—m < 81 < n. Compute dx; A
-+ Adxpintermsof dr AdOy A AdEpg.

53. For X =X'>0,Y =Y’ > 0and p x p show that

XY XY
lim | + 2= |7 =7 "@XY) = [im |1 — 222
a—00 a a—>00 a

5.4. Let X and A be p x p lower triangular matrices of distinct elements. Let A =
(a;;) be a constant matrix such that a;; > 0, j = 1,..., p. Then show that

p
_ _ pt+1—j
Y=XA=4dY = ||ajj dX.
j=1

5.5. For the same X and A in Exercise 5.4 evaluate the Jacobians in the transfor-
mations (i) ¥ = AX, (ii) ¥ = aX where a is a scalar quantity.

5.6. Redo Exercises 5.4 and 5.5 if the matrices X and A are upper triangular.

5.7. Forreal X = X’ > O and p x p evaluate the following integrals:
0 fi=[ axi G fa= [ 1xi0X: Gy A= [ 17— xi0x
X X X

(iv) f4=/X|X|“dX; ") /X|I—X|“dx

and evaluate these explicitly for (vi) p = 2; (vii) p = 3.
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5.8. By showing that both sides have the same M-transforms establish the following
results for the class of functions defined through (5.44) where all are p x p real
symmetric positive definite matrices.

rP(C) |X|—(C—pT+l)
Tp(@)lplc —a)

x/ ety |e=3 | x —y e gy
O<Y<X

(i) 1Fi(a;e;—X) =

FP(C) |Y|a_p-2i-l|I_Y|c_a_p-2‘rl
Fp@Tp(c—a) Jo<x<1
x |1 +YX|"bay
(i) 2Fi(a.b;c;—X) =1 —X|[™P2Fi(c—a,bic;=X(I —X)™).

(i) 2Fi(a,bic;—X)=

5.9. Itis seen that forreal X = X’ > 0Oand p x p
|yt ey 1y,
>
for arbitrary p such that 9i(p) > pT_l. Suppose that

_ptl p—1
[ X fa0ax =y orige) > £,
-

establish a set of sufficient conditions so that f(X) is uniquely determined as
FX) = e,

5.10. Forreal X = X’ > O and p x p consider the equation

r IR
/ 1X|P~ 73 £(X)dX = w’
X=>0 p(a)
for R(p) > pT_l, N — p) > pT_l. One solution for f{X) is seen to be
JX)y=II+X|™

What are the sufficient conditions on f such that this is the only solution?



Chapter 6
Applications in Astrophysics Problems

6.1 Introduction

There are many areas in astrophysics where Meijer’s G-function and H -function
appear naturally. Some of these areas are analytic solar and stellar models, nuclear
reaction rate theory and energy generation in stars, gravitational instability prob-
lems, nonextensive statistical mechanics, pathway analysis, input-output models and
reaction-diffusion problems. Brief introductions to these areas will be given here so
that the readers can develop the areas further and tackle more general and more
complex situations.

6.2 Analytic Solar Model

The numerical approach to the study of solar structure is to go for the numerical
solutions of the underlying system of differential equations. Even for a simple main
sequence star in hydrostatic equilibrium at least four nonlinear differential equations
are to be dealt with to obtain a good picture of the internal structure of the star. Our
Sun is such a main-sequence star.

The simplest analytical procedure is to start with a simple mathematical model
for the matter density distribution in the core of the Sun. Then, from there develop
formulae for the mass, pressure, temperature, luminosity and other such critical pa-
rameters. Several such models were considered in a series of papers by Haubold
and Mathai, some details may be seen from Mathai and Haubold (1988). A two-
parameter model considered by them for the density p(r), at an arbitrary distance of
r from the center of the Sun is the following:

T
p(r) = pc |:1 — (R_@) } ,6 >0, (6.1)

y is a positive integer, where p, is the central density, R is the radius of the Sun.
Let y = R’—@. Then for the solar core, that is, 0 < y < 0.3, it is seen that the

A.M. Mathai et al., The H-Function: Theory and Applications, 159
DOI 10.1007/978-1-4419-0916-9_6, (© Springer Science+Business Media, LLC 2010
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5 = 1.28 and y = 10 give a good fit to the observational data. Then the model for
u= p/E:) is given by
u=(1—y%)7, with§ =1.28, and y = 10. (6.2)

This is shown to give good estimates for the solar mass M (r), pressure P(r), tem-
perature 7 (r), and luminosity (7). From standard formula we have

iM(r) = 4mr?p(r) (6.3)
dr

where M (r) is the mass at the distance r from the center.

M(r) = 471/r 2p(t)de

0

r t 8
= 47T,0c/ > [1— (—) } dr (6.4)
0 Ro
dmpe 5 (7 ’ 33 r\°
= Ry — Nnl-yv.zi-+L|— , 6.5
3 Q(R@)21|:y88+ (R@) (6.5)

where > F] is a Gauss’ hypergeometric function, which is a special case of a
H -function. For r = Rg in (6.4) we have the total mass of the Sun, which works
out to be the following:

4rpe RE 33
M(Ro) = “ 220, 1y (<9, 205 + 131 (6.6)

3 5 6

47pc p!
= ; (6.7)
S GGG
by using he expansion formula
r'e)y(c—a—-»5

2Fi(a,bic;1) = O —a—b) (6.8)

I'(c—a)T'(c—b)

where ¢ > 0,¢c —a — b > 0. Then

3 3 3 8
Mr  F+1)--G+y) ( r ) R (_y%;é_i_l;(L) ) (6.9)

M(Ro) y! Ro 8 Ro
This is seen to be in good agreement with observational data for § = 1.28 and
y = 10. The internal pressure at arbitrary distance r from the center is available

from standard formula
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P(r)=P.—G /0 r L(i)f © 4

. mé—+2
—p _477Gp2R22y:( y)m<R®)
©8 O = (B m) (3 +m)
ol 2 em 2 amer (- 8 (6.10)
211 )/,8 m,8 m 5 R@ , .

where P, is the pressure at the center and G is the gravitational constant. By using
the fact that P(Rg) = 0 we can compute the pressure at the center P.. Opening up
the hypergeometric function we can write P (r) in a closed form:

2
P(r)y= P, — gnG,ogrz

8
(Rr
Fl:3:1 @)
X Ly:2:0

3 —theg;—y . ’ (611)
8 8

where F112123::01 (-) is a Kampé de Fériet’s function, see Srivastava and Karlsson (1985).
The standard equation for temperature is the following:

T(r) = ﬁ P(r)p(r), (6.12)

where (4 is the mean molecular weight, & is Boltzmann’s constant and N4 is Avo-
gadro’s number. For the model in (6.1) it can be seen that

4 g(r)

_® 2
T(r) = N 47 Gp: R 7{1 — (%)S]y’ (6.13)
where
I (Y)m 1
g(r) ==
P Grm G

p!
X[(%+m+1)---(§+m+y)

mé+2 8
r 2 2 r
- — Fil—y - — ;| — . 6.14
(RG)) 21(y5+m5+m+ (RQ))} ©19

From the computations in Haubold and Mathai (1994) it is seen that M (r), P(r),
T (r) and luminosity L(r) are in good agreement with observational data for the
modelin (6.1) with § = 1.28 and y = 10. Further details may be seen from Haubold
and Mathai (1994).
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Exercises 6.1

6.1.1. From the model in (6.1) derive expressions for solar mass M(r), pressure
P(r), temperature 7 (r) and luminosity L(r) at an arbitrary distance r from the
center.

6.1.2. Letu = % where p(r) is the matter density at a distance r from the center
of the Sun and p,. is the density at the center. Let y = % for0 < y < 0.3, where
R is the solar radius. The following is the data from Sear (1964)

vy : 0.0864, 0.1153, 0.1441, 0.1873, 0.2161, 0.2450, 0.2882
u: 0.6519, 0.5253, 0.3856, 0.2810, 0.1994, 0.1424, 0.0962

By using the method of least squares fit a polynomial of degree 3 to this data and
show that the polynomial model is

y =1-0.940y + 6.67y% —2.73y°.
Compute u by using this model and compare with Sear’s data.
6.1.3. Consider the following three models for u of Exercise 6.1.2
u=1—4y +2y%+2y3 —y*,
u=(1—y»-yH*
w=(1-y3)",
Compute # under these models and compare with Sear’s data.
6.1.4. Consider the following four models for « in Exercise 6.1.2.
u=(1— M-y -y,
U= (1 _ y1.48)14
U= (1 _ y1.48)13
U= (1 _ y1.28)10.
Compute # under these models and compare with Sear’s data.

6.1.5. Show that the last model in Exercise 6.1.4 is the best among all the eight
models in Exercises 6.1.2, 6.1.3 and 6.1.4.
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6.3 Thermonuclear Reaction Rates

In nuclear reaction rate theory one comes across the following four reaction prob-
ability integrals in nonresonant reactions, reactions with high energy tail cut off, in
screened case and in the depleted case:

o _1

I =/ ye (r+2r 2)dy 6.15)
0
i _1

12=/ e v+ 2)dy (6.16)
0
* et )

13=/ yve TUF/dy (6.17)
0
00 _ hyd 4z -1

14=/ e (2542 2)dy. (6.18)
0

These are the reaction rate probability integrals dealt with in Anderson et al. (1994).
A more general case of /; is the following:

o0
Is = / yre=(ar’+by77) gy, (6.19)
0

fora > 0,b > 0,§ > 0,p > 0, where fora = 1,b = z,6 = 1,p = 1 we
have the integral /;. Observe that (6.19) is the limiting form of the versatile integral

discussed in Chap. 4. Writing
F(x) = x"Te™ and f(x) = e,

the integral in (6.19) can be written as

®
Is = / f0) fo (%) dv,u = b?. (6.20)

=0 V

Hence from Mellin convolution property, the Mellin transform of /5 is the prod-
uct of the Mellin transforms of fj(x) and f>(x) respectively. Denoting the Mellin
transforms by g1 (s) and g, (s), with s being the Mellin parameter, one has,

1T (5)

o0
21(5) = / P I P S 6.21)
0 a5

where (v + 1 + §) > 0 and

© o 1 $
22(5) = / ¥ le™dx = -T (—) . NR(s) > 0. (6.22)
0 Y P



164 6 Applications in Astrophysics Problems

Then I5 is available from the inverse Mellin transform of g1 (s)g> (s). That is,

1 1 r v+1+s
Is = —/ —%F (5) u=sds (6.23)
i o o= \p
1 c+ioco 1 —s
= v+l/ F(E)F(V—i_ +£)(a§u) ds
Spa s Je—ico 1Y ) )
1
= —Ho) adbe : (6.24)
5,061 r ’ (0’%)’<v-§-l,%)

Thus the special cases of the integral in (6.20) are the special cases of the H -function
in (6.24).

Some interesting special cases are the situations where (i): % =m, % =n,m,n =
1,2,...; (i): § = A,A=1,2,...; (i) % = u, i = 1,2,.... In all these cases
one can reduce the H -function in (6.24) to Meijer’s G-function with the help of the
multiplication formula for gamma functions, some details and computable represen-

tations are available from Mathai and Haubold (1988).

Exercises 6.2

6.2.1. Show that the reaction rate probability integral

(o) 0 a”V
/ xv—le—ax—zx dx =
0

2,0 1
0 Hyy [az"‘(o,%),(m)]’

fora > 0,z>0,p > 0.

6.2.2. For p = %,a = 1 in Exercise 6.2.1 show that

* -3 1302
xv—le—x—zx dx — 7T_§G ) -~ 1
0,3 4 0,7,1)
0

L1 c+ioo

=7 2 res)r (%-ﬁ-s) F(v+s)( 2)_ ds.

Z
270 Jotioo 4

6.2.3. Write down the conditions for the poles of the integrand in the Mellin—Barnes
integral in Exercise 6.2.2 to be simple. Evaluate the Mellin—Barnes integral in Ex-
ercise 6.2.2 in the case of simple poles.

6.2.4. Write down the integral in Exercise 6.2.2 in series form when v is an integer
thereby the poles of the integrand can be up to order 2.

6.2.5. Write down the integral in Exercise 6.2.2 in series form when v is a half-
integer thereby the poles of the integrand can be up to order 2.
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6.4 Gravitational Instability Problem

Gravitational condensation is believed to be the reason for the formation of the basic
building blocks of the universe, that is, the stars and galaxies and systems of them
at various scales. The universe is a multi-component medium. The influence of the
components’ relative motions upon the gravitational instability was investigated by
many authors. Gravitational instability in a multi-component medium in an expand-
ing universe under Newtonian approximation was studied by Mathai et al. (1988).
Exact solutions of the differential equations connected with the gravitational insta-
bility problems in a two-component, and then in a multi-component medium, were
considered by Mathai et al. (1988) by converting the basic equations to the equa-
tions satisfied by a Meijer’s G-function. After a few substitutions, see Mathai et al.
(1988), the basic equations for a two-component medium can be written as follows:

2
A28+ 20— 1DAS; + k21418 = 5(9151 + Q28,), (6.25)

2
A28y + (20— 1)A8y + k2t*28, = 5(9151 + Q28,), (6.26)

where A is the operator A = lf—l, Q=Q; 4+ 02, =1,2;,i = 1,2 are constants,
and other parameters have physical interpretations. Solving for &, from (6.25) and
then substituting for 85, Ad,, A28, in (6.26) one has the following fourth degree

equation:
A+ 2020 - 1)A38 + [kfz“l + k2192 — § + (2n— 1)2} A28,
+ [(2;7 — k2™ 4+ (20 — Dk3t*2 4 2kZa 1™ — (20— 1)%} A8,
+ [kfa%zal + (27— DkZa 1™ — %szft"“

2
—gszlkgzaz + kfk%t"”*‘”} 81 =0. (6.27)

Here (6.27) is the equation governing the growth and decay of gravitational con-
densation in the expanding two-fluid universe. An equation for 85, corresponding to
(6.27) is available from symmetry. The following special cases of (6.27) have inter-
esting solutions. We consider the following cases: (i) k1 = ko = 0;(ii) 1 = vy =
0, k1, ko arbitrary; (iii) wz # 0,k; = 0;(iv) a1 # 0,ky = 0;(v) a1 = 0,00 #0;
(Vl) (04} #O,azzo;(vii) Oy =01 = O #O,k] =k2=k 750

In case (iii) by changing 7 to x = kigz and A = x%, Eq. (6.27) reduces to

{(A = b1)(A = ba)(A — b3)(A — ba)} 6
+ x {(A —a1)(A —ap)} 81 =0, (6.28)
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Il
+
N}

+ —
6% oy 30[%

(%—n>2+mlr

as = +
b73 a3 302

Observe that (6.28) is a special case of the differential equation satisfied by a
Meijer’s G-function, see for example Mathai (1993c), so that the theory of
G-function can be applied to (6.28). In all the particular cases it is seen that equation
(6.27) reduces to the form

1A = b1)(A = b2)(A — b3)(A — by)}01 + X{(A —a1)(A —az)}61 =0 (6.29)

where a1,4a,,b1,...,bs and x change from case to case. Comparing (6.29) with
ay,..,dp

a G-function differential equation for Gy (x‘bl p ) we have g = 4,p = 2,
seshy

(—)yP™™™" = —1,ay,as,b1,...,bs. From the standard solutions of the G-function
equation, the solution near x = 0 is given by

81 =c1G1 4+ 262 + ¢c3G3 + 4Gy,

where ¢y, ¢», ¢3, ¢4 are arbitrary constants and

o WLJP%+mﬂﬁj

[T =i+ 6)]

X2F3(—a1 +bj,—a2+bj;1—b1 +bj,...,>|<,...,1—b4+bj;—x),
(6.30)

where the * indicates that parameter of the type 1 — b; + 5, and the corresponding
gamma are absent, and it is assumed that b; — b; # 0, £1, £2,.. . foralli # j =
1,...,4 and ; F3 is a hypergeometric function.

Here in (6.29) the G-function parameters are ¢ = 4, p = 2 or ¢ > p. Hence the
4 fundamental solutions and the general solution for x — oo are the following:

81 =c1G1 4+ 262 + ¢c3G3 + 4Gy, (6.31)
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where ¢y, ¢», c3, ¢4 are arbitrary constants and
B 1+a1,1+a2
4,1
G1 = G2’4 X s
| 1b1by
[ 14+as,14a
4,1
G2 = G2 4| X ,
L 1b1,eby
1+ap,1+a>
3
b1,....by

1+ai,1+a>

_ 40 in
G3 = G2’4 Xe

_ 40 —in
G4 = G2’4 Xe

by,....bsa

] i=~/—1.

Computable series forms as well as explicit solutions for various cases of
3-component medium are available from Mathai et al. (1988).

Exercises 6.3

6.3.1. Derive Eq. (6.27) from Eqgs. (6.25) and (6.26).
6.3.2. Derive an equation for &, from Eq. (6.27).

6.3.3. Under the special case kK = 0,k = 0 show that (6.27) reduces to the
form {(A — a1)(A — a2)(A — a3z) (A4 — a4)}51 = 0 so that the general solution is
81 = €1 + 21?2 + 3193 + c41% where

B B Doan— (1 1 2 57

a; =0,a, = —(2n— ),613—(5—77)— (5—77) +§ ,
1 1 2 2%
a4=(§—n)+ (5_”) +3|

6.3.4. Show that under case (iv): o1 # 0,k, = 0 Eq. (6.27) reduces to

{(A =)A= By)(A = b3)(A = b)}81 + x{(A — ) (A —a))}8; = 0,
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It d = k%lal
where A = x -, %X = ~15—. Show that
X o

1
1_ _12 2
agz[—1+(2a n)}_{(n 22) +23922} :
1 o3 o3

1
1 20, ]2
2 32|

Q
o~
Il
|
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+
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|

-3
—
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+
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|

(S]]
~—

+

and b] = b; of case (iii).

6.3.5. Show that under Case (v): «; = 0,0 # 0 Eq. (6.27) reduces to the same
form as in Exercise 6.3.4 with

Nl—

oG [G=n 2o R
T2 o2 302 ol |
1
1 1 2 272

5= 5 — 2Q1  k
a2=(2 2’7)+|:(2 2’7) n 21__;} ’

oy oy 3a; o

and the b;’s are the solutions of the equation
2
agb* +2(2n— Db’ + [(2:7 —D?=5+ k%} azb?

2 2
+ [—5(277 — D+ Q- 1)kf} b — gszzkf =0.

6.5 Generalized Entropies in Astrophysics Problems

Entropy is a measure of uncertainty in a probability scheme or in a probability
density. If P = (p1,...,px)spi = 0,i = 1,...,k,p1 +---+ pr = 1 be the
probabilitiesinaset A = {Aq,. .., Ag} of mutually exclusive and totally exhaustive

events then a measure of uncertainty in this scheme (A, P), proposed by Shannon
in 1948, was

k
S =-G Zpi In p;, (6.32)
i=1

where G is a constant and In is logarithm to the base e.
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6.5.1 Generalizations of Shannon Entropy

Generalizations to Shannon’s entropy were considered by many authors. A few of
these are the following:

Sk pr—1
H-C = %, a > 0, o # 1 (Havrda-Charvat), (6.33)
k
In (Zi:l P?)
R=—7—"—" az0 a#1Reny, (6.34)
—
koopd
T— E:llfplq’ g >0, g1, (Tsallis), (6.35)
ko oprme
M = Zlﬂp—ll o <2, a# 1 (Mathai). (6.36)
o —

All the o-generalized analogues, H — C, R, T, M go to Shannon’s entropy S when
a — 1 and in this sense they are generalizations. Tsallis’ entropy 7T is the ba-
sis for the current hot topic of nonextensive statistical mechanics and g-calculus.
The corresponding measures in a probability density f(x), [ f(x) > O for all x,
[ f(x)dx = 1] are the following:

S=-G /x F(0In f(x)dx, (6.37)
H—C:%, @>0, a#1 (6.38)
R:W%oz]adx, @>0.a#1 (6.39)
T:W(T+qqu_l, g0, q#1. (6.40)
M= fx[f(x;]z_jdx “l <u<ra£1. 6.41)

Tsallis” g-exponential function is derived from 7 of (6.40) by optimizing T sub-
ject to the conditions [, f(x)dx = 1 and that the first moment is pre-assigned, that
is, [ xf(x)dx = given. If the optimization of T is done in the escort density

gx) = _Ll (6.42)

Slf())9dx

then one obtains Tsallis density or known as Tsallis’ statistics

100 =all = (1 —gx]™, (6.43)
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where ¢y is the normalizing constant such that [, f(x)dx = 1.If Mathai’s entropy
(6.41) is optimized under the conditions of preassigning the §-th moment and (y +
8)-th moment for some & and v, by using calculus of variation techniques, then one
obtains a particular case of Mathai’s pathway model in the scalar case

H(x) = cax?[l —a(l —a)x¥]7%,8 > 0,a > 0 (6.44)

where ¢, is the normalizing constant. Observe that ¢, will be different for the three
cases @ < l,a > 1,& — 1. When o < 1 then f>(x) for I —a(l —a)x® > 0
remains in the generalized type-1 beta family of densities and when « > 1, writing
1 —a =—(x—1), f2(x) goes into the generalized type-2 beta family of densities.
When ¢ — 1, then f5>(x) goes to f3(x) where

f3(x) = caxVe (6.45)

where c3 is the normalizing constant. It may be mentioned here that M in (6.36)
is also connected to the measure of directed divergence in discrete distributions.
Observe that for g1 (x) = fi1(x)/c1

S =—ln W (6.46)
X

and hence f7(x), as a model, can describe situations of power function behavior,
meaning that the rate of change of g (x) is proportional to a power of g; (x).

When we study the properties (6.45), H-function comes in naturally as illustrated
in Chap. 4, Sect. 4.3. These properties will not be repeated here. Thus, H-functions
prop up when dealing with problems in nonextensive statistical mechanics, power
laws, pathway analysis, generalized entropies and related areas.

Exercises 6.4

6.4.1. Consider the entropy measure in (6.41). By using calculus of variation
techniques optimize M under the condition that the functional f(x) is such that
f(x) = 0and [, f(x)dx = 1 and show that the solution is a uniform density.

6.4.2. Optimize M in (6.41) for all densities f(x) such that the first moment is a
given or preassigned quantity. Show that the pathway model for y = O and é = 1 s
the resulting f(x).

6.4.3. Redo Exercise 6.4.2 under the conditions E(x%) and E(x%*7) are preas-
signed, where E denotes the expected value or 5-th moment and (6§ + y)-th moments
respectively. Show that the resulting density is the pathway model for the positive
real scalar variable case.
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6.4.4. Derive the density of # = xy if x and y are independently distributed real
scalar positive random variables where x is having the density in (6.44) with param-
eters as given there and y has the density in (6.45) with parameters (y1,d, ;).

6.4.5. Repeat Exercise 6.4.4 if x and y have the densities of the form in (6.44) with
different parameters.

6.6 Input—Output Analysis

Input—output situations are many in nature. In a dam or storage capacity there is
inflow and outflow and the difference or the residual part is the storage. In nuclear
reactions, energy is produced and part of it is dissipated, destroyed or emitted out
and the residual part is what is left out. In a human body a chemical called melatonin
is produced every day. The production starts by evening, peaks by 1 am and the level
of the chemical is back to normal by the morning. The body consumes or converts
what is produced. There is a positive residual part during the night and the residual
part is zero by the morning. In a growth—decay mechanism an item grows and part
of it decays, and the residual part is the difference. In a stochastic process there is
an input variable and after the process there is an output. In an industrial production
process the total money value of raw materials plus operational cost is the input
variable and the money value of the final product is the output variable.
A simple input—output model can be considered as a structure such as

Uu=x-—y, (6.47)

where x is the input variable and y is the output variable and u can be taken as the
residual. Stochastic situations when x and y are independently distributed random
variables, scalar variables or matrix variables, are considered by Mathai (1993c).
Connections of a structure such as the one in (6.47) to distributions of bilinear forms
and covariance structures are also established in Mathai (1993c). A model such
as the one in (6.47) when both the input and output variables are gamma random
variables can be used to model solar neutrino production or other such residual
processes (Haubold and Mathai 1994).

In a reaction—diffusion process if N(7) is the number density at time ¢ and if the
production rate is proportional to the original number, then

%N(r) = AN(1), A > 0, (6.48)

where A is the rate of production. If the consumption or destruction rate is also
proportional to the original number then

%N(l) =—uN(), u >0, (6.49)
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where p is the destruction rate. Then the residual part is given by

d

EN(I) =—cN(@), c=p—A. (6.50)
If ¢ is free of 7 then the solution is the exponential model

N(t) = Noe™®,No = N(t) att = to, 6.51)

where 7 is the starting time. Instead of the total derivative in (6.48)—(6.50) if we
consider fractional derivative or fractional nature of reactions, that is, if we consider
an equation of the form

N(t) — No = —c”oD; " N(1), (6.52)

where oD, ™" is the standard Riemann-Liouville fractional integral operator, then

the solution for N () is a Mittag-Leffler function

k vk
N@) = N Z(ng(i’)l) = NoEu(~(e1)") (653)

where E,(-) is the Mittag-Leffler function, which is a special case of a H -function.

That is,
(0,1)
(0,1),(0,V)} ’

(6.54)

where L is a suitable contour. In such input—output models one can notice that under
fractional rate of input or output can produce particular cases of H -functions as
illustrated in (6.52)—(6.54). More of such situations will be examined in detail in the
coming sections.

rs)ra—s)

1
N@ = NO%/L ra—vs)

[(c1)")™*ds = NoH |}, |:(cl)”

Exercises 6.5

6.5.1. Work out the density of u = x — y if x and y are independently distributed
with exponential densities with different parameters.

6.5.2. Repeat Exercise 6.5.1 if x has a gamma density and y has an exponential
density.

6.5.3. Repeat Exercise 6.5.1 if both x and y have gamma densities with different
parameters, for the cases (1): x — ¥ > 0 and (2): general, where x — y can be
negative also.
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6.5.4. Let x; have the density

5
yA_l _anA.I .
fj(Xj)ZCij'l e VU ,x; >0,a; >O,8j>0,]=1,2,

where ¢;, j = 1,2 are the normalizing constants. Let # = In x; — In x,. When x;
and x; are statistically independently distributed, evaluate the density of u by using
Laplace transform of the density of . Show that the density of u can be written as a
H -function.

6.5.5. Work out the special cases in Exercise 6.5.4 when (1) x;’s are Weibull dis-
tributed with different parameters, (2) Weibull distributed with the same parameters,
(3) gamma distributed (a) with different parameters, (b) with identical parameters,
(4) exponentially distributed with (a) different parameters, (b) with identical param-
eters. Show that all the densities can be written as special cases of H -functions.

6.7 Application to Kinetic Equations

Fractional kinetic equations are studied to determine certain physical phenomena
governing diffusion in porous media, reaction and relaxation processes in com-
plex systems and anomalous diffusion, etc. In this connection, one can refer to
the monographs by Hilfer (2000), Kilbas et al. (2006), Podlubny (1999), and
the various works cited therein. Fractional kinetic equations are studied by Hille
and Tamarkin (1930), Glockle and Nonnenmacher (1991), Saichev and Zaslavsky
(1997), Zaslavsky (1994) and Saxena et al. (2002, 2004, 2004b), among others, for
their importance in the solution of certain applied problems. We now proceed to
prove the following:

Theorem 6.1. Ifc > 0,v > 0, then the solution of the integral equation
N(t) = No f(t) = —c"oD; "N(t), (6.55)

where f(t) is any integrable function on the finite interval [0.b], there holds the
Sformula

t
N@) = CN()/ Hll.’z1 [c”(l —1)"
0

1 o] r@0n @50

where H1121 (.) is the H-function defined by (1.2).

Proof 6.1. Applying the Laplace transform to (6.55) and using (3.65), it gives,

F(s)

N(s) = L[N(t);s] = Nom.

(6.57)
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Since (Mathai and Saxena 1978, p. 152)

sl)

sV 4 ¢V

= H{y [(s/c)”

(1.1)
w1 } : (6.58)

then using (2.22), we obtain

|

L [Hll,’ll [(S/C)v (1,1

8 3 ©,v) } (659)

If we use the property of the H -function (1.58), the above equation becomes

e ] 0] o

0,1),(1,v)
_ 1,1 v | (=1/v. 1)
=cH) |:(cl) (—1/v.1).(0.v) :| (6.61)
O

The result (6.61) follows from (6.60), if we use the formula (1.60). Taking the
inverse Laplace transform of (6.57) and applying the convolution theorem of the
Laplace transform, we arrive at the desired result (6.56).

If we set f(¢) = t*~!, we obtain the result given by Saxena et al. (2002, p. 283,
Eq. (15)). Theorem 6.1 was proved by Saxena et al. (2004).

Note 6.1. An alternative method for deriving the solution of fractional kinetic equa-
tions is recently given by Saxena and Kalla (2008).

6.8 Fickean Diffusion

We consider Fick’s diffusion and establish the following:
Theorem 6.2. The solution of the diffusion equation

2

d d
— t)=Ci— { 62
SN D) = Cros N(xD), (6.62)

with initial condition N{(x,t = 0) = §(x), where §(x) is the Dirac delta function,
is given by
2

1 X
B — . 6.63
J@rCin P ( 4clz) (6.63)

N(x,t) =
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Proof 6.2. Applying Laplace transform to (6.62) with respect to the variable ¢ and
applying the given condition, it gives

2

sN(x,5) — 8(x) = Cl%ﬁ(x,s). (6.64)

Applying Fourier transform to the above equation with respect to x, we obtain
sN*(k,s) — 1 = C1(—=k*>)N*(k, ). (6.65)

Solving for N *(k, 5), it gives

o) 2 r
N~*(k.s) =D (=1)' (k Cl) 5L (6.66)
r=0

s

On inverting (6.66), the desired result (6.63) is obtained, where we have used the
inverse Fourier transform formula

F1 {e_"kz;x} = ! exp( Xz) . (6.67)

dma 4a

O

Remark 6.1. Standard diffusion processes are described with the help of Fick’s sec-
ond law. The diffusion equation (6.62) can be derived by combining the continuity
equation

%N(x,t) = —Sx(x,1), (6.68)
and the constitutive equation

S(x,1) = —CNx(x,1), (6.69)
which is also called as Fick’s first law. Here, S(x, t) represents the flux, N(x, ¢) the

distribution function of the diffusing quantity, and C; a diffusion constant which is
assumed to be a constant.

6.8.1 Application to Time-Fractional Diffusion

Theorem 6.3. Consider the following time-fractional diffusion equation

PN@. _ PN

Y oz V<@ <lLxeR R=(-0c00), (6.70)
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where D is the diffusion constant and € R\{0}

Nx,t =0)= 8(x),x£rjr:10c N(x,t) =0, (6.71)

;i—aa is the Caputo fractional derivative defined by (6.114) and §(x) is the Dirac delta
function. Then its fundamental solution is given by

N _ 1H1,0 |X|2 (1,2) 6.72
(XJ)—M L1 | pre |12) | (6.72)

Remark 6.2. 1t can be seen that Brownian motion takes place at « = 1, which is
irreversible. Wave propagation takes place at @ = 2 which is reversible.

Proof 6.3. In order to find a closed form representation of the solution of the equa-
tion (6.70) in terms of the H -function, we use the method of joint Laplace—Fourier
transform, defined by

~ 0 0 .
N*(k,s) = / / e TSIHEY N (x 1)dxdr, (6.73)
0 —0o0

where, according to the convention followed, “~” will denote the Laplace transform
and “x”, the Fourier transform. Applying the Laplace transform with respect to time
variable ¢, Fourier transform with respect to space variable x, using (3.75) and the
given condition (6.71), we find that

sEN*(k,s) — s = —DK2N~*(k,s).

Solving for N™~*(k, s), it gives

. sa—l
N*k,s) = ——.
&.5) §% + Dk?
Inverting the Laplace transform, it yields
1 s*! 2
N*k,t) = L7 | ———= | = Ex(—Dk*t%), 6.74
b =17 | s | = Bapie 674

where Eq(.), is the Mittag-Leffler function defined by (1.44). O

In order to invert the Fourier transform, we will make use of the integral

(B,2)
. (6.75)

(1,2)

k2

* 2 T 01,0
cos(tkt)Eg g(—at”)dt = —H;
0 ’ k ’ a
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which follows from (2.51); where R(«) > 0,R(B) > 0,k > 0,a > 0; and the
formula

1 * —ikx 1 *
— e fkydk = — J (k) cos(kx)dk, (6.76)
2n —60 T Jo
then it yields the required solution.

Note 6.2. When a = 1, (6.72) reduces to (6.63) as

M= L [P (P,
Y

x| 27i Jy—ioo T(1—3s) \ Dt
Rt N R L E AW
_W%/y_m ) D) “
1 ( |x|2)
= exp| — , (6.77)
(47 D1)? 4Dt

which is a Gaussian density.

6.9 Application to Space-Fractional Diffusion

Notation 6.1. £C—aa N(x,1) : Liouville fractional derivative of order ¢

Definition 6.1. The Liouville fractional derivative of order « is defined by

e 1 IN" ¥ N(,
—N(x,t):ri(a—)/ _NEY) Gy e R s 0.m =[] 41,
X

dx¥ (m —a) —o (x—y)eTmHl
(6.78)
where [«] is the integral part of «.
Note 6.3. The operator defined by (6.78) is also denoted by
—oDYN(x,1).
Its Fourier transform is given by

where W(k, ) is the Fourier transform of f(x,?) with respect to the variable x
of f(x,t). Following the convention initiated by Compte (1996), we suppress the
imaginary unit in Fourier space by adopting the slightly modified form of the above
result in our investigations

F{ oD% f(x,0)} = —|k|*U(k, 1), > O (6.80)

instead of (6.79).
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In this section, we will investigate the solution of the equation (6.81). The result
is given in the form of the following:

Theorem 6.4. Consider the following space-fractional diffusion equation

IN(x,t d*N(x,t
W0 _pINED e, 6.81)
ot ax®

where D is the diffusion constant and € R\{0}, Egc—aaN(x, t) is the Liouville frac-
tional derivative of order a; N(x,t = 0) = §(x), where §(x) is the Dirac delta

Sunction and limy_— 4 oo N(x,1) = 0. Then its fundamental solution is given by

|x]
(Dl)l/"‘

(6.82)

1 1,1
N(x,1) = a|x|H2’2 [ CBINCR D)

(1,1/0!),(1,%):|

Proof 6.4. Applying the Laplace transform with respect to the time variable 7,
Fourier transform with respect to space variable x and using the given condition
and the Eq. (6.80), it gives

sN*(k,s) — 1 = —D|k|*N*(k,s).
Solving for N *(k, s) and inverting the Laplace transform, it is seen that

oo (o) —D T (Dk|*y
N*(k,1) = L™! [Z(—l)’s"‘l(lel“)’} =2 %

r=0 r=0

= exp(—Di|k[%) = HY [Dt|k|"‘ ‘@,1)] . (6.83)

If we invert the Fourier transform with § = y = 1,8 = 0, the result (6.82)
follows. O

6.10 Application to Fractional Diffusion Equation

In this section we present an alternative shorter method for deriving the solution of
a diffusion equation discussed earlier by Kochubei (1990).

Theorem 6.5. Consider the Cauchy problem
oDFEN(x, 1) = —c"ANX,1),0<a <l;x eR"0<r <T, (6.84)

with
Nx,t =0)=358(x),x e N, lim N(x,1)=0. (6.85)
x—>+o0
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oD is the regularized Caputo (1969) partial fractional derivative with respect to t,
defined by

OD;IN(X,I)Z 1 |:a/(;l N(X7S)dS_N(X,O)i|’

Tl—a) lar )y —x) e

and A is the Laplacian. The fundamental solution of the above Cauchy problem is

given by

|X|2l_a
4cv

_ —n_—%2 7420
N(X,l) = |X| T 2H1,2 |: (%,1),(1,1)

(1,2) } , (6.86)

where le’,zo (.) is the H-function (1.2).

Proof 6.5. Applying the Laplace transform with respect to ¢, Fourier transform with
respect to x to (6.84) and using the result (3.75), it gives

SYN*(k,s) —s* 1 = —c"|k]2N* (k, 5),

where the symbol “~” indicates the Laplace transform with respect to the time vari-
able t and the symbol “x”, the Fourier transform with respect to the space variable x.

Solving for ]NV*(k, 5), we have

» sa—l
N*(k,s) = ————. 6.87
k9) = G (6.87)
By virtue of the following Fourier transform formula
F (27n)/2K — 27 " a R
(Fy [|x| (n,z)/z(a|x|)]) ()= o m, teR’; neN,a>0,
(6.88)

where the multidimensional Fourier transform with respect to x € i” is defined by
(FxN)(z.1) =/ N(x,0)e™%dx, t e R", 1 > 0, (6.89)
mﬂ

and K, (.) is the modified Bessel function of the second kind, it yields

X 1_% o
~ " ) >
N s) = ¢ s (2m) (%) Kis ['S JX|] (6.90)
§2

c?2

In order to invert the Laplace transform, we employ the following result given by
the authors (Saxena et al. 2006)

2,-2
L kst = Lotz [
{s v(zs?)it} = 2 1,2 4

(0,20)
Chcen| @
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where K, (x) is the modified Bessel function of the second kind, %(z2) > 0,

9 (s) > 0. Thus we obtain the solution in a closed form

[ |X |2
4cv

1 _n _v_ny _n _a_an (1-% -4 o)
NG = gnyEe e | oo |
(6.92)

By virtue of the H function identity (1.60), the power of the expression [%]

can be absorbed inside the H -function and consequently we obtain

T |X |2
4cVv

N(x.1) = |w2x| " H2Y [

(1,0)
(g,1),(1,1)} . (6.93)

O

Remark 6.3. If we employ the identity (1.58), the solution given by (6.93) can be
expressed in the form

l—1|x|2/a

o
N(x.1) = —|w2x] "Hyy [ 3.1).0.1)

o] .y } (6.94)
4cVyw

where a > 0.

Note 6.4. We note that the above form of the solution is due to Schneider and Wyss
(1989). There is one importance of our result (6.91) that it includes the Lévy stable
density in terms of the H -function as shown in (6.102). Similarly, using the identity
(1.59), we arrive at

_«
12 |x|
v

2¢2

Lo 2,0
N(x,t) = E|712)c| ”Hl,’z |: (3.3).1.})

(t.3) } , (6.95)

where 7 is not an even integer. This form of the H -function is useful in determining
its expansion in powers of x. Due to importance of the solution, we also discuss its
series representation and behavior.

6.10.1 Series Representation of the Solution

Using the series expansion for the H -function given in the monograph (Mathai and
Saxena, 1978), it follows that

TR Ry LI (E A
L

EHab | " 2 T(—s)

2,0
H1,2 [x

T(1—2 =) (~DAxe(BH) 2T (2 ] 3) (—1)hxe+h
T (1— 4 —ak) A — T(—-a—al)@) ’
(6.96)

s

A=0
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where 7 is not an even integer. Thus for # = 1, we find that

Nr.s) = — i( g . (6.97)

x? = T a - ) .
2t2 50 'ad—a+1)/2)(AYH

where A = ;%f and the duplication formula for the gamma function is used. For

n = 2, H-function of (6.95) is singular and in this case, the result is explicitly given
by Saichev (Barkai 2001) in the form

1 122

For n = 3, the series expansion is given by

& —1)* A%
N(x,1) = — ) . (6.99)
amt 3 A2 7= T [1 —a (1 n g)]
From above it readily follows that for n = 3 and @ # 1,
1
N(x,t) ~ p as X — oo. (6.100)

It will not be out of place to mention that the one sided Lévy stable density ¢, ()
can be obtained from Laplace inversion formula (6.91) by virtue of the identity

1
(T2
Kyy(x) = (2x) e, (6.101)
and can be conveniently expressed in terms of the Laplace transform as
° 0
/ e o, ()dt = e, M(u) > 0,R(p) > 0. (6.102)
0

The result is,

t

1 1
gp(ty = —HP |~ | | o>0, (6.103)
Y (5%)

Note 6.5. This result is obtained earlier by Schneider and Wyss (1989) by follow-
ing a different procedure. Asymptotic behavior of @, (¢) is also given by Schneider
(1986).
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6.11 Application to Generalized Reaction-Diffusion Model

6.11.1 Motivation

It is a known fact that reaction—diffusion models play a very important role in pattern
formation in biology, chemistry and physics, see Wilhelmsson and Lazzaro (2001)
and Frank (2005). These systems indicate that diffusion can produce the sponta-
neous formation of spatio-temporal patterns. For details, one can refer to the work
of Nicolis and Prigogine (1977) and Haken (2004). A general model for reaction—
diffusion systems is investigated by Henry and Wearne (2000, 2002) and Henry et al.
(2005).
The simplest reaction—diffusion models are of the form

2

aﬂ :Da—N-i-F(N),N:N(x,l), (6.104)

at dx2
where D is the diffusion constant and F(N) is a nonlinear function representing
reaction kinetics. It is interesting to observe that for /(N) = yN(1—N), (6.104) re-
duces to Fisher-Kolmogorov equation and if, however, we set F(N) = yN(1—-N?),
it gives rise to the real Ginsburg-Landau equation. Del-Castillo-Negrete et al.
(2002) studied the front propagation and segregation in a system of reaction—
diffusion equations with cross-diffusion. Recently Del-Castillo-Negrete et al. (2003)
discussed the dynamics in reaction—diffusion systems with non-Gaussian diffusion
caused by asymmetric Lévy flights and solved the following model:

9
a_]:] — DN + F(N), N = N(x.1). F(0)=0. (6.105)

Remark 6.4. 1t is interesting to observe that the Eq. (6.104) also represents the
classical reproduction-dispersal equation for the growth and dispersal of biological
species (Fisher 1937; Kolomogorov et al. 1937).

In this section, we present a solution of a more general model of fractional
reaction—diffusion system (6.105) in which 33—1;, has been replaced by the Riemann—

Liouville fractional derivative oDﬂ , B > 0. The results derived are of general nature
than those investigated earlier by many authors notably by Jespersen et al. (1999)
for anomalous diffusion and by Del-Castillo-Negrete et al. (2003) for the reaction—
diffusion systems with Lévy flights and fractional diffusion equation by Kilbas
et al. (2004). The solution has been developed in terms of the H -function in a
compact and elegant form with the help of Laplace and Fourier transforms and
their inverses. Most of the results obtained are in a form suitable for numerical
computation. The results reported in this section are in continuation of our earlier
investigations, Haubold (1998), Haubold and Mathai (2000) and Saxena et al. (2002,
2004, 2004a,b, 2006, 2006a).



6.11 Application to Generalized Reaction-Diffusion Model 183

6.11.2 Mathematical Prerequisites

In order to present the results of this section, the definitions of the well-known
Laplace and Fourier transforms of a function N (x, 7) and their inverses are described
below:

Notation 6.2. L{N(x, s)}: Laplace transform of a function N(x, ¢) with respectto ¢.

Notation 6.3. F{N({x,t)}: The Fourier transform of a function N(x,) with res-
pectto x.

Definition 6.2. The Laplace transform of a function N(x, ) with respect to ¢ is
defined by

o0
N(x,5s) = L{N(x,1)} = / e S*N(x,t)dt, t >0, x € R, (6.106)
0

where N (s) > 0, and its inverse transform with respect to s is given by

_ 1 ytioo
L YN (x,5)) = cerll e’ N(x, s)ds, (6.107)
y—ioo

y being a fixed real number.

Definition 6.3. The Fourier transform of a function N(x,?) with respect to x is
defined by

o0
N*(k,1) = F{N(x,1)} = / PN, dx @ = /—1. (6.108)
e
The inverse Fourier transform with respect to k is given by the formula
L [
N(x,t) = FTYN*(k,0)} = g/ e TTRYN* (k, t)dk. (6.109)

The space of functions for which the transforms defined by (6.106) and (6.108) exist
is denoted by LF = L(R4) x F(R).

Notation 6.4. ¢D; ¥ N(x,t): The Riemann-Liouville fractional integral of order v.

Definition 6.4. The Riemann-Liouville fractional integral of order v is defined by
1 t
oDV N(x,t) = —/ (t — )" ' N(x, u)du, (6.110)
r'w) Jo

where N (v) > 0.

Notation 6.5. ¢D¥N(x,t): The Riemann-Liouville fractional derivative of order
a > 0.
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Definition 6.5. Following Samko et al. (1993, p. 37) we define the fractional deriva-
tive of order & > 0 in the form

1 /l N(x, u)
0

DN(x,/) = ———— — | ————
0D N, I'(n —a)de (t —u)e—n+l

du, t >0, n=[a]+1, (6.111)

where [@] means the integral part of the number «. From Erdélyi et al. (1954, Vol. II,
p. 182) we have

L{oD"N(x,0)} = sT"N(x,s), (6.112)

where N (x, s) is the Laplace transform with respect to ¢ of N(x, 1), %(s) > 0 and
NR(v) > 0.

The Laplace transform of the fractional derivative, defined by (6.111) is given by
Oldham and Spanier (1974, p. 134, Eq. (8.1.3)):

L{oDIN(x.1)} = s*N(x,8) = > " D" N(x.0)[1=0. n—1<a <n.
r=1

(6.113)

Notation 6.6. ¢ oD f(x,t): Caputo fractional derivative of order o > 0.

Definition 6.6. The following fractional derivative of order & > 0 is introduced by
Caputo (1969) in the form

t (m)
C o _ f (X,‘L')df
ole(x,t)—F(m_a) | (t—r)"‘“—’”dt’ m—1<a<m.

The above formula is useful in deriving the solution of differential and integral
equations of fractional order governing certain physical problems of reaction and
diffusion. The Laplace transform of the Caputo derivative is given by

n—1

LoDy f(x.0)} = s fx.5) =Y s* 7 fP(x,00)n—1 <a <n, (6.114)

r=0
where ¢, s € C, R(s) > 0, R(x) > 0.

Note 6.6. 1f there is no confusion, then this derivative ¢ o D¢ for simplicity will be
denoted by ¢ D}.

Remark 6.5. Recently, Bagley (2007) has given the equivalence of Riemann—
Liouville and Caputo fractional order derivatives in connection with modeling of
linear viscoelastic materials.
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6.11.3 Fractional Reaction-Diffusion Equation

In this section, we will investigate the solution of the generalized reaction—diffusion
equation (6.115). The result is given in the form of the following result:

Theorem 6.6. Consider the generalized fractional reaction—diffusion model
0DEN(x.1) = N DEN(x.1) + ¢ (x.1), (6.115)
wheren > 0,t >0,x € R,1 < f <2, 0 <a <1, with the initial conditions

o Df NG, 0)] = f(). LD N, 0)] = g(x).x € R, lim N(x.0) =0,
X—>To0
(6.116)
where oo DYN(x,t) is defined in (6.78); [on_lN(x,O)] means the Riemann-
Liouville fractional derivative of order B — 1 with respect to t evaluated at t = 0.
Similarly [o Dlﬂ =N (x, 0)] means the Riemann—Liouville fractional derivative of or-
der 8 —2 with respect to t evaluated att = 0. 1 is a diffusion constant and ¢{x,1) is

a nonlinear function belonging to the area of reaction kinetics. Then for the solution
of (6.115), subject to the initial conditions (6.116), there holds the formula

B—1 00
t " )
N(x,1) = T S (k)Eg g (—77)|k|“tﬂ exp(—ikx)dk
-0
[ﬂ—2 00
t o g* (k) Ep g1 (—nlk|*1?) exp(—ikx)dx
-0

1 t B oo )
o [ [ bt = Epnki“eh) expl-ikoakat
7T Jo —oc
(6.117)
where % indicates the Fourier transform with respect to space variable x.

Proof 6.6. 1If we apply the Laplace transform with respect to the time variable 7 and
use the formula (6.113), the given equation (6.115) becomes

BN (x,s) — F(x) —sg(x) = N-soDEN (x,5) + ¢(x,5). (6.118)

O

As is customary, it is convenient to employ the symbol N (x,s) to indicate the
Laplace transform of N(x,?) with respect to the variable ?.

Now we apply the Fourier transform with respect to space variable x to the above
equation, use the initial conditions and the result (6.80), then the above equation
transforms into the form

Sk L st ¢* (k)

N*(k,s) = .
9 =& e 5F ke TS o

(6.119)



186 6 Applications in Astrophysics Problems

On taking the inverse Laplace transform of (6.119) and using the result

sh-1
a—+ s%

L—l

ity = 1P Ey g pii(—at®), (6.120)

where N (s) > 0, R(a — B) > —1, it is seen that
N*(k,t) = f*(k)tP 7 Eg g(—nlk|*tP) + g*(k)tP "2 Eg g1 (—mlk|*t?)

+ /0 kot — PV Eg 5 (—nlk|“eP)dL. 6.121)

The required solution (6.121) now readily follows by taking the inverse Fourier
transform of (6.117). Thus, we have

lﬂ—l [eS)
N =5— / PV Epp(—nlk|*P) exp(—ike)dk
—
[ﬂ—2 oo
+—— | g ()Epp-1(—nlk|*”) exp(—ike)dk
27 J_x

s 0
* E/O ¢ /_ocqj(k’t_g)Eﬂ,ﬂ(_ﬁ|k|a§ﬂ)exp(—ikx)dkdg,
(6.122)

This completes the proof of the Theorem 6.6.

Note 6.7. It may be noted here that by virtue of the identity (1.136), the solution
(6.117) can be expressed in terms of the H-function as can be seen from the so-
lutions given in the special cases of the theorem in the next section. Further, we
observe that (6.117) is not an explicit solution, special cases are interesting, general
solution is not.

6.11.4 Some Special Cases

When g(x) = 0, then applying the convolution theorem of the Fourier transform to
the solution (6.117), the theorem yields the following result:

Corollary 6.1. The solution of fractional reaction-diffusion equation
oDPN(x,1) = 1_0oDIN(x.1) + (x.1), 1 >0,7>0, (6.123)
subject to the conditions

[oDPTIN(x, D)o = f(x), [oDE2N(x, )]0 = O, (6.124)
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for x € Rlimy 1o N(x,1) =0, 1 < B <2,0 <a <1, when 1 is a diffu-
sion constant and ¢{x,t) is a nonlinear function belonging to the area of reaction
kinetics is given by

N(x,t) = /oo Gi(x —7,1) f(r)dr

+ /Ol(z —opt /Ox Ga(x — 7,1 — O)p(r, &)drde, (6.125)

where,
lﬂ_l 00
Gi(x,1) = — exp(—ikx)Eg g (—n|k|*t?)dk
27 o ’
lﬂ—l [eS)

=" | coskx)H,! [knézi
Ta Jo ’

_ b1 g2 | x|
a2 | T
1 o0
Galr.t) = o [ exp(cikn) Egp (-nlkl*tF)ak
27 J—o

1
©.3) }dk

(0.

o dk
(o,;),(l—ﬂ,g)}
(1.D8.8).0.0
(1,0,

} . R(a) >0, (6.126)

= 7 costeny i [kt
=— | cos(kx) 1,2 | ®N (0,5),(1—;‘5,3)

1 2,1 | x|
:—H’ -
a|x| 3,3 |:771 B

1,5.8.5),0.H
(1,0,0.0,0h

ata

} , M(a) > 0. (6.127)

If we set f(x) = 8(x), ¢ = 0, where 3(x) is the Dirac-delta function, then we
arrive at the following result:

Corollary 6.2. Consider the following reaction—diffusion model

KL

dt—ﬂN(x,t) =1N_D¢N(x,1), >0, x€R, (6.128)
with the initial condition

bDP NG, Olico = 8(x). lim N(x.1)=0,0<f <1,
x—>toc

where 1 is a diffusion constant and §(x) is the Dirac-delta function. Then the fun-
damental solution of (6.128) under the given initial conditions is given by

B—1
! 2.1 | x|
N(x,1) = Hy [ (1,1),(1,1/e),(1,1/2)

alx| (neh)r/e

where R(a) > 0, R(B) > 0.

(l,l/a),(ﬂ,ﬂ/a),(1,1/2)} 6.129)
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When g = % the above corollary reduces to the following interesting result: Con-
sider the following reaction—diffusion model

1

dz
— N(x,1) = o DEN(x,1), > 0,x € R, (6.130)
dr2

with the initial condition
_1
oD, 2N(x,0)];=0 = 8(x), lim N(x,1) =0,
x—+oo

where 7 is a diffusion constant and §(x) is the Dirac-delta function. Then the fun-
damental solution of (6.130) under the given initial conditions is given by

1y (1
(13 (3.95):(1,3 } (6.131)

N(x. 1) = (L)1),

g1 | x|
alx|t1/2 7733 | (qe1/2)1/e

where N («) > 0.

Remark 6.6. The solution of the Eq. (6.128), as given by Kilbas et al. (2004) is
in terms of the inverse Laplace and inverse Fourier transforms of certain functions
whereas the solution of the same equation is obtained here in an explicit closed form
in terms of the H -function.

An interesting case occurs when § — 1. Then in view of the cancelation law for
the H -function (1.57), the equation (6.128) provides the following result given by
Jespersen et al. (1999) and recently by Del-Castillo-Negrete et al. (2003) in an en-
tirely different form.

For the solution of fractional reaction—diffusion equation

d
EN(X’I) = N—eo DY N(x,1), (6.132)
with initial condition
N(x,t =0)=235(x), lim N(x,t) =0, (6.133)
x—+oo

there holds the relation

1 IXI
N(x,1) = — 21
| | nal

(1,1,(1,3)

.2, (1’2)} (6.134)

where 9 () > 0. In passing, it may be noted that the equation (6.134) is a closed
form representation of a Lévy stable law, see Metzler and Klafter (2000, 2004). It is
interesting to note that as @ — 2, the classical Gaussian solution is recovered as



6.11 Application to Generalized Reaction-Diffusion Model 189

1.

(1.1,0.hH
:L o] Xl jah
2|X| 1,1 (7’][)% 1,1

1 |x[?
= (4nnt) Zexp|——— ). (6.135)
4nt

1
N(x,0) = o= Hy [

x|
(11)3

2|x|

It is useful to study the solution (6.131) due to its occurrence in certain fractional
diffusion models. Now we will find the fractional order moments of (6.131) in the
next section.

Remark 6.7. Applying Fourier transform with respect to x in (6.128), it is found
that
KL
dieB
which is the generalized Fourier transformed diffusion equation, since for « = 2
and for § — 1, it reduces to Fourier transformed diffusion equation

Wik, 1) = —nlk|*W(k,1), 0 < p <1, (6.136)

d
5 k1) = —nlk|* Wk, 1), (6.137)

being a diffusion equation, for a fixed wave number k (Metzler and Klafter 2000,
2004). Here W(k, t) is the Fourier transform of N (x, 7) with respect to x.

Remark 6.8. 1t is interesting to observe that the method employed for deriving the
solution of the Egs. (6.115) and (6.116) in the space LF = L(R4) x F(R) can
also be applied in the space LF’ = L'(R4) x F’, where F/ = F’(R) is the space
of Fourier transforms of generalized functions. As an illustration, we can choose
F' = S or F/ = D'. The Fourier transforms in S’ and D’ are introduced by
Gelfand and Shilov (1964). S’ is the dual of the space S, which is the space of
all infinitely differentiable functions which together with their derivatives approach
zero more rapidly than any power of 1/|x| as |x|] — oo. D’ is the dual of the
space D, which consists of all smooth functions with compact supports. In this
connection, see the monographs by Gelfand and Shilov (1964) and Brychkov and
Prudnikov (1989).

6.11.5 Fractional Order Moments

In this section, we will calculate the fractional order moments, defined by

o0
< |x)° >=/ Ix|* N(x, r)dx. (6.138)

—o0



190 6 Applications in Astrophysics Problems

Using the definition of the Mellin transform

o0
s = [ poa (6.139)
0
we find from (6.138) that
o0
< |lx®)® > =/ |x|S N (x, 1)dx. (6.140)
-0
2Pt oo x| @) (85)-(LD)
8 _ 5—1 72,1 o o 2
< |x|°(t) > = " /0 x°T Hy |:;7$zt£ (1)1, dx. (6.141)

Applying the Mellin transform formula for the H -function (2.8) we see that

r(-2)ra+or(1+4)
2 8491
< el = pb el 22 e (@14
N & [
whenever the gammas exist, R (6) > —1 and R (S + «) > 0.
Two interesting special cases of (6.142) are worth mentioning.
(i) As 8 — 0, then by using the result ﬁ ~ zfor z << 1, we find that
lim < |x|%(0)| >= peB~1. (6.143)
§—0
(i) When @ = 2,8 = 2, the linear time dependence
2nl2ﬂ—1
lim < |x()|® >= S, 6.144
soam, < Il T 28) (6.144)

of the mean squared displacement is recovered.

6.11.6 Some Further Applications

This section deals with the investigation of the solution of an unified fractional
reaction—diffusion equation associated with the Caputo derivative as the time-
derivative and Riesz—Feller fractional derivative as the space-derivative. The solu-
tion is derived by the application of the Laplace and Fourier transforms in a compact
and closed form in terms of the H -function.
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6.11.7 Background

The theory and applications of reaction—diffusion systems are contained in many
books and articles. In recent works (Saxena et al. 2006a—c), the authors have demon-
strated the depth of mathematics and related physical issues of reaction—diffusion
equations such as nonlinear phenomena, stationary and spatio-temporal dissipa-
tive pattern formation, oscillation, waves, etc. (Frank 2005; Grafiychuk et al. 2006,
2007). In recent time, interest in fractional reaction—diffusion equations has in-
creased because the equation exhibits self-organization phenomena and introduces
a new parameter, the fractional index, into the equation. Additionally, the analysis
of fractional reaction—diffusion equations is of great interest from the analytic and
numerical point of view.

The object of this section is to derive the solution of an unified model of
reaction—diffusion system, associated with the Caputo derivative and the Riesz—
Feller derivative. This new model provides the extension of the models discussed
earlier by Mainardi et al. (2001), Mainardi et al. (2005), and Saxena et al. (2006).
The advantage of using Riesz—Feller derivative lies in the fact that the solution of the
fractional reaction—diffusion equation containing this derivative includes the funda-
mental solution for space-time fractional diffusion, which itself is a generalization
of neutral fractional diffusion, space-fractional diffusion, and time-fractional diffu-
sion. These specialized type of diffusions can be interpreted as spatial probability
density functions evolving in time and are expressible in terms of the H -functions
in compact form.

Notation 6.7. y D{: Riesz—Feller space-fractional derivative of order o.

Definition 6.7. Following Feller (1952, 1966) it is conventional to define the Riesz—
Feller space-fractional derivative of order o and skewness # in terms of its Fourier
transform as

F{:D§:k} ==yl ) f*(k), (6.145)
where,
6 o L Or )
Yo (k) = |k|“ expli(sign k)T]’ 0<a <2, |8] <min{e,2—a}. (6.146)
When 6 = 0, then (6.145) reduces to
F{xDg f(x);k} = —|k|* f*(k), (6.147)

which is the Fourier transform of the Liouville fractional derivative, defined by

= DYf(0) = L & /l S g, (6.148)

(n—a)drm J_o (t —u)entl

This shows that Riesz—Feller space-fractional derivative may be regarded as a gen-
eralization of Liouville fractional derivative.
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Note 6.8. Further, when 8 = 0, we have a symmetric operator with respect to x
which can be interpreted as

d2 2

This can be formally deduced by writing —(k)® = —(k2)%. For 0 < « < 2 and
|6] < min{a,2 — a}, the Riesz—Feller derivative can be shown to possess the fol-
lowing integral representation in x domain:

TIEAD - f)

é-l-i—a é'

I'(1
g fo) =

sinf(cr + 9)%]
0

(6.150)

+ sin [(a - 9)%} - Mdg}.

0 é-l-i—a

6.11.8 Unified Fractional Reaction-Diffusion Equation

In this section, we will investigate the solution of the reaction—diffusion equation
(6.151) under the initial conditions (6.153). The result is given in the form of the
following result:

Theorem 6.7. Consider the following unified fractional reaction—diffusion model
oDEN(x, 1) = n . DIN(x, 1) + p(x. 1), (6.151)
where n,t > 0,x € R;a, 0, B are real parameters with the constraints
0<a<2,|0] <min(e,2 —a), 0 < B <2, (6.152)
and the initial conditions

N(x,0) = f(x), Ni(x,0) = g(x) forx € R, lilj:l N(x,1) = 0,1 > 0. (6.153)

Here Ni(x,0) means the first partial derivative of N(x,t) with respect to t evalu-
ated att = 0, 7 is a diffusion constant and ¢(x, 1) is a nonlinear function belonging
to the area of reaction—diffusion. Further, xDg is Riesz—Feller space-fractional

derivative of order o and asymmetry 0. on is the Caputo time-fractional deriva-
tive of order B. Then for the solution of (6.151), subject to the above constraints,
there holds the formula
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1 [e.e]
NGt = o / £ () Ep 1 (—11P W (k) exp(—ikx)dk
27 J—o
L[ . o B0 ,
oo | 18" O Epa (kP W) exp(—ikx)dk
—0

t o0
N %/ gﬂ—I/ ¢* (k.1 — &) Eg g (—nk*tP W8 (k)) exp(—ikx)dk d¢.

0 —o0
(6.154)

Proof 6.7. If we apply the Laplace transform with respect to the time variable 7,
Fourier transform with respect to the space variable x, and use the initial conditions
(6.153) and the formulae (6.114) and (6.147), then the given equation transforms
into the form

SPN*(k,s)— P71 (k) —sP2g* (k) = WS (k)N * (k. 5) +¢* (k,5), (6.155)

where according to the conventions followed, the symbol N {x,s) will stand for
the Laplace transform with respect to time variable ¢ and * represents the Fourier
transform with respect to space variable x. Solving for N *(k, s), it yields

Wy - 0T gwst ®)
R R T ORI OY

(6.156)

On taking the inverse Laplace transform of (6.156) and applying the formula
(6.120), it is seen that

N*(k,t) = f*(k)Eg (—ntP W (k) + g* (k)tEg o (—ntP UG (k)

4 /0 B et — PV Eg g~ (k)P )z, (6.157)

O

The required solution (6.154) is now obtained by taking the inverse Fourier trans-
form of (6.157). This completes the proof of the Theorem 6.7.

6.11.9 Some Special Cases

When g(x) = 0 then by the application of the convolution theorem of the Fourier
transform to the solution (6.154) of the Theorem 6.7, it readily yields the following
result:

Corollary 6.3. The solution of fractional reaction—diffusion equation

B P

)
_ t —
ap VD g

N(x,t) = ¢(x,t),x e R,t >0,n> 0, (6.158)



194 6 Applications in Astrophysics Problems
with initial conditions

NXx,0) = f(x),Nx,0) =0forx e R,1 < 8 <2, lilj:l N(x,t) =0,1 >0,
X—>T oo
(6.159)

where 1 is a diffusion constant and ¢ (x,t) is a nonlinear function belonging to the
area of reaction—diffusion, is given by

N(x, 1) = /00 Gi(x —7,1) f(r)dr

—0

+ /Ol(l -of! /Ox Ga(x — 7,1 = {)p(z, §)dr g, (6.160)

where,
_a—6
P= 20
1 [ . P
Gi1x.0) = — | exp(—ikx)Eg, (—nz \pa(k)) dk
27 oo
R SR I L e ,(1,5),(1,,0)
™ a1 [nézé wh.anws "4 % (6.161)
and

1 o0
Gatr.t) = o [ exp(ikn) Bp p (P Wik
—

1 2,1 | x|
= —H’ -
(x|x| 3,3 |: 1 B

n&[&

1.4).8.8).(1.0)
(1.3),(1,1),(1,0) } ;o> 0. (6.162)

In deriving the above results, we have used the inverse Fourier transform formula

1.0, 8),(1,p)
(1,.H),a0,1),01,0

_ 1 | x|
F~YEg,, (—ntP 02 (k)); x] = H32;31 —
o x| Sk

7’}0{[0(

i| (6.163)

where p = %, N(B) > 0,9(y) > 0, which can be established by following a

procedure similar to that employed by Mainardi et al. (2001).

Next, if we set f(x) = §(x),¢ = 0,g(x) = 0, where §(x) is the Dirac delta
function, then we arrive at the following interesting result given by Mainardi et al.
(2005).

Corollary 6.4. Consider the following space-time fractional diffusion model

8

9
al—ﬂN(x,l)zn xDEN(x,1), n>0,xe R,0< B <2, (6.164)
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with the initial conditions N(x,t = 0) =8(x), N;(x,0) =0,limy 540 N(x,2) =0
where 1 is a diffusion constant and 5(x) is the Dirac delta function. Then for the
Sfundamental solution of (6.164) with initial conditions, there holds the formula

et (6.165)
o2 ’

1 2,1 | x|
NCe 1) = = His [ (L.1).1,1),(1.0)

1, 0),0,2),1,0
x| (1)@ ’

Some interesting special cases of (6.164) are enumerated below.

(i) We note that for ¢ = g, Mainardi et al. (2005) have shown that the corre-
sponding solution of (6.165), denoted by N‘f , which we call as the neutral
fractional diffusion, can be expressed in terms of elementary function and can
be defined for x > 0 as Neutral fractional diffusion: 0 < o = < 2;0 <
min{c,2 — o},

1 x% Lgin

NJ () = —

(
6.166
7 14 2x%cos[(5F ( )

2) @~ 9)
) @ O)] + x2

The neutral fractional diffusion is not studied at length in the literature.
Next we derive some stable densities in terms of the H-functions as special
cases of the solution of the equation (6.164).

(i) fweset p =1, 0 < a < 2;8 < min{e,2 — a}, then (6.164) reduces to
space-fractional diffusion equation, which we denote by Lg (x), and we obtain
the fundamental solution of the following space-time fractional diffusion
model:

3
gN(x,t) =nxDgN(x,t), n>0,x € R, (6.167)

with the initial conditions N (x,7 = 0) = §(x), limy_ 1 N(x,?) = 0, where
n is a diffusion constant and §(x) is the Dirac delta function. Hence for the
fundamental solution of (6.167) there holds the formula

1
1 o=
Li(x) = T H2121 [ o (11’1.)1’()/?’(2))),/)) O0<a<1,l8] <a, (6.163)
a(nt)« e
where p = % The density represented by the above expression is known as

a-stable Lévy density. Another form of this density is given by

1 | x|
6, 11
Ly(x) = Hy) [ ©0.1).(1=p.p)

—1 1y q—
: : (1-5.5).01 p,p)} ’ (6.169)
a(ne)« ()=
where | <o <2,|0] <2—a.
(iii) Next, if wetakea = 2, 0 < B < 2,6 = 0 then we obtain the time-fractional
diffusion, which is governed by the following time fractional diffusion model:
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Bl 32
— Nx,t) =n—N{x,1),n>0,x e R,0< B <2, (6.170)

ath dx2
with the initial conditions N(x,t = 0) = §(x), N;(x,0) = 0,limy_ 1
N(x,t) = 0 where 7 is a diffusion constant and 5(x) is the Dirac delta func-
tion, whose fundamental solution is given by the equation

! x|
N = s HY | —
2|x| (ef)2

w5
(1,12) } (6.171)
which is same as (6.72).

(iv) Further, if weset @ = 2,8 = 1, and # — 0 then for the fundamental solution
of the standard diffusion equation

d 92
— H=n——7-3 t 172
—N(x.1) = s N(x.). (6.172)
with initial condition
N(x,t =0) =§8(x), lim N(x,t) =0, (6.173)
x—+oo

there holds the formula

1 1,0 | x|
N(X,t) == MHI’I |:ﬁ

(13) | _ -1 |x|?
(1,12) = (4mni)” 2 exp _4—771 . (6.174)

which is the classical Gaussian density. For further details and importance of
these special cases based on the Green function, one can refer to the papers by
Mainardi et al. (2001, 2005).

Remark 6.9. Fractional order moments and the asymptotic expansion of the solution
(6.165) are discussed by Mainardi et al. (2001).

Finally, for § = % and g(x) = 01in (6.151) we arrive at the following result:

Corollary 6.5. Consider the following fractional reaction—diffusion model
D3N(x,1) = na DEN(x, 1) + p(x,1), (6.175)

where n,t > 0,x € R;«a,8 are real parameters with the constraints 0 < a < 2,
|6| < min{a, 2 — &), and the initial conditions

N(x,0) = f(x), N,(x,0) =0forx € R, hrf N(x,t) = 0. (6.176)

Here 1 is a diffusion constant and ¢(x,t) is a nonlinear function belonging to
the area of reaction—diffusion. Further, x D is the Riesz—Feller space fractional
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1

derivative of order o and asymmetry 6 and D ? is the Caputo time-fractional deriva-
tive of order % Then for the solution of (6.175), subject to the above constraints,
there holds the formula

N(x,t) = %/w f*(k)E%(—nz%qu(k)) exp(—ikx)dx
t [oe]
+ % 5_5/ ¥k, t—O)E 1(—ﬁk“l%\lfg(k))exp(—ikx)dk de.
0 —00 272
(6.177)

If we set & = 0 in Theorem 6.7, then it reduces to the result recently obtained by
Saxena et al. (20006) for the fractional reaction—diffusion equation.

Following a similar procedure, we can derive the solution of the fractional
reaction—diffusion system (6.178) given below under the given initial conditions
(6.179) associated with Riemann-Liouville fractional derivative and the Riesz—
Feller fractional derivative. The result is given in the form of the following result:

Theorem 6.8. Consider the unified fractional reaction—diffusion model associated
with Riemann—Liouville fractional derivative o D§ defined by (6.111) and the Riesz—
Feller space fractional derivative xDg of order o and asymmetry ¢ defined by
(6.145) in the form

oDPN(x, 1) = N DEN(x. 1) + p(x. 1), (6.178)

where n,t > 0,x € R,«a, 8, B are real parameters with the constraints 0 < a < 2,
|6] < min{x,2 — @), 1 < B <2, and the initial conditions

LD ' N, 0)] = f(x), [bDFN(x,0)] = g(x) for x € R,
lim N(x,t) =0, > 0. (6.179)

|x]—>00

Here [o Df} 'y {x,0)] means the Riemann—Liouville fractional partial derivative of
N(x,t)withrespect to t of order f—1 evaluated at t =0. Similarly, [o Dlﬂ_zN(x, 0)]
is the Riemann—Liouville fractional partial derivative of N(x,t) with respect to t of
order 8 — 2 evaluated at t = 0, 7 is a diffusion constant and ¢ (x,t) is a nonlinear
function belonging to the area of reaction—diffusion. Then for the solution of (6.178),
subject to the above constraints, there holds the formula

B—1 o)

t . .
Nty =—— | ") Epp(—nt" WG (k) exp(—ikx)dk
—
B—2 0o
t N .
+ 5 tg*(k)Eg g1 (—ntP W (k) exp(—ikx)dk
7T J—co

t o0
1 gﬂ—1/_ ¢*(k.t — ©)Eg g (—neP W (k)) exp(—ikx)dk de.
(6.180)

2n 0



198 6 Applications in Astrophysics Problems

6.11.10 More Special Cases

When g(x) = 0 then by the application of the convolution theorem of the Fourier
transform to the solution (6.180) of the theorem, it readily yields the following
result:

Corollary 6.6. The solution of fractional reaction—diffusion equation
oDEN(, 1) = DEN(x,1) = $(x,1), x € R,t > 0,7 >0, (6.181)
with initial conditions
B-1 _ B2 _
D, N(x,t)] = f(x), [oD; “N(x,0)] =0forx € R,

0O<a<1l<B<2 lim N(x,1)=0, (6.182)
x—too

where 1 is a diffusion constant and ¢ (x,t) is a nonlinear function belonging to the
area of reaction—diffusion; n,t > 0,x € R;«a,8,p are real parameters with the
constraints 0 < o < 2, |8] < min(o,2 — @), | < B <2, is given by

N(x, 1) = /oo Gi(x —7,1) f(r)dr

—0

+ /Ol(l -of! /Ox Ga(x — 7.1 = O (z, {)dr i, (6.183)

where p = %;
lﬂ_l [eS) . -
Gi(x,t) = — exp(—ikx)Eg g (—nt" W, (k))dk
27 o
P | ] Jahs.E)a
= ] 133 N ((RORCRINUND @ >0, (6.184)
and

1 o0
Ga(x,1) = —— / exp(—ikx)Eg g (—ntP W (k))dk
-0

1 X 1 B
= — H2 [ ] “’a)’(ﬂ’a)’“”’)} >0, (6.185)
nat

x| (1. 3).(1,1),(1,0)

In deriving the above results, we have used the inverse Fourier transform formula
(6.163) given by Haubold et al. (2007).
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Remark 6.10. 1t is interesting to observe that for & = 0, Theorem 6.8 reduces to
(6.117) given by the authors Saxena et al. (2006b). On the other hand, if we set
f(x) = 8(x), where §(x) is the Dirac delta function, it yields the following result:

Corollary 6.7. Consider the following reaction—diffusion model
oDP N(x,1) = ni DEN(x, 1), (6.186)
with the initial conditions

WD IN(x,0)=8(x).0<p <1, lim N(x.1) =0, (6.187)
X—>T0

where 1 is a diffusion constant; n,t > 0,x € R;«a, 6, B are real parameters with the
constraints 0 < a < 2, |0| < min(«, 2 — «), and §(x) is the Dirac delta function.
Then for the fundamental solution of (6.186) with initial conditions in (6.187), there
holds the formula

A= | x|
NG 1) = S (1.1).0.1).(1.0)

1 B
R (1,2).(8,£).(1,p) a>0, (6.188)
alx| (nt8)a

where p = %

Exercises 6.10

6.10.1. Consider the fractional reaction—diffusion equation connected with nonlin-
ear waves

oDEN(x, 1) + g DE N(x, 1)
= V2 DYN(x,t) + EEN(x, 1) + ¢ (x, 1),

forx € R,t > 0,0 <a <1,0 < f <1 with initial conditions

N(x,0) = f(x), xlirjrg@N(x,t):O, x€R

where the operator _., DY is defined in (6.78); oD{¥ and ODf} are the Caputo frac-
tional order derivatives, v? is a diffusion constant, £ is a constant which describes
the nonlinearity in the system, and ¢ (x, ¢) is nonlinear function which belongs to the
area of reaction—diffusion, then show that there holds the following formula for the
solution of the above mentioned reaction—diffusion model.
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= (_a)r > a—pB)r rx* .
NGty =S —2 | 2B (k) exp(—ikx)

X [Ea,(a—ﬂ)rﬂ (=b1%) + 1*7P Eq @-pyr+1)+1 (—bla)] dk

oo

(_a)r /l a+(ae—p)r—1

DRI

r=0 2 0

o

x [ Bt = O xplin) By (-0

—oo

where ¢ > f§ and Eg,y(-) is the generalized Mittag-Leffler function, defined by

(1.39)and b = v2|k|¥ — 22,

6.10.2. Consider the following fractional reaction—diffusion model

af
al—ﬂN(x,t) =1 _cDING, )+ p(x,0);n,t >0,xe RO< B <2,

with the initial conditions

N, 0) = f(x), Ni(x,0)=g(x), x€R, lim N(x,1)=0.

where the operator ., D¢ is defined in (6.78); N;(x,0) means the first derivative
of N{x,t) with respect to  evaluated at = 0, 1 is a diffusion constant, ¢ (x,7) is a

. . . . e B .
nonlinear function belonging to the area of reaction diffusion and ;]l_ﬂ is the Caputo
fractional derivative. Then show that for the solution of reaction—diffusion model,
subject to the initial conditions, there holds the formula

oo .
N(x, 1) = Z/ PRV Epr (—nlk|*tP) exp(—ikx)dk
1 o0
+—/t§®&AﬂWﬂww%mk
27 J—oo

1 0o
* E/O gﬂ_l/_m bk, 1 — &) Ep g (—nlk|*¢P) exp(—ikx)dkd.

Hence or otherwise derive the solution of the next exercise.
6.10.3. Consider the following reaction—diffusion model

B

d
al—ﬂN(x,t) =1 _cDIN(x, 1), > 0,—00 <x <00,0<fp <1,
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with the initial condition N(x,? = 0) = §(x), limy—+e N(x,7) = 0, 331_‘; is the
Caputo fractional derivative, the operator _, DY is defined in (6.78), 1 is a diffusion
constant and §(x) is the Dirac delta function. Then show that for the solution of the
above equation there holds the formula

1
N(x,t) = — H2} al x
ol x| (neh)a

a.hH,a.8),ah
a,n,a.H.a.h |-

6.10.4. Show that the solution of the following boundary value problem for the one-
dimensional fractional diffusion equation associated with the Riemann-Liouville
fractional derivative ¢ D

2

3
oDIN(x, 1) = AzﬁN(x,t),t > 0,—0oc < X < 00,
X

with the initial conditions

lim N(x,) =0, [pD¥ !N, 0)]i=0 = $(x),0 < < 1,

x—+oo

is given by

N1 = / G(x — L. 0P@)AL,

where
la—l

Glx. 1) = glo |X|2
(x,1) = H L1 | 32,0

(o, 00)
12 |-
(Nigmatullin 1986)

Remark 6.11. Nigmatullin (1986) derived the solution of the above fractional diffu-
sion equation in terms of the following integral:

1 [e.e]

G(x, 1) = — / t* VEy o (=A%k%t%) cos(kx)dk,

T Jo
whereas, the solution of this problem given here is in terms of the H -function in an
explicit form.
6.10.5. Consider the fractional diffusion equation

—v 2

d
D} ty——36 =c'— 4
0 ZN(X7 ) F(l_v) (X) ¢ asz(X, )a

with the initial condition

DVTEN(x, t)|jmo = 0.k = 1,...,n,
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where n = [R(v)] + 1, ¢” is a diffusion constant and &(x) is a Dirac delta function.
Then show that for the solution of the diffusion equation, there exists the formula

1 20 |X|2
(4716”[”)% L2 | gevypv

N(x,t) = O.00.(5.1)

(1-5.v) }

(Metzler and Klafter 2000; Jorgenson and Lang 2001).
6.10.6. Consider the generalized free electron laser equation

oD f(r) = /\/Tlof(l’—l)(]ﬁ(b,d-i- Livi)dt + k7B, y +1;ivt), 0 <7 <1
0

(6.189)
withA, k€ C;v, b, € R,a > 0,y > —1,0 > —1 with initial condition

oDET f(T)e=0 = br.r =1,....N, (6.190)
where N = [o] + 1 is a positive integer, N — 1 < o < N and b,’s are real

numbers. Then show that there exists an unique solution of the Cauchy-type problem
(6.189)—(6.190), given by

fﬁ%=ﬁﬁY+A‘ﬂD[EZPMmJIﬁd§+HY%+D§:Pﬂmwx
m=1 m=0
(6.191)

where,

N

_ b N-j
folr) = ; Ta v 0" (6.192)

Pi(m,7.0) = [AT (0 + D)™ (x — O™ @t g* b, m(e + o + 1)siv(tr — 0],

(6.193)
Py(m,7) = [AT (0 + D)@t D+me+ Dy o piy 4 B o(m + 1)
+m(o+ 1)+ vy + 1;ivr), (6.194)
and
1
¢*(a,c;2) = ——¢la,c;2). (6.195)

I'(c)
(Saxena and Kalla 2003).

6.10.7. Let o, p,0,y, @0, A € C,min{R(x), R(p), N(c)} > 0. If f(x) € L(a,b),
then show that the Cauchy-type problem
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(Dg, NHx) = /\/ax(x 07 E) S[o(x = 0] f(0)dt + h(x).a < x < b,

and

Jim (DG () = bror =10 = =R (@),

is solvable in the space L(a, b) and its unique solution is given by

£ =Y b i)+ [ Q0= nnoar
r=1 a

where
ad .
L) =@x—a)*" Y Mx—a)Ot
=0
vj —
X EJ\ orayjra—ri1 [0 — a)fl,r=1,...,n,
and
Qu) = ZAju(o-i-a)j-i-a—lEl))/’j(0+a)j+a[wuﬂ]’
=0

where E} ;(z) is the generalized Mittag-Leffler function defined in (1.46)

(Kilbas et al. 2002).

(6.196)

(6.197)

(6.198)

(6.199)

(6.200)
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A.1 H-Function of Several Complex Variables

Notation A.1. H(z1,...,7,): Multivariable H -function or H-function of several
complex variables.

Definition A.1. The multivariable H -function is defined in terms of multiple
Mellin—Barnes type contour integral as

1 1 1
gzl ey i)

j Lpr
O,y .. iliy By
Hlz, ozl = Hygp gl

: 1 1 1
: ;28 g1 @ 8 g 1@ 81,

= Gy L e {ﬂasl(;)z }dzl at,. (A

i=1

where
_ T —a; +37_ o
‘Ij(é‘],u.,é‘r): l_[] 1 ((l Cl] Zl 1(1 é‘) m
[n‘—n+1 Tla; =3 Ei)][ o T =0 +35_, B fz]
(A2)
s = B T =809 [T 70— +57%)
M T = ] [ 4 T = 4 +805]
(A.3)

fori =1,...,r,and L; = Lyy;00, W = (—1)% represents the contours which start
at the point 7; — woo and goes to the point 7; + woo with 7; € R = (—oc, 00),i =
1,...,r such that all the poles of F(dj(i) — 8;”@}),] =1,....my;i =1,...,r
are separated from those of T'(1 — cﬁi) - yj(»i)é'l-),j =1,...,n;;i =1,...,r and
Fl—a; +Y0_, aﬁi)g'l-),j = 1,...,n. Here, the integers n, p,q,m;,n;, p; and

205
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qi, satisfy the inequalities 0 <n < p;qg > 0,1 <m; <g;and 1 < n; < p;,i =

1,...,r. Further, we suppose that the parameters
a_l ..(l)_l ._1
jgoJ=L.pie j=1 o pii =1,
bjj=Llq:d®j =1 .qi=1..r (A4)

are complex numbers and the associated coefficients

aﬁi),j =1,...,p;i = 1,...,r;yj(.i),j =1,...,pi,i=1,...,71,
B =1 gi=1 8 =i =1, (A.5)

are positive real numbers, such that

p Pi q qi
h= 2 A -3 -3 <0
Jj=1 j=1 Jj=1 j=1

i=1,...,r (A.6)
N T ) e L e @)
— L _ n_ ! _ !
Q= o= 3 o =Y BT+ > v
i=1 j=n+1 i=1 i=1 j=ni+1
mj ' qi )
+Z§§’)— Z 8§l)>0,i=1,...,r. (A7)
= j=mi+1

It is assumed that the poles of the integrand of (A.1) are simple. We know that the
integral in (A.1) converges absolutely, under the conditions (A.7), (Srivastava et al.
(1982), p. 251) with

T
|arg(zi)| < Eth =1,...,r1 (A.8)

and the points z; =0,7 =1, ..., r and various exceptional paramater values being
tacitly excluded. From Srivastava and Panda (1976b, p. 131) we have

H@zi,....z2) = O(z1|®', ..., |z %), max [|z;]] = O, (A9)
1<j=r
where -
N(d
e, = min (.’ ) gd=1,...,r (A.10)
1<j<m; 85.’)

For n = 0, there holds the following asymptotic expansion (Srivastava and Panda,
1976b, p. 131):

Hlzi,....2;) = O(|z1|*", .. .. |z¢|*"), min [|z;|] — oo, (A.11)
1<j=r
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where

)

Ny’ )—1

g; = max L d=1,...r (A.12)
1<j<n; y]('l)

provided that each of the inequalities in (A.6), (A.7), and (A.8) hold true.

Remark A.1. When n = 2 the multivariable H -function defined by (A.1) reduces
to the H -function of two variables studied by Mittal and Gupta (1972). H -function
of two variables are also defined and studied by Munot and Kalla (1971) and Verma
(1971), and others. A comprehensive and detailed account of the H -function of two
variables is available from the monograph by Hai and Yakubovich (1992).

It is interesting to observe that for n = p = ¢ = 0, the multivariable H -function
breaks up into product of r H -functions and consequently there holds the following
result (Saxena 1977):

- -
= Py e r i

. = 1_[ HM M|

S T R G I L R RGO
_-(j 20 g1 j 0 ).g, i=1 (j 20 ).qi

,

0,0:my my e iy By
HO,O:pl,m s iprsgr

(A.13)

Remark A.2. The function defined by (A.l) was introduced and studied by
Srivastava and Panda (19764, p. 271).

When aﬁl) = ... = y),j = 1,...,p;,3§1) = ... = ,By),j =1,...,¢q
in (A.1) the multivariable H -function defined and studied by Saxena (1974, 1977)
is obtained. In case all the Greek letters are assumed to be unity, the H-function

of several complex variables (A.1) reduces to the G-function of several complex
variables studied by Khadia and Goyal (1970, 1975).

Remark A.3. Fractional integrals involving multivariable H -functions are given in
a series of papers by Saigo and Saxena (1999, 1999a, 2001). Srivastava and Hussain
(1995) Saigo et al. (2005), and others.

A.2 Kampé de Fériet Function and Lauricella Functions

A.2.1 Kampé de Fériet Series in the Generalized Form

Definition A.2. Kampé de Fériet series in the generalized form is defined by

karzz [(ap) (bg), (cr) fx7yi|

(dk) : (em)7 (gn) s

_ i [nle(aj)ﬂ—v] [n§=1(bj)f] []_[;zl(cj)v});_jy_”’ (A.14)

7,v=0 [nlj=1(dj)r+»] [1_[7:1(@])1] [nz:l(gj)v} v
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where, for convergence
) ptg<k+m+Lip+r<k+n+1,|x| <oo,|y| < oo, (A.15)

or
) prgq=k+m+Lip+r=k+n+1,

and
| x|V P=R) |y (P=h) <1 if p >k,

(A.16)
max{|x|, |y} < 1, if p <k.

The above series reduces to the original Kampé de Fériet series (Kampé de Fériet
1921), when g = r and m = n, and is also called Kampé de Fériet series.

Remark A.4. A generalization of the series (A.14) is given by Srivastava and Daoust
(1969), which is indeed the extension of Wright’s generalized hypergeometric series
pW¥q(2). This generalization is further extended by Srivastava and Daoust (1969a),
which is described in the next subsection.

Three interesting special cases of the reducibility of (A.14) to generalized hy-
pergeometric series , 7 (z), are given below. For further cases of reducibility of the
series defined by (A.14) in terms of the generalized hypergeometric series, see the
monograph by Srivastava and Karlsson (1985, pp. 28-32) and references of special
cases given therein.

10,0 (41, 0 5dps 5 5 . .
FqPO,O [bi . b; . 'x7y} :PFq(a17"'7ap7b17"'7bQ7x+y)’ (A'17)

0:p, sA1, 0, lp; €1, 000 C . .

FO:q]fnm[ ‘bi b:. d11 dn’”‘x,y}=,,Fq(al,...,a,,,bl,...,bq,x)
Xan(Cl7"'7Cm;d17"'7dn;y)a

(A.18)

pi1l | a1, e, 4 ;o d; _ . . .
0.0 [b ’ ’bp" CUxx | = gy Fylar, .. apic+diby, . by X).
1, " »Yqgs »

(A.19)
A.2.2 Generalized Lauricella Function

X1
. A:BD e g1 lr . —‘ . . . .
Notation A.2. F(.. D) i D) L - | : Generalized Lauricella function of # complex

Xn
variables.
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Definition A.3. The generalized Lauricella series (Srivastava and Daoust 1969a) is
defined in the following manner:

X1
A:BD ;. p®)

Xn

_ pABW B0 [ [(@): 6D, .., 8] [(BD): W] ;---; [(b("));qﬁ("))xl,“.,xﬂ}

€D | [() s D, W@ s (D)) 5ee 5 [(d); 60)
= Y R ) (A.20)

E
myle-omy!
m1=0,...,m, =0 1 n

where, for convenience,

x(my, ... ,my)
A B 1 B
T @) 60 g W= B, 0]+ T2 ), 0]

= 08 DM (1 Do ’
151y 0 ey T @), )T @), ]

(A.21)
the coefficients
(k) . 1 () k). gy
g =1 A; ¢, 1,...,BY¥); W =1 C
{k)7,] > > 7¢] 7,] > > ’ k 7,] > > s (A.22)
57,7 =1,....0% k = A,
are real and positive, and () abbreviates the array of A parameters ay, ..., a 4;(b®)
abbreviates the array of B®) parameters
b =1, B® k=1, n (A.23)

Similar interpretations hold for the remaining parameters. For precise conditions
under which this multiple series (A.20) converges, see Srivastava and Daoust (1972,
pp- 153-157), also see Exton (1976, Sect. 3.7) and Exton (1978, Sect. 1.4).

When each of the positive numbers given in (A.22) takes the value unity, the
generalized Lauricella series (A.20) gives rise to a direct multivariable extension of
Kampé de Fériet series (A.14). Thus the multivariable generalization of the Kampé
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de Fériet series defined by (A.14) is given by (see, Srivastava and Panda, 1975,
p. 1127; Srivastava and Karlsson 1985, p. 38):

I (@) () )
FkP P1s--sPn : — ka.'pl""’p” p (n) X1 R
q1 s : 1 seendn () (:341 N ’(ﬁqn) :
Xn
(A.24)

2] my mp
x ---X

my=0,...,m;; =0 1 n

where

[gLYCTym— s (ARYCIL W N | § LY CrR M
O(my,...,my) = P - -
[aiCT— )y O P R N VT

(A.26)
and, for convergence of the series (A.25),
l+k+q¢—p—pr=0,r=1,...,n. (A.27)
The equality holds when, in addition, either
p>kand |x |V PR 4 x, VPR <, (A.28)
or
p <k and max{|x|,....|x,|} < 1. (A.29)

Remark A.5. Karlsson (1973) has considered a special case of (A.24) when
Pr=4q,qr =my,r=1,...,n. (A.30)

A relation connecting generalized Lauricella function and the multivariable
H -function is given by Srivastava and Panda (1976a, p. 272)

1 1 1
(a a() (r)) D (C() i))l by ,(C(r) r)

yeensOl 8% Vi
0,p:1,p15 31, pr / / SN e
PP, g1+ 15 prgr+1 L

BB B0,V 8y g, ;~~~;(0,1),(d_§-’),8_(,-’))1,q,J

_ Mo T — eI, T - 651))]...[ PT( = )]

(O o oM “))] : [(1 eV, y,(”)]l e
q:q1539r [(1— ‘3(1) ‘3(7‘))] [ = d(l) 8(1))] .
lq - Lgp»

Q- 5’%y§”)1 Lo }
vy Zn |-

N (A.31)
0 —d 7181,
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A.3 Appell Series

Notation A.3. Fi(a,b,b’;c; x,y): Appell function of the first kind.
Notation A4. Fy(a,b,b’;c,c’; x,y): Appell function of the second kind.
Notation A.5. Fs(a,b,b’;c; x,y): Appell function of the third kind.
Notation A.6. Fy4(a,b’;c,c’; x, y): Appell function of the fourth kind.

Following Appell (1880) we define the four Appell series as follows:
Definition A.4.

d mitn (D)m b/n myn
Fi(a,b,b';c;x,y) = Z (@D m4n(BD)m (D)0 x

(mtn m!n!

m,n=0
o
b m
=2ﬂ9ﬂl%ﬂw+mﬂw+mwﬂa (A.32)
—0o ()m m!
where max{|x|,|v|} < 1.
Definition A.S.

(@ mtn(D)m (b)n X" y"
©m()n  mln!

o0
Fy(a,b,b';c,c';x,y) = Z

m=0,n=0

_ Z @n®m 1 4 Fm i) (A3)

(m
where |x| + |y| < 1.
Definition A.6.
o (@m(@)n (D) (b)) X y"
F3(a.b,bicix,y)= » ot
ol () m—+n min!
o
m b m m
=> D G 2Fi(@ B+ miy) (A.34)
— ()m m!

where max{|x|,|v|} < 1.
Definition A.7.

ad m+n b m-n myr

Fu(a,b'ic,cix,y) = Z (a)(c;rmgc/));r );1!1);!

m=0,n=0

(a)m(b)m
=Z:

JFi(@+mb+miciy) =, (A35)
©m m!
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where +/|x| + +/|¥| < 1. Here the denominator parameters ¢ and ¢’ are neither zero
nor a negative integer.

The above defined functions are discovered while considering the product of two
Gauss series. In this analysis, we also come across the following interesting result:

i @D mtnB)mtn X y"

2Fi(a,bieix 4+ y) = s parrl
m-rn A

(A.36)

m=0,n=0

A multiple integral representation for the generalized hypergeometric series is given
by (Saigo and Saxena 1999)

[1/- T(4))
=0 o, Ploldp)i(Bgo)i— et x,
M2, T, otn: Boyimtu )
= (L)n/ / [1_[5)=1F(Aj+s1+..._|_sn)]
2mi Ly Ly [l_[jQ=1 T(Bj + 51+ + sn)
x T(=s1) - T(=s,)x]" - s3ndsy -+ dsy. (A3T)

where the contours are of Barnes type with indentations, if necessary, such that
the poles of I'(A; + s1 + -+ + s,),j = 1,..., p are separated from those of
I'=s;),j=1,....n

A.3.1 Confluent Hypergeometric Function of Two Variables

Definition A.S.

(@ m+n (D)m x™ y"
(Omyn  min!’

o0
pr(a,bic;x,y)= Y x| <Lyl <oco.  (A38)

m=0,n=0
Definition A.9.
o0
b b/ Xm n
pa(b.bicix.y) = (()C’;’% m,z, x| < ooyl <oco.  (A39)
m=0,n=0 mTn o
Definition A.10.
- (b)
p3bicix.y) = > © ’: x™y" x| < oo, |y] < oco. (A.40)
m-rn

m=0,n=0
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Definition A.11.

(@ m+n(D)m x™y"

[e.e]
PR =
Iﬂl(a,b,(«,(« ,x7y)_ Z (C)m(c/)n m'n' ’

m=0,n=0

x| < 1,|y] <oo. (AA41)

Definition A.12.

o0

Z (@ mtn XTY"

(©m(c")n m!n!

Vala;c,c’sx,y) = Jx] < oo,y <oo.  (A42)

m=0,n=0

Definition A.13.
> (@Dm(@)n (B)m x™ y"
Bi(a.a' bicix,y) = Y. Oy ¥l < Lyl <00, (A43)
m=0,n=0 m-n o
Definition A.14.
o0
Q) (D) X YT
Babiciny) = > POmIN g <o A
m=0,n=0 mTn o

A.4 Lauricella Functions of Several Variables

The four Appell series Iy, I», I3, I'4 are generalized by Lauricella (1893) in terms
of multiple hypergeometric series as given below.

Definition A.15.
Fﬁ”)[a,bl,...,bn;cl,...,cn;xl,...,xn]
- i @yt Oy = By 7"
m1=0,...,m, =0 (Cl)ml "'(Cn)mn myteeemy!
where |xq| + |x2| + -+ 4+ |xu| < 1.
Definition A.16.
Fé”)[al,...,an;bl,...,bn;c;xl,...,xn]
st n
=y e @ By Gl Xy ""‘”’n, . (A46)

c myl---my!
m1=0,...muy=0 ( )m1+ i 1 n

where max{|xq|,..., |x,|} < L.
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Definition A.17.

Fé”)[a,b;cl,...,cn;xl,...,xn]
_ i (a)ml+"'+mn (b)ml +-tmp x;nl T x;nn (A47)
T ) S T R
where /|x1| 4+ --- + /|xn] < 1.
Definition A.18.
Fyla b, ... by cs
D sUL, 000y naca)(:l?"'?xn]
= i (a)ml+"'+mn (bl)ml e (bn)mn x;nl B .x;n” (A 48)
where max{|xq|,..., x|} < L.
For n = 2 we have the following relations:
FP =R, FY = 3 FP = F, F = Fy, (A.49)

where the Appell series are defined in the previous section. An interesting result is
the following reduction formula (Lauricella, 1893)

F]g”)[a,bl,...,bn;c;x,... ,x] = o2F1(a,by + -+ by ¢ x). (A.50)

We also have (Lauricella 1893)

) Feyr(c—a—56;y —---—by)
F b1, by, 1] = , A.51
p la.bn n I=Te—aoTe—b—cp)y O
wherec # 0,—1,-2,...; R (c—a—by —---— b,) > 0.
Single integral representations for the function I’ ]()n) is given by
Fg’)[a,bl,...,bn;c;xl,...,xn]
I'(c) !

W1 = w1 —ux) TP (1 = wx) P du,

(A.52)

T T@rc—a) J,

where N (a) > 0, R(c —a) > 0.
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b
/ (t=a)* ' b =0 T (it + g0)% - (Sl + ) d

= (b—a)* PIB(a, B)(afi + g1)°" -+ (afx + gi)°
(b—a)h b-a)fk

(n)
x F a,—01,...,—0p; 0+ B;— s
b [ afi + g1 afr + gk

i| , (A.53)

where a,b € N(a < b), fi,gi,0: € C,i =1,...,k, min{R(x), R(B)} > 0and

max[ b-ah| |G-k } .

afi + g1 afe + gk
A.4.1 Confluent form of Lauricella Series

[

Definition A.19.
o0 m m
b b X l...x n
@g”)[bl,...,bn;c;xl,...,xn]: Z B1)y =+ By Xy L
mi =0,...,mn =0 (C)ml +m+m” ml! o mn'
(A.54)
Definition A.20.
oo mq Hip
a X7l x
\Ilén)[a;cl,...,cn;xl,...,xn]: Z @mytetmn X n
N Y SRR G RIS
(A.55)
Definition A.21.
"1‘l n"l‘l X1 + A + X
My (X1, X)) = Xi“ 2" 2 exp [_fn}

n
XU+ =k 5200 L 20+ LX) (AS6)

For a detailed definition and other properties of these functions, see the original
paper by Pierre Humbert [La fonction Wy ;. 4, (X1,...,X,). Comptes Rendus.t.
CLXXI, 1920, p. 328] and Appell and Kampé de Fériet (1926).

A.5 The Generalized H -Function (The H -Function)

Notation A.7. H (z), H}'3'[x]; H bar function

Definition A.22. In an attempt to derive certain Feynman integrals in two differ-
ent ways which arise in perturbation calculations of the equilibrium properties of a
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magnetic model of phase transitions, Inayat-Hussain (1987b) investigated a gener-
alization of the H -function as

_ _ _ (e Aj.a;)1ns(@; A n+1.p
H(z)=Hp /() =Hp /" | x (A.57)
(BjsBj)rm:(BjBjbjIm+1.q
1
=— | x(7ds, (A.58)
271 Jp,
where
(T2, T(8; = By [T (T ety + 4,03 ]
xs) =7 T . (A59)
[T sra D@ = B+ By | [T Tl = 4))]
which contains fractional powers of some of the gamma functions. L = L;;c

is a contour starting at the point T — ioo, and going to the point T 4 ico with
y € R = (—oc, 00). For a detailed definition, convergence and existence conditions,
and for the computable representation of the H -function, the reader is referred to
the original papers of Buschman and Srivastava (1990) and Saxena (1998). It is
interesting to note that for a; = b; = 1 for all j, the H -function reduces to the
familiar H -function defined by Fox (1961), see also Mathai and Saxena (1978) and
Kilbas and Saigo (2004).

A.5.1 Special Cases of H-Function

A few interesting special cases of the H -function, which cannot be obtained from
the H -function are given below.

Ka T+ pra+ 5B (5.4 +5)
2+2aT ()L (y — %)
c-‘riood _ SF_ T T _5
L L S TEHT + 90 —§ +39) A60)
270 Jemico M+ HHPT(L+ 5 + )
_ KaaTA+prE+5
22+ T ()L (y — §)

(1=, 1;0),(1=y+5,1;1),(1—7,1;1+ p)

g1 =DPgvn. g piz) =

; (A.61)

)3
3 —Z

x H;
’ ¢
©,1,(=§.131). =131+ p)
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where Ky = [21_‘171_%/1" (%)] (Inayat-Hussain 1987a, Eq. (5)). The above
integral is connected with certain class of Feynman integrals.
1
An% (1 + )2
1 fetioods[—(1 4+ ) 2T (—s)[T(1 + )T (3 + )¢

Br(d.e) = -

270 Jocioo [T (2 + 5))1td
(A.62)

1 . (0,1;2),(=3,1;4)

=3 |-+ 072 (A.63)
47 (1 + €)2 (0,1),(=1,1;1+d)

1 (0,1;1),(0,1;1),(= 5 ,1;d)
=——— H|-(+e72 (A.64)
- d 3,2 : :

472 (1 4 €)2 (0.1),(=1,1;1+d)

The above function is the exact partition function of the Gaussian model in statistical
mechanics.

For further example of a function, which is not a special case of the H -function
is the poly-logarithm of complex order v, denoted by LV(z). Its relation with
H -function is given by Saxena (1998, eq. (1.12)) as

2
2 {_Z

An account of L"(z) is available from the book by Marichev (1983).

The function due to Nagarsenker and Pillai (1973, 1974) also furnishes an ex-
ample of a function, which is not a special case of Fox’s H-function. Yet another
function, which is not a special case of the H -function is the generalized Riemann-
zeta function defined by

L'(z) = H, (A.65)

(0,1,1),(1,1;v) }

(0,1),(0,1;v—1)

(A.66)

ok L (0,1,1),(1-7,1,9)
d(z,q,m) = kX_(:) G+t =5 |2

(0,1),(—7,1,9)

The above function is a generalization of the well-known generalized (Hurwitz’s)
zeta function ¢(gq,7n),q # 0,—1,—2,... and the Riemann zeta function ¢(g),
NM(q) > 1. It has been shown by Buschman and Srivastava (1990, p. 4708) that
the sufficient condition for absolute convergence of the contour integral (A.58) is
given by

q 14

A="IBjl+ Y lajAil— D 1biBil— D 14;1>0.  (A6])
j=1 j=1

j=m+1 j=n+1
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This condition provides exponential decay of the integrand in (A.58), and region of
absolute convergence of the contour integral (A.58) is given by

A
|argz| < % (A.68)

Remark A.6. In a series of papers, abelian theorems, complex inversion formu-
las and characterizations for the distributional H -function transformation are es-
tablished by Saxena and Gupta (1994, 1995, 1997). Functional relations for the
H -function are given by Saxena (1998). Unified fractional integration operators as-
sociated with the H -function are defined and studied by Saxena and Soni (1997).
Fractional integral formulas for this function are investigated by Gupta and Soni
(2001). Fractional integral formulas associated with Saigo—Maeda operators of frac-
tional integration are given by Saxena et al. (2002). Application of this function in
bivariate probability distributions is demonstrated by Saxena et al. (2002).

A.6 Representation of an H -Function in Computable Form

Case I: When the poles of ]_[Tzl I'(b; — sB;) are simple, that is, where By (b; +
A) # Bjby+v)forj #h jh=1. .mAv=012,. ..;then we obtain
the following expansion for the H -function.

Hm ] (Z)

9§ MW Ty = By )/ BT T — 0y = 5 0)/By)
L 2, Ty — By (b + 0) BN =y sy D@ — Ay (b + )/ By)]
(_1)Vz(bh+v)/3h
V!Bh ’

(A.69)

which exists for all z # 0if 4 > 0 and for 0 < |z| < % if w = 0, where 8 and i
are defined in (1.8) and (1.9) respectively.

Case II. When the poles of 1_[1;':1 I'(1—a; +s5A;) are simple, that is, where Ay (1 —
aj+vy#FAij(l—ap+Ayforj #h,jh=1,...,n4,v=0,1,2,... then we
obtain the following expansion for the H -function.

Hmn(Z)
_ [1_[, 12 LA —a; —Aj(1—ap +v)/Ap)]
ZZ j m+1F(1_bJ_Bj(l—ah-i'v)/Ah)]

h=1v=0

Toayty
M7 T(bj + Bj(1—ap+v)/Ap] (—1)" (L)
[1_[] 1 L@ +A;(1—ap +v)/Ap)] VA, ’

(A.70)

which exists for all z # 0 if ;& < 0 and for |z > g L if u =0, 8 and p are defined in
(1.8) and (1.9) respectively.
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A.7 Further Generalizations of the H -Function

Notation A.8. I-function:

(aj A 1@ Ajidnd1,p;
m.n m,n
IPI i [Z] IPI i .

(b_j,B_j)l,m,~~~,(b_ji,Bji)m+1,q,-

Definition A.23. The [-function is defined, like the H -function in terms of a
Mellin—Barnes type integral in the following form (Saxena 1982):

m,n
s [Z

(aj A1 nsesajisAjidnt1,p; }

/ x(s)z7%ds, (A.71)
L

(b B 1mses )i Bjidm+1.q; T 2miw
where
[Zz; [ Fempr T — leS)] [1_[, Lo Taji + A,zS)]]
(A.72)

where m,n, p;,q; are nonnegative integers satisfying 0 < n < p;,1 < m < ¢,
i = 1,...,r with r being finite and w = (—1)%. The existing conditions for the
defining integral (A.71) are given below:

1
(i) «a; >0,|argz| < Eain, (A.73)
1
(iiy o =0,|argz| < Eain and (B + 1) <0, (A.74)
where
n qi
a =) Aj- Z A,,+ZB, D By, i=1...r  (AT5)
j=1 j=n+1 j=m+1
and
i 1
= Zb + Z Za, > i+ 5 (=i =1 (AT6)
j=m+1  j=1 j=n+1

Note A.1. For r = 1 in (A.72), the definition of the H -function (1.2) is recovered.

Note A.2. We note that integral operators involving 7 -function are defined and stud-
ied by Saxena et al. (1993). A basic analogue of the /-function is given by Saxena
et al. (1995). Saigo—Maeda operators of the product of /-function and a general
class of polynomials are discussed by Saxena et al. (2002).
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Remark A.7. I-function is further generalized by Siidland et al. (1998) in a different
notation with a modified definition of slightly general nature and call it Aleph func-
tions. Aleph functions occur naturally in certain problems of fractional driftless
Fokker—Planck equations. For further details in this regard, one can refer to the
original paper Siidland et al. (2001).
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