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A practical method of finding an H-function distribution
for the sun of two or more independent H-function variates is
presented. Simple formulas exist which immediately give the
probability density function, as an H-function distribution, of
the randam variable defined as the product, quotient, or power
of independent H-function variates. Unfortumately, there are
no similar formulas for the sum or difference of independent H-
function variates.

The new practical technique finds an H-function

distribution whose moments closely match the maments of the
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random variable defined as the sum of independent H-function
variates. This allows an analyst to find the distribution of
more complicated algebraic combinations of independent randam
variables. The method and implementing computer program are
demonstrated through five examples. For camparison, the exact
distribution of the general sum of independent Erlang variates
with different scale parameters is derived using Laplace
transforms and partial fractions decomposition.

The H-function is the most general special function,
enconpassing as a special case nearly every named mathematical
function and continuous statistical distribution. The Laplace
and Fourier transforms (and their inverses) and the derivatives
of an H-function are readily-determined H-functions. The
Mellin transform of an H-function is also easily obtained. The
H-function exactly represents the probability density function
and cumulative distribution function of nearly all continuous
statistical distributions defined over positive values.

A previously unstated restriction on the variable in the
H-function representations of power functions and beta-type
functions is highlighted. Several ways of overcaming this
limitation when representing mathematical functions are

presented. The restriction, however, is an advantage when
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representing certain statistical distributions. Many new H-
function representations of other mathematical functions are
also given.

The hierarchical structure among classes of H-functions is
given through seven new theorems. Every class of H-functions
is wholly contained in many higher-order classes of H-~functions
through the application of the duplication, triplication, and
multiplication formulas for the gamma function.

Four new theorems show when and how a generalizing
constant may be present in an H-function representation. Many
generalized H-function representations are given, including

those of every cumlative distribution function of an H-

function variate.
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CHAPTER 1

INTRODUCTION AND REVIEW

1.1. PURPOSE AND SCOPE

The primary purpose of this research effort was to develop
a practical method of finding an H-function distribution for
the sum of two or more independent H-function variates. Simple
formulas exist which inmediately give the probability density
function (p.d.£.), as an H-function distribution, of the randam
variable defined as the product, quotient, or power of
independent H-function variates. Unfortunately, there are no
similar formmulas for the sun or difference of independent H-
function variates.

A related issue was whether the class of H-functions is
closed under the operation of multiplication. In other words,
is the product of two H-functions another H-function? It is
important to make the distinction here between the product of
two H-functions and the p.d.f. of the random variable defined
as the product of two H-function variates. It is well known
that the latter case is an H-function. But the former case was

unproven. Of course, similar statements can be made about the




quotient of two H-functions.

If the «class of H-functions is closed under
multiplication, one could easily find the p.d.f. (as an H-
function) of the sun or difference of independent H-function
variates. The Laplace (or Fourier) transforms of the H-
function variates in the sum (or difference) are immediately
available as H-functions of higher order. The product of these
H-functions (in transform space) would yield the transform of
the desired density. 1If this product was available as another
H-function, it c¢ould be inverted fram transform space
analytically.

Because the H-function can exactly represent nearly every
cammon mathematical function and statistical density, there was
ample reason to suspect that the product of two H-functions
was, in general, another H-function. 1Indeed, there are many
cases where two individual functions and their product are all
special cases of the H-function.

Throughout this thesis, a number of other new results are
identified with an asterisk. Sufficient convergence conditions
for the alternate definition of the H-function are given in
Section 2.3. These show how the H-function may be evaluated by
the sum of residues, without first changing the form of the

alternate definition of the H-function to that of the primary




definition.

The hierarchical structure among classes of H-functions is
given through seven new theorems in Section 2.4.6. Every class
of H-functions is wholly contained in many higher-order classes
of H-functions through the application of the duplication,
triplication, and multiplication formulas for the gamma
function. Figure 1 in Section 3.5 1illustrates this
hierarchical structure with a venn diagram showing many cammon
statistical distributions as first and second order H-function
distributions.

Four new theorems in Section 2.4.7 show when and how a
generalizing constant may be present in an H-function
representation. Many generalized H-function representations
are given, including those of every cumilative distribution
function of an H-function variate. The generalizing constant
is also possible in the H-function representations of power
functions, the error function and its complement, the
incamplete gamma function and its complement, the incanplete
beta function and its complement, many inverse trigonametric
and hyperbolic functions, and the logarithmic functions.

A nurber of new H-function representations of certain
mathematical functions and statistical distributions are given

in Sections 2.5, 2.6, and 3.6. Several of these expand upon a




previously unstated limitation on the variable in the H-
function representations of power functions and beta-type
functions.

The exact distribution of the general sum of independent
Erlang variates with different scale parameters, A, is derived
in Section 5.1.3. An Erlang variate is simply a gamma variate
with an integer shape parameter r. The derivation uses partial
fractions to decarpose the product of Laplace transforms of the
individual densities. This produces a sum of terms, each of
which can easily be inverted fram transform space, yielding the
desired density of the sum of independent variates.

Since the H-function is not defined for zero or negative
real arguments, the scope of this research effort was limited
to continuous randam variables defined only over positive
values. Continuous and doubly infinite distributions such as
the normal and Student's t are only represented as H-functions

in their folded forms.

1.2. LITERATURE SURVEY

Regrettably, little research in the field of H-functions
has been done in the United States. Much of what is known
about the H-function is due to Indian mathematicians. Mathai

and Saxena [1978] and Srivastava et al [1982] campiled many

results of the early study of H-functions. In recent years,




Soviet mathematicians [Prudnikov et al, 1990] have shown a
considerable interest in the H-function and have developed
significant new results.

The foundation of H-function theory is grounded in the
gamma function, integral transform theory, camplex analysis,
and statistical distribution theory. Therefore, several
landmark references such as Abramowitz and Stegun [1970],
Erdélyi [1953]), Erdélyi [1954], and Springer [1979], though
samewhat dated, have timeless value.

Carter [1972] defined the H-function distribution and,
using Mellin transform theory, gave startling and powerful
results showing that products, quotients, and rational powers
of independent H-function variates are themselves H-function
variates. Further, the p.d.f. of the new randam variable can
immediately be written as an H-function distribution. The
usual techniques of conditioning on one of the randam variables
and/or using the Jacobian of the transformation are no longer
necessary.

The above results becane especially useful when one
realizes that nearly every common positive continuous random
variable can be written as an H-function distribution.
Therefore, the p.d.f. of any algebraic cambination involving

products, quotients, or powers of any number of independent




positive continuous random variables can immediately be written
as an H-function distribution.

Carter [1972] also wrote a FORTRAN computer program to
calculate the moments of an algebraic combination of
independent H-function variates and approximate the p.d.f. and
cumulative distribution function (c.d.f.) fram these moments.
The approximation procedure was developed by Hill [1969] and,
if possible, uses either a GramCharlier type A series (Hermite
polynanial) or a Laguerre polynomial series. If a series
approximation is not possible, the first four moments are used
to £fit a probability distribution from the Pearson family. As
Carter [1972] himself notes "... there were many situations in
which the methods did not work or in which the approximations
were totally unsatisfactory."

Springer [1979] literally wrote the book on the algebra of
random variables. He gives an excellent explanation of the
value of integral transforms in finding the distribution of
algebraic combinations of random variables. He also gave the
known applications of the H-function in these problems.

Cook [1981] gave a very thorough survey and an extensive
bibliography of the literature related to H-functions and H-

function distributions. He also presented a technique for

finding, in tabular form, the p.d.f. and c.d.f. of an algebraic




carbination (including sums and excluding differences) of
independent H-function variates.

Cook's technique [1981; Cook and Barnes, 1981] first uses
Carter's [1972] results to find the H-function distribution of
any products, quotients, or powers of random variables. The
Laplace transform of each term in the resulting sum of
independent H-function variates is then obtained. These
transform functions are evaluated and multiplied at
corresponding values of the transform variable, yielding a
tabular representation of the Laplace transform in transform
space. This Laplace transform is then numerically inverted
using Crump’s method. His FORTRAN camputer program implements
this technique and will plot the resulting p.d.f. and c.d.f.

Bodenschatz and Boedigheimer [1983; Boedigheimer et al,
1984] developed a technique to fit the H-function to a set of
data using the method of moments. The technique can be used to
curve-fit a mathematical function or to estimate the density of
a particular probability distribution. Their FORTRAN carvputer
program will accept known moments, univariate data, ordered
pair data from a relative frequency, or ordered pair data
directly from the function.

Kellogg [1984; Kellogg and Barnes, 1987; Kellogg and

Barnes, 1989] studied the distribution of products, quotients,




and powers of dependent random variables with bivariate H-
function distributions. Jacobs [1986; Jacobs et al, 1987]
presented a method of obtaining parameter estimates for the H-
function distribution using the method of maximum likelihood or
the method of maments.

Prudnikov et al [1990] gave extensive tables of H-function
results and Mellin transforms. Their books, although more
terse than the series by Erdélyi [1953 and 1954], are at least
as cawplete and, likely, will become the new standard reference

for special functions.

1.3. INTEGRAL TRANSFORMS AND TRANSFORM PAIRS

Integral transforms are frequently encountered in several
areas of mathematics, probability, and statistics. Although
various integral transforms exist, certain characteristics are
common among them. The function to be transformed is usually
multiplied by another function (called the kernel) and then
integrated over an appropriate range. What distinguishes the
various transforms are the kernel function, the limi.ts. of
integration, and the type of integration (e.g. Riemann or
Lebesgue).

Often the use of integral transforms can simplify a
difficult problem. Laplace transforms are usually first

encountered in the solution of systems of linear differential




equations. In probability and statistics, certain integral
transforms are often known by other names such as the moment
generating function, characteristic function, or probability
generating function.

The definitions of most integral transforms are not
standard. It is important, therefore, to explicitly state the
form of the definition to be used. Listed below are the
definitions of certain integral transforms and the
corresponding inverse transforms as used in this thesis.
Together, each transform and its corresponding inverse

constitute a transform pair.

1.3.1. LAPLACE TRANSFORM

Consider a function f(t) which is sectionally continuous
and defined for all positive values of the variable t with
£(t)=0 for t<0. A sectionally continuous function may not have
an infinite number of discontinuities nor any positive vertical
asymptotes. I1f f£(t) grows no faster than an exponential
function, then the Laplace transform of f£(t) will exist. There
must exist two positive numbers M and T such that for all t>T

and for some real number a,

f(t)
ot

e

<M (1.1)




The definition of the Laplace transform of the function

£(t), zs{ £(t) } is

scs{ £(t) }=J e St gty at (1.2)
0

In general, s is a camplex variable. The Laplace transform of
f(t) will exist for the real part of s greater than «
(Re(s) > a).

The inversion integral or inverse Laplace transform is

given by
w+im
£(t) = p J St zs{ £(t) } ds (1.3)
w-iw

where 25{ f(t) } is an analytic function for Re(s) > w. A
function is analytic at s=s if its derivative exists at S, and
at every point in same neighborhood of S, The Taylor series
expansion of an analytic function of a carplex variable will
exist, converge, and equal the function evaluated at the
argument. For all practical purposes, a function f(t) and its
Laplace transform (if it exists) uniquely determine each other.

In probability and statistics, if £(t) is the p.d.f. of a
randam variable defined only for positive values, its moment

generating function is simply the Laplace transform with r

10




replacing -s in Eq (1.2).

1.3.2. FOURIER TRANSFORM
The form of the exponential Fourier transform used in this

thesis is

O
afs{ £(t) } =J St ft) at (1.4)
-®
The Fourier transform is a function of the camplex variable s.
1f £(t) is a p.d.f., this definition corresponds to the
definition of the characteristic fumction in probability and
statistics. The characteristic function of a p.d.f. will
always exist but the moment generating fumction of a p.d.f. may
or may not exist.

The inversion integral or inverse Fourier transform is

given by
m .
E(t)* = th_[ e 1st 95{ £(t) } ds (1.5)
-0
where
1 . .
£(t)* = lim £(t) + lim £(t) (1.6)
( (J k3 tot t-t
o o
t<t° t>t°

If £(t) exists and is continuous at to' the inverse Fourier

11




transform of 55{ £f(t) } will give f(tJ. If £(t) is not
continuous at t o’ the inverse Fourier transform of Ss{ f(t) }
will produce the average of the limits of £(t) from the left of
to and the right of to.

1.3.3. MELLIN TRANSFORM

Because the Mellin transform is perhaps less well known
than the Laplace or Fourier transforms and because the Mellin
transform is so crucial in the study of H-functians, both
camon sets of transform pairs will be presented. The Mellin
transform uses a power function instead of an exponential
function as its kermel.

Again consider a function £(t) which is sectionally
continuous and defined for all positive values of the variable
t with £(t)=0 for t<0. Using what will be regarded in this
thesis as the primary definition of the Mellin transform, the

Mellin transform of £(t), "’s{ £(t) }, is

‘s{ £(t) ):J 571 fr) at (1.7)
0

The Mellin transform is related to the Fourier and Laplace

transforms as follows [Erdélyi, 1954, p.305]:

12




‘s{ £(t) } = ’-is{ £(e") } (1.8)
=2 f.(er') }+ 25{ f(e'f') } (1.9)

Again, s is a camplex variable. The Mellin transform

inversion integral, or inverse Mellin transform, is given as

w+io

£(t) = 'ﬁlij xS “s{ £(t) } ds (1.10)

w-io
As mentioned earlier, there is another important transform
pair also referred to as a Mellin transform pair. This
alternate definition will arise later when an alternate
definition of the H-function is given. The alternate

definition is
©
x;{ £(t) }=j T ft) at (1.11)
0

with inverse transform

V4+io
£(t) = "ﬂ%fj x* :.;{ £(t) } dr (1.12)

v-imw

1.4. TIONS OF INDEPENDENT RANDOM VARIABLES

A common problem in statistical distribution theory is to
find the distribution of an algebraic cambination of

13




independent randam variables. The algebraic cambination could
include sums, differences, products, and/or quotients of
independent random variables or their powers. It is important
to recognize that the algebraic cambination is itself a random
variable and, therefore, has a probability distribution. The
task is to find this distribution.

Using the properties of mathematical expectation, it is
relatively easy to find the mean, variance, and other moments
of the algebraic cambination of independent randam variables.
For example, the mean of the sum of two independent random
variables is simply the sun of the means of the randam
variables. Finding the completely specified distribution of
the algebraic cambination is usually much more difficult.

For simple combinations of independent random variables,
the method of Jacobians is often employed. An appropriate
one-to-one transformation between the independent random
variables in the algebraic cambination and a set of new randam
variables is first created. After finding the inverse
transformation functions, the Jacobian (the determinant of the
matrix of first partial derivatives of the inverse functions)
may be camputed.

The joint p.d.f. of the newly defined random variables is
the absolute value of the Jacobian multiplied by the product of

14




the original densities with the inverse transformation
functions substituted for the variables. A great deal of care
must be used in determining the values of the new variables for
which the joint density is nonzero. Once this is done, the
desired marginal density can be obtained by integrating over
the complete ranges of the other new variables.

An example of the method of Jacobians will be presented
below. In most of the following sections, however, only the

result using integral transforms will be given.

1.4.1. DISTRIBUTION OF A SUM

Let Xl and x2 be independent randam variables with
respective densities fI(xl) and fz(xz) , each nonzero anly for
positive values of the variable. Suppose we want the density
of Y=xl+x2. Using the method of Jaccbians, we define W=}I{2 so
the inverse transformations are x1=Y-W and X2=W The Jacobian

is

1 -1
o 1

J = =1 (1.13)

The joint density of Y and W is
E(y.w) = £,(y-w) £,(w) O<w<y<o (1.14)

The marginal p.d.f. of Y can be obtained by integrating the

joint p.d.f. with respect to W over the range of W.

15




Yy
B = [ £ 500 & (1.15)

Eq (1.15) may be recognized as the Fourier convolution
integral [Springer, 1979, p. 47]. This is no accident or
coincidence as the Fourier or Laplace transform could also have
been used to find the distribution of Y. It is well known that
the Laplace (or Fourier) transform of the p.d.f. of the sum of
two independent random variables defined for positive values is
the product of the Laplace (or Fourier) transforms of the
individual densities. Further, the product of two transform
functions, upon inversion, yields a convolution integral.

If the product of transform functions can be recognized as
the transform of same function, then the convolution inversion
is not necessary. The p.d.f. of Y is the function whose
transform is the product. When statisticians use the maoment
generating function of each density to find the p.d.f. of Y,
this recognition approach is usually taken. One advantage of
using transform functions is that the procedure easily extends
when the distribution of the sum of three or more independent
randam variables is desired.

Finding the distribution of the sum of independent random
variables with certain special distributional forms is

considerably simplified. Several of these cases are covered in
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the following subsections.

1.4.1.1. INFINITE DIVISIBILITY

Although a complete discussion of infinite divisibility is
beyond the scope of this thesis, its definition is given below

[Petrov, 1975, p. 25].

A distribution function F(x) and the corresponding
characteristic function f(t) are said to be
infinitely divisible if for every positive integer n
there exists a characteristic function fn(t) such

that
£(t) = (£,(t)"

In other words, the distribution F is infinitely
divisible if for every positive integer n there

*
exists a distribution function Fn such that F=an.
*
Here an is the n-fold convolution of the function
F .
n
Camon examples of infinitely divisible distributions include

the normal and Poisson distributions.

1.4.1.2. SPECIAL CASES
The distribution of the sun of independent randam
variables with certain distributional forms is well known and
immediately available. For example, the sum of n independent
and identically distributed random variables with a Bermoulli
distribution with parameter p has a Binomial distribution with
parameters n and p. Similarly, the sum of independent

geametrically distributed randam variables with a common
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parameter has a negative Binamial (or Pascal) distribution.

In continuous randam variables, the sum of n independent
and identically distributed randam variables with an
exponential distribution with parameter A has a gamma

distribution with parameters n and A.

1.4.1.3. REPRODUCTIVE DISTRIBUTIONS

A probability distribution is "reproductive” if it
replicates under positive addition of independent randam
variables with the same distributional form. The normal

distribution is reproductive since given that

- 2 . 2
xl Normal ["1' ol) x2 Normal [ Hoo 02)
xl and x2 are statistically independent, and
Y = xl + x2

then

Y ~ Normal [ u1+p2, aiwg

Other exanples of reproductive distributions include the Chi-
Square and Poisson distributions.

It is well known that the gamma distribution is
reproductive provided the scale parameter, A, is the same for

each random variable in the sun. In particular, if

x1~Gamm[rl,11] X2~Garma[r2,x2]




xl and X2 are statistically independent, A, S A, = A
and Y = xl + x2
then
Y~Gamra[rl+r2, 1)
The result for gamma distributions above is readily
verified by considering the product of the Laplace transforms

of each p.d.f. Using the definition in Eq (1.2), the Laplace

transform of the ganma p.d.f. with parameters r and A is
r
[—-é-%x—] . Clearly, then, if Xl and x2 are independent random

variables with gamma distributions and a common scale

parameter, A,

zs'{fy-(y)} = zs{fl.(xl)} 2s'{f2~(x2)} (1.16)
- [_s}r]rl [_s%_lrz (1.17)
= [Ttr F1'%2 (1.18)

which is recognized as the Laplace transform of a gamma p.d.f.
with parameters rl+r2 and A. This confirms the reproductive

property for the gamma distribution when A is cammon.

1.4.2. DISTRIBUTION OF A DIFFERENCE
The study of the distribution of the difference of
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independent random variables has received much less attention
than for the sum. The normal distribution is one notable

exception since given that

2 2
x1 Normal ["'1’ ol] x2 Normal [“2' 02]
Xl and X2 are statistically independent, and
Y= Xl - X2
then
. _ 2,2
Y ~ Normal [ Hy~Hy» °1+°2 ]
If X

1
respective densities fl(xl) and fz-(xz), each nonzero only for

and x2 are independent randam variables with

positive values of the variable, then the density of Y=x1-x2 is

the inverse Pourier transform [Springer, 1979, p. 59]

©

£,(y) = .51J e sy 58{ £,(x;) } 55{ £,(-x) } ds

ha Y

for w < y < » (1.19)

1.4.3. DISTRIBUTION OF A PRODUCT

If Xl and x2

respective densities fl(xl) and fz(xz) , each nonzero only for

are independent randam variables with

positive values of the variable, then the density of Y=(xl)-(x2)

is the inverse Mellin transform [Springer, 1979, p. 97]
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w+ic
1 -
g egs| el afne }e
w-ic
for 0 < ¥y < o (1.20)

1.4.4. DISTRIBUTION OF A QUOTIENT

If Xl and X2

respective densities fl-(xl) and fz-(x2) , each nonzero only for

are independent randam variables with

positive values of the variable, then the density of Y-—;;— is

the inverse Mellin transform [Springer, 1979, p. 100]

w+ico
1 -
(0 =53 J y® "s{ £1(x) } ‘2—5{ £2(x) } ds
w-ix
for 0 < ¥y < o (1.21)

One coammon example of the quotient of two independent
random variables lies in the derivation of the Snedecor F
distribution [Springer, 1979, pp. 328-9]. 1f

Xl ~ Chi-Square (v) x2 ~ Chi-Square (w)

Xl and x2 are statistically independent, and

X

y=___x2__

()

then

Y~F (v,0)
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1.4.5. DISTRIBUTION OF A VARIATE TO A POWER
If X is a continuous randam variable with density f(x),
nonzero only for positive values of the variable, then the
density of Y=xP is the inverse Mellin transform {Springer,
1979, p. 212}
w+ico

£4(¥) = mrr J il Aps_m{ £(x) } ds

w-io
for 0 < ¥y < o (1.22)
One common example of a variate to a power is finding the
distribution of the square of a standard normal (zero mean,
unit variance) random variable. If X ~ Normal (0,1) and Y=X2
then Y ~ Chi-Square (1). The same result holds if X has a

half-normal distribution with 02=1 [Springer, 1979, pp. 213-4].

1l.4.6. MOMENTS OF A DISTRIBUTION
If X is a continuous randam variable with density £(x),
nonzero only for positive values of the variable, then the

maments about the origin of f(x) are
oo )
(Y

I % £(x) dx (1.23)
0

provided the integral in Eq (1.23) exists.
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There is a natural relationship betwean the integral given
in Eq (1.23) and the Mellin transform of the function f(x)
given in Eq (1.7) or Eg (1.11). Using the Mellin transform in

Eq (1.7) we can write

By = M [£(0)] (1.24)

r
This relationship simplifies the camputation of moments for H-

functions and H-function distributions.
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CHAPTER 2

THE H-FUNCTION

The H-function is a very general function, encampassing as
special cases nearly every named mathematical function and
continuous statistical distribution defined over positive
values. Although the H-function does not enjoy an extensive
popularity and acceptance in the fields of mathematics,
probability, and statistics, this is primarily because
mathematicians and statisticians have not yet learned of its
versatility and power. Most analysts are not familiar with the
H-function, and many who have seen the H-function definition
may have been disquieted by its overt camplexity. This is

unfortunate because practical use of the H-function does not

require extensive knowledge of coamplex analysis and integral
transform theory.

Mathematical functions defined by an integral which do not
have a closed form representation are common. Examples include
the gamma function, the error function, and the cumlative
normal probability demsity function. In all of these cases,
the function is usually evaluated with the help of tables. The
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