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A practical method of finding an H-function distribution

for the sum of two or more independent H-function variates is

presented. Sirrple formulas exist which imediately give the

probability density function, as an H-fumcticn distribution, of

the random variable defined as the product, quotient, or power

of independent H-function variates. Unfortunately, there are

no similar formulas for the sum or difference of independent H-

function variates.

The new practical technique finds an H-function

distribution whose moments closely Tatch the moments of the
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randao variable defined as the sum of independent H-function

variates. This allows an analyst to find the distribution of

more complicated algebraic combinaticns of independent randam

variables. The method and inplementing computer program are

demonstrated through five exarnples. For comparison, the exact

distribution of the general smu of independent Erlang variates

with different scale parameters is derived using Laplace

transforms and partial fractions decomposition.

The H-function is the most general special function,

enccipassing as a special case nearly every named matheatical

function and continuous statistical distribution. The Laplace

and Fourier transforms (and their inverses) and the derivatives

of an H-function are readily-determined H-functions. The

Mellin transform of an H-function is also easily obtained. The

H-function exactly represents the probability density function

and cmarulative distribution function of nearly all continuous

statistical distributions defined over positive values.

A previously unstated restriction on the variable in the

H-function representations of power functions and beta-type

functions is highlighted. Several ways of overcomning this

limitation when representing nathaitical functions are

presented. The restriction, however, is an advantage when

vii



representing certain statistical distributions. Many new H-

function representations of other mathematical functions are

also given.

The hierarchical structure among classes of H-functions is

given through seven new theorens. Every class of H-functions

is wholly contained in mny higher-order classes of H-functions

through the application of the duplication, triplication, and

nultiplication formulas for the gamma function.

Four new theorems show when and how a generalizing

constant my be present in an H-function representation. Many

generalized H-function representations are given, including

those of every cumulative distribution function of an H-

function variate.
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CHAPTER 1

INTROW=ICt AND REVIE

1.1. PURPOSE AND SCOPE

The primary purpose of this research effort was to develop

a practical method of finding an H-function distribution for

the sum of two or more independent H-function variates. Simple

formulas exist which immediately give the probability density

function (p.d.f.), as an H-function distribution, of the random

variable defined as the product, quotient, or power of

independent H-function variates. Unfortunately, there are no

similar formulas for the sum or difference of independent H-

function variates.

A related issue was whether the class of H-functions is

closed under the operation of multiplication. In other words,

is the product of two H-functions another H-function? It is

important to nake the distinction here between the product of

two H-functions and the p.d.f. of the random variable defined

as the product of two H-function variates. It is well know

that the latter case is an H-function. But the former case was

unproven. Of course, similar statements can be made about the

1
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quotient of two H-functions.

If the class of H-functions is closed under

multiplication, one could easily find the p.d.f. (as an H-

function) of the sum or difference of independent H-function

variates. The Laplace (or Fourier) transforms of the H-

function variates in the sum (or difference) are immediately

available as H-functions of higher order. The product of these

H-functions (in transform space) would yield the transform of

the desired density. If this product was available as another

H-function, it could be inverted from transform space

analytically.

Because the H-function can exactly represent nearly every

common mathematical function and statistical density, there was

ample reason to suspect that the product of two H-functions

was, in general, another H-function. Indeed, there are many

cases where two individual functions and their product are all

special cases of the H-function.

Throughout this thesis, a number of other new results are

identified with an asterisk. Sufficient convergence conditions

for the alternate definition of the H-function are given in

Section 2.3. These show how the H-function nay be evaluated by

the sum of residues, without first changing the form of the

alternate definition of the H-function to that of the primary
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definition.

The hierarchical structure among classes of H-functions is

given through seven new theorems in Section 2.4.6. Every class

of H-functions is wholly contained in mnny higher-order classes

of H-functions through the application of the duplication,

triplication, and multiplication formulas for the gamm

function. Figure 1 in Section 3.5 illustrates this

hierarchical structure with a venn diagramn showing mony commio

statistical distributions as first and second order H-function

distributions.

Four new theorem in Section 2.4.7 show when and how a

generalizing constant nay be present in an H-function

representation. Many generalized H-function representations

are given, including those of every cumulative distribution

function of an H-function variate. The generalizing constant

is also possible in the H-function representations of power

functions, the error function and its conplement, the

incomplete gamma function and its ccmplemunt, the incmplete

beta function and its complement, mny inverse trigonometric

and hyperbolic functions, and the logarithmic functions.

A number of new H-function representations of certain

mathematical functions and statistical distributions are given

in Sections 2.5, 2.6, and 3.6. Several of these expand upon a
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previously unstated limitation on the variable in the H-

function representations of power functions and beta-type

functions.

The exact distribution of the general sum of independent

Erlang variates with different scale parameters, X, is derived

in Section 5.1.3. An Erlang variate is simply a gamma variate

with an integer shape parameter r. The derivation uses partial

fractions to decaqpose the product of Laplace transforms of the

individual densities. This produces a sum of terms, each of

which can easily be inverted fran transform space, yielding the

desired density of the sum of independent variates.

Since the H-function is not defined for zero or negative

real arguments, the scope of this research effort was limited

to continuous random variables defined only over positive

values. Continuous and doubly infinite distributions such as

the normal and Student's t are only represented as H-functions

in their folded forms.

1.2. LITERATURE SURVEY

Regrettably, little research in the field of H-functions

has been done in the United States. Much of what is known

about the H-function is due to Indian mthemticians. Mathai

and Saxena [1978] and Srivastava et al [1982] compiled many

results of the early study of H-functions. In recent years,
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Soviet mathematicians [Prudnikov et al, 1990] have shown a

considerable interest in the H-function and have developed

significant new results.

The foundation of H-function theory is grounded in the

gasm function, integral transform theory, complex analysis,

and statistical distribution theory. Therefore, several

landmark references such as Abramowitz and Stegun [1970),

Erd~lyi [1953], Erd~lyi [1954], and Springer [1979], though

somewhat dated, have timeless value.

Carter [1972] defined the H-function distribution and,

using Mellin transform theory, gave startling and powerful

results showing that products, quotients, and rational powers

of independent H-function variates are themselves H-function

variates. Further, the p.d.f. of the new random variable can

inuediately be written as an H-function distribution. The

usual techniques of conditioning on one of the random variables

and/or using the Jacobian of the transformation are no longer

necessary.

The above results become especially useful when one

realizes that nearly every common positive continuous random

variable can be written as an H-function distribution.

Therefore, the p.d.f. of any algebraic combination involving

products, quotients, or powers of any number of independent
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positive continuous random variables can imiediately be written

as an H-function distribution.

Carter [1972] also wrote a FCRTRAN computer program to

calculate the mments of an algebraic combination of

independent H-function variates and approximate the p.d.f. and

cumulative distribution function (c.d.f.) from these nunents.

The approximation procedure was developed by Hill [1969] and,

if possible, uses either a Grar-Charlier type A series (Hermite

polynomial) or a Laguerre polynomial series. If a series

approxirration is not possible, the first four nmrents are used

to fit a probability distribution from the Pearson family. As

Carter [1972] himelf notes "... there were nany situations in

which the nethods did not work or in which the approxirations

were totally unsatisfactory."

Springer [1979] literally wrote the book on the algebra of

random variables. He gives an excellent explanation of the

value of integral transform in finding the distribution of

algebraic combinations of random variables. He also gave the

known applications of the H-function in these problem.

Cook [1981] gave a very thorough survey and an extensive

bibliography of the literature related to H-functions and H-

function distributions. He also presented a technique for

finding, in tabular form, the p.d.f. and c.d.f. of an algebraic
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combination (including sum and excluding differences) of

independent H-function variates.

Cook's technique [1981; Cook and Barnes, 1981] first uses

Carter's [1972] results to find the H-function distribution of

any products, quotients, or powers of random variables. The

Laplace transform of each term in the resulting sum of

independent H-function variates is then obtained. These

transform functions are evaluated and multiplied at

corresponding values of the transform variable, yielding a

tabular representation of the Laplace transform in transform

space. This Laplace transform is then numerically inverted

using Crurp's method. His FORTRAN computer program implements

this technique and will plot the resulting p.d.f. and c.d.f.

Bodenschatz and Boedigheimer [1983; Boedigheimer et al,

1984] developed a technique to fit the H-function to a set of

data using the method of moments. The technique can be used to

curve-fit a mathematical function or to estimate the density of

a particular probability distribution. Their FORTRAN coMputer

program will accept known moments, univariate data, ordered

pair data from a relative frequency, or ordered pair data

directly from the function.

Kellogg [1984; Kellogg and Barnes, 1987; Kellogg and

Barnes, 1989] studied the distribution of products, quotients,
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and powers of dependent random variables with bivariate H-

fumction distributions. Jacobs [1986; Jacobs et al, 1987]

presented a method of obtaining parameter estimates for the H-

function distribution using the method of maximum likelihood or

the method of moments.

Prudnikov et al [1990] gave extensive tables of H-function

results and Mellin transform. Their books, although more

terse than the series by Erd6lyi [1953 and 1954], are at least

as complete and, likely, will become the new standard reference

for special functions.

1.3. INTERAL TRANSFCRS AND TRANSFORM PAIRS

Integral transforms are frequently encountered in several

areas of mathematics, probability, and statistics. Although

various integral transforms exist, certain characteristics are

camxmi among them. The function to be transformed is usually

multiplied by another function (called the kernel) and then

integrated over an appropriate range. What distinguishes the

various transform are the kernel function, the limits of

integration, and the type of integration (e.g. Riemaunn or

Lebesgue).

Often the use of integral transforms can simplify a

difficult problem. Laplace transforms are usually first

encountered in the solution of systems of linear differential
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equations. In probability and statistics, certain integral

transforms are often known by other names such as the mom-ent

generating function, characteristic function, or probability

generating function.

The definitions of most integral transforms are not

standard. It is important, therefore, to explicitly state the

form of the definition to be used. Listed below are the

definitions of certain integral transforms and the

corresponding inverse transform as used in this thesis.

Together, each transform and its corresponding inverse

constitute a transform pair.

1.3.1. LAPLACE TRANSFORM

Consider a function f(t) which is sectionally continuous

and defined for all positive values of the variable t with

f(t)=O for tO. A sectionally continuous function may not have

an infinite number of discontinuities nor any positive vertical

asymptotes. If f(t) grows no faster than an exponential

function, then the Laplace transform of f(t) will exist. There

must exist two positive nunbers M and T such that for all t>T

and for same real number a,

f (t ) .
t(1.1)



10

The definition of the Laplace transform of the function

f(t), zsf f(t)}, is

Z ~ } (t Jo e- f (t) dt (1.2)
0

In general, s is a complex variable. The Laplace transform of

f(t) will exist for the real part of s greater than a

(Re(s) > a).

The inversion integral or inverse Laplace transform is

given by

f(t) J est Zs  f(t) ds (1.3)

where -f ftM)} is an analytic function for Re(s) > w. A

function is analytic at s=s0 if its derivative exists at s and

at every point in some neighborhood of s o . The Taylor series

expansion of an analytic function of a ccrplex variable will

exist, converge, and equal the function evaluated at the

argument. For all practical purposes, a function f(t) and its

Laplace transform (if it exists) uniquely determine each other.

In probability and statistics, if f(t) is the p.d.f. of a

random variable defined only for positive values, its moment

generating function is sinply the Laplace transform with r
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replacing -s in Eq (1.2).

1.3.2. FOURIER TRANSFM

The form of the exponential Fourier transform used in this

thesis is

,s{ f(t)} = e s t  f(t) dt (1.4)

The Fourier transform is a function of the coniplex variable s.

If f(t) is a p.d.f., this definition corresponds to the

definition of the characteristic function in probability and

statistics. The characteristic function of a p.d.f. will

always exist but the nmnnt generating function of a p.d.f. nay

or ay not exist.

The inversion integral or inverse Fourier transform is

given by

where

f * () 1 im f(t) + 1im f(t) (1.6)tt 0  tlt 0

t<t t>to

If f(t) exists and is continuous at t the inverse Fourier
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transform of Y,( f(t) ) will give f(t). If f(t) is not

continuous at to, the inverse Fourier transform of Y f(t) }
will produce the average of the limits of f(t) from the left of

to and the right of to.

1.3.3. MELLIN TRANPOIN

Because the Mellin transform is perhaps less well known

than the Laplace or Fourier transform and because the Mellin

transform is so crucial in the study of H-functions, both

com n sets of transform pairs will be presented. The Mellin

transform uses a power function instead of an exponential

function as its kernel.

Again consider a function f(t) which is sectionally

continuous and defined for all positive values of the variable

t with f(t)=O for t,o. Using what will be regarded in this

thesis as the primary definition of the Mellin transform, the

Mellin transform of f(t), A f(t) }, is

A(f(t) ) = Jo t S1  f(t) dt (1.7)
0

The Mellin transform is related to the Fourier and Laplace

transforms as follows [Erd6lyi, 1954, p.305]:
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f f (t) }= f-i{ f (et) (1.8)

-_ { f(et) }+ Z{ f(e-) } (1.9)

Again, s is a carplex variable. The Mellin transform

inversion integral, or inverse Mellin transform, is given as

1 ,(O+iCO

c1-i

As mentioned earlier, there is another important transform

pair also referred to as a Mellin transform pair. This

alternate definition will arise later when an alternate

definition of the H-function is given. The alternate

definition is

i~f(t) }=J t-rl f(t) dt (1.11)
0

with inverse transform

f(t) = JVVC x r{J f(t) } dr (1.12)
u-iCD

1.4. TRANSFU TICIS OF INDEHWIT RANDC4 VARIABLES

A canmn problem in statistical distribution theory is to

find the distribution of an algebraic combination of
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independent random variables. The algebraic cumbination could

include sums, differences, products, and/or quotients of

independent random variables or their powers. It is important

to recognize that the algebraic combination is itself a random

variable and, therefore, has a probability distribution. The

task is to find this distribution.

Using the properties of mathematical expectation, it is

relatively easy to find the mean, variance, and other nxments

of the algebraic cumbination of independent random variables.

For example, the mean of the sum of two independent random

variables is simply the sum of the means of the random

variables. Finding the completely specified distribution of

the algebraic combination is usually much more difficult.

For simple ccubinaticns of independent randum variables,

the method of Jacobians is often employed. An appropriate

one-to-one transformation between the independent randum

variables in the algebraic cumbination and a set of new random

variables is first created. After finding the inverse

transformation functions, the Jacobian (the determinant of the

matrix of first partial derivatives of the inverse functions)

may be computed.

The joint p.d.f. of the newly defined random variables is

the absolute value of the Jacobian multiplied by the product of
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the original densities with the inverse transformation

functions substituted for the variables. A great deal of care

must be used in determining the values of the new variables for

which the joint density is nonzero. Cnce this is done, the

desired marginal density can be obtained by integrating over

the complete ranges of the other new variables.

An example of the method of Jacobians will be presented

below. In most of the following sections, however, only the

result using integral transforms will be given.

1.4.1. DISTRIBUTION OF a SM

Let X1  and X be independent randn variables with

respective densities f i(x) and f 2(x), each nonzero only for

positive values of the variable. Suppose we want the density

of Y=X+X 2 . Using the method of Jacobians, we define W=X 2 so

the inverse transformations are XI=Y-W and X--W. The Jacobian

is

: n: (1.13)

1 0 1

The joint density of Y and W is

fywCY,w) = f1 (y-w) f 2 (w) 0 < W < y < C (1.14)

The marginal p.d.f. of Y can be obtained by integrating the

joint p.d.f. with respect to W over the range of W.
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= J fl(Y-w) f2(w) dw (1.15)1~0

Eq (1.15) nay be recognized as the Fourier convolution

integral (Springer, 1979, p. 47]. This is no accident or

coincidence as the Fourier or Laplace transform could also have

been used to find the distribution of Y. It is well known that

the Laplace (or Fourier) transform of the p.d.f. of the sum of

two independent random variables defined for positive values is

the product of the Laplace (or Fourier) transforms of the

individual densities. Further, the product of two transform

functions, upon inversion, yields a convolution integral.

If the product of transform functions can be recognized as

the transform of some function, then the convolution inversion

is not necessary. The p.d.f. of Y is the function whose

transform is the product. When statisticians use the moment

generating function of each density to find the p.d.f. of Y,

this recognition approach is usually taken. one advantage of

using transform functions is that the procedure easily extends

when the distribution of the sum of three or more independent

random variables is desired.

Finding the distribution of the sum of independent random

variables with certain special distributional forms is

considerably sinplified. Several of these cases are covered in



17

the following subsections.

1.4.1.1. INFINITE DIVISIBILITY

Although a ccmplete discussion of infinite divisibility is

beyond the scope of this thesis, its definition is given below

[Petrov, 1975, p. 25).

A distribution function F(x) and the corresponding
characteristic function f(t) are said to be
infinitely divisible if for every positive integer n
there exists a characteristic function fn(t) such

that

f(t) = (fn(t))
n

In other words, the distribution F is infinitely
divisible if for every positive integer n there

exists a distribution function Fn such that F=F*n .

Here F*n is the n-fold convolution of the function
n

F.n
Ccmnon exanples of infinitely divisible distributions include

the normal and Poisson distributions.

1.4.1.2. SPECIAL CASES

The distribution of the sum of independent randan

variables with certain distributional form is well known and

imrediately available. For exanple, the sum of n independent

and identically distributed randmn variables with a Bernoulli

distribution with parameter p has a Binanial distribution with

parameters n and p. Similarly, the sum of independent

geometrically distributed random variables with a caot
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parameter has a negative BinaTial (or Pascal) distribution.

In continuous random variables, the sum of n independent

and identically distributed random variables with an

exponential distribution with parameter I has a gamm

distribution with parameters n and X.

1.4.1.3. REPRODUCTIVE DISTRIBUTICNS

A probability distribution is "reproductive" if it

replicates under positive addition of independent random

variables with the same distributional form. The normal

distribution is reproductive since given that

X.,- Normral (Pit a2) X- Normral P( 2

X1 and X2 are statistically independent, and

YX1+X2

then

Y ~ Normal ( P Pi+ 2 o+02

Other examples of reproductive distributions include the Chi-

Square and Poisson distributions.

It is well known that the gam distribution is

reproductive provided the scale parameter, X, is the same for

each random variable in the sum. In particular, if
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X1 and X are statistically independent, x= 1 2

and Y=X1 +X 2

then

Y - Gamma ( rl+r2 , X]

The result for gamsa distributions above is readily

verified by considering the product of the Laplace transforms

of each p.d.f. Using the definition in Eq (1.2), the Laplace

transform of the gamma p.d.f. with parameters r and X is

rrdo
(s1 3 rd Clearly, then, if Xand X2are independent random

variables with gamma distributions and a caiomn scale

parameter, X,

T-s{fY(Y)} Z5 ff1 (xl)} Z5 {-f2 (x2 )} (1.16)

S r)~l ( 1 r2  (1.17)

, r 1r+r 2  (1.18)

which is recognized as the Laplace transform of a gamma p.d.f.

with parameters r1 +r2 and X. This confirms the reproductive

property for the gamma distribution when X is comn.

1.4.2. DISTRIB7MION OF A DIFFERENCE

The study of the distribution of the difference of
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independent random variables has received nuch less attention

than for the sum. The norml distribution is one notable

exception since given that

X1 and X2 are statistically independent, and

y x 1 -X 2

then
Y Normal2 2

Norm l i-P2, oi+cr2

If X1  and X are independent randan variables with

respective densities f 1 (xl) and f 2 (x 2), each nonzero only for

positive values of the variable, then the density of Y=X-X 2 is

the inverse Fourier transform [Springer, 1979, p. 59]

for -w y < < (1.19)

1.4.3. DISTRIBUTIC OF A PROWCr

If X1 and X2 are independent randan variables with

respective densities f,(x) and f 2 (x 2), each nonzero only for

positive values of the variable, then the density of Y=(Xl) CX)

is the inverse Mellin transform [Springer, 1979, p. 97]
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f =y 3 Y-S At. fl(z) f Js 2 x2) } ds

for 0 < y < w (1.20)

1.4.4. DISTRIBUTIC4 OF A QTIENT

If X1  and X2 are independent random variables with

respective densities f Cx1 ) and f 2 (x2), each nonzero only for

Positive values of the variable, then the density of Y is

the inverse Mellin transform [Springer, 1979, p. 100]

i Y,- '& s--{ fI (xl) ) ,_o{ f2(x) f ds

for 0 < y < m (1.21)

One caoicn examPle of the quotient of two independent

randm variables lies in the derivation of the Snedecor F

distribution [Springer, 1979, pp. 328-9]. If

X1 - Chi-Square (P) X2 - Chi-Square (w)

X, and X2 are statistically independent, and

xl

y _ V

then

Y - F (u, )
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1.4.5. DISTRIBUTION OF A VARIATE TO A POWER

If X is a continuous random variable with density f(x),

nonzero only for positive values of the variable, then the

density of Y= P is the inverse Mellin transform [Springer,

1979, p. 212]
(s+i

for 0 < y < a (1.22)

One common example of a variate to a power is finding the

distribution of the square of a standard normal (zero mean,

unit variance) randm variable. If X - Normal (0,1) and Y=X

then Y - Chi-Square (1). The same result holds if X has a

half-normal distribution with o 2 =1 [Springer, 1979, pp. 213-4].

1.4.6. MbD4NTS OF A DISTRIBUTIOM

If X is a continuous randn variable with density f(x),

nonzero only for positive values of the variable, then the

mraients about the origin of f(x) are

= f OD xr f(x) dx (1.23)
0

provided the integral in Eq (1.23) exists.
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There is a natural relationship between the integral given

in Eq (1.23) and the Mellin transform of the function f(x)

given in Eq (1.7) or Eq (1.11). Using the Mellin transform in

Eq (1.7) we can write

Mr = dr+l[f(x)J (1.24)

This relationship simplifies the computation of maments for H-

functions and H-fmction distributions.



CHATM 2

THE H-FUNCTICI

The H-function is a very general function, encompassing as

special cases nearly every named mathematical function and

continuous statistical distribution defined over positive

values. Although the H-function does not enjoy an extensive

popularity and acceptance in the fields of mathematics,

probability, and statistics, this is primarily because

mathematicians and statisticians have not yet learned of its

versatility and power. Most analysts are not familiar with the

H-function, and many who have seen the H-function definition

way have been disquieted by its overt complexity. This is

unfortunate because practical use of the H-function does not

require extensive knowledge of complex analysis and integral

transform theory.

Mathematical functions defined by an integral which do not

have a closed form representation are commn. Examples include

the gaima function, the error function, and the cumulative

normal probability density function. In all of these cases,

the function is usually evaluated with the help of tables. The
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