Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
cg_zl [2014/08/21 21:28]
zl25 created
cg_zl [2014/08/21 21:45] (current)
zl25
Line 1: Line 1:
 ===== Formulation of MZ-guided Markovian/​Non-Markovian DPD ===== ===== Formulation of MZ-guided Markovian/​Non-Markovian DPD =====
 The equation of motion (EOM) of the coarse-grained (CG) particles obtained from the Mori-Zwanzig projection is given by The equation of motion (EOM) of the coarse-grained (CG) particles obtained from the Mori-Zwanzig projection is given by
-  * Equation 1:+
 \begin{eqnarray}\label{equ:​EoM} \begin{eqnarray}\label{equ:​EoM}
 \frac{d}{dt}\mathbf{P}_I &=& \frac{1}{\beta} \frac{\partial}{\partial \mathbf{R}_I} {\rm{ln}} \omega(\mathbf{R}) \\ \nonumber \frac{d}{dt}\mathbf{P}_I &=& \frac{1}{\beta} \frac{\partial}{\partial \mathbf{R}_I} {\rm{ln}} \omega(\mathbf{R}) \\ \nonumber
Line 10: Line 10:
 where $\beta = 1/k_BT$ with $T$ the thermodynamic temperature and $k_B$ the Boltzmann constant, $\mathbf{R}=\{\mathbf{R}_1,​\mathbf{R}_2,​\cdots,​\mathbf{R}_K\}$ is a phase point in the CG phase space, and $\omega (\mathbf{R})$ is defined as a normalized partition function of all the microscopic configurations at phase point $\mathbf{R}$ given by where $\beta = 1/k_BT$ with $T$ the thermodynamic temperature and $k_B$ the Boltzmann constant, $\mathbf{R}=\{\mathbf{R}_1,​\mathbf{R}_2,​\cdots,​\mathbf{R}_K\}$ is a phase point in the CG phase space, and $\omega (\mathbf{R})$ is defined as a normalized partition function of all the microscopic configurations at phase point $\mathbf{R}$ given by
  
-  * Equation 2: 
 \begin{equation}\label{equ:​omega} \begin{equation}\label{equ:​omega}
   \omega (\mathbf{R})=\frac{\int d^N \mathbf{\hat r}\delta(\mathbf{\hat R}-\mathbf{R})e^{-\beta U} } {\int d^N \mathbf{\hat r} e^{-\beta U} } \ ,   \omega (\mathbf{R})=\frac{\int d^N \mathbf{\hat r}\delta(\mathbf{\hat R}-\mathbf{R})e^{-\beta U} } {\int d^N \mathbf{\hat r} e^{-\beta U} } \ ,
Line 19: Line 18:
 In the right-hand side of Eq.(\ref{equ:​EoM}),​ the first term represents the conservative force due to the change of microscopic configuration,​ and it is the ensemble average force on cluster $I$ denoted as $\langle\mathbf{F}_I \rangle$. The last term $\delta\mathbf{F}_I$ is the fluctuating force on cluster $I$ and it is given by $\delta\mathbf{F}_I = \mathbf{F}_I - \langle \mathbf{F}_I \rangle$ in which $\mathbf{F}_I$ is the instantaneous total force acting on the cluster $I$. The second term of Eq. (\ref{equ:​EoM}) is the friction force determined by an integral of memory kernel. In the right-hand side of Eq.(\ref{equ:​EoM}),​ the first term represents the conservative force due to the change of microscopic configuration,​ and it is the ensemble average force on cluster $I$ denoted as $\langle\mathbf{F}_I \rangle$. The last term $\delta\mathbf{F}_I$ is the fluctuating force on cluster $I$ and it is given by $\delta\mathbf{F}_I = \mathbf{F}_I - \langle \mathbf{F}_I \rangle$ in which $\mathbf{F}_I$ is the instantaneous total force acting on the cluster $I$. The second term of Eq. (\ref{equ:​EoM}) is the friction force determined by an integral of memory kernel.
  
-{\color{red} First approximation:​} Here, we assume that the non-bonded interactions between neighboring clusters in the microscopic system are explicitly ​{\bf pairwise decomposable}, and hence the total force consists of pairwise forces, e.g. $\mathbf{F}_I \approx \sum_{J\neq I}\mathbf{F}_{IJ}$ and $\delta\mathbf{F}_I \approx \sum_{J\neq I}\delta\mathbf{F}_{IJ}$.+${\color{red}{Firstapproximation:​}}$ Here, we assume that the non-bonded interactions between neighboring clusters in the microscopic system are explicitly ​**pairwise decomposable**, and hence the total force consists of pairwise forces, e.g. $\mathbf{F}_I \approx \sum_{J\neq I}\mathbf{F}_{IJ}$ and $\delta\mathbf{F}_I \approx \sum_{J\neq I}\delta\mathbf{F}_{IJ}$.
  
-\par 
 However, when we consider the force $\mathbf{F}_{I J}$ that a molecule $J$ exerts on another molecule $I$, in principle, $\mathbf{F}_{I J}$ involving many-body effects depends on all the COM coordinates $\mathbf{R}$ as well as their microscopic configurations. Although Eq. (\ref{equ:​EoM}) based on the Mori-Zwanzig formalism is accurate, a direct computation of the many-body interactions is very difficult. However, when we consider the force $\mathbf{F}_{I J}$ that a molecule $J$ exerts on another molecule $I$, in principle, $\mathbf{F}_{I J}$ involving many-body effects depends on all the COM coordinates $\mathbf{R}$ as well as their microscopic configurations. Although Eq. (\ref{equ:​EoM}) based on the Mori-Zwanzig formalism is accurate, a direct computation of the many-body interactions is very difficult.
  
-{\color{red} Second approximation:​} In practice, we {\bf neglect the many-body correlationsbetween different pairs, and assume that the force $\mathbf{F}_{I J}$ between two clusters $I$ and $J$ depends only on the relative COM positions $\mathbf{R}_{I}$ and $\mathbf{R}_{J}$ and is independent of the positions of the rest of clusters.+${\color{red}{Secondapproximation:​}}$ In practice, we neglect the many-body correlations between different pairs, and assume that the force $\mathbf{F}_{I J}$ between two clusters $I$ and $J$ depends only on the relative COM positions $\mathbf{R}_{I}$ and $\mathbf{R}_{J}$ and is independent of the positions of the rest of clusters. 
 + 
 +Therefore, the conservative term is in Eq.(\ref{equ:​EoM}) approximated by 
 +\begin{equation}\label{equ:​FC} 
 +  \frac{1}{\beta} \frac{\partial}{\partial \mathbf{R}_I} {\rm{ln}} \omega(\mathbf{R}) = \langle \mathbf{F}_I \rangle \approx \sum_{J\neq I}\langle \mathbf{F}_{IJ} \rangle = \sum_{J\neq I}{F_{IJ}^C}(R_{IJ})\mathbf{e}_{IJ} 
 +\end{equation} 
 + 
 +where $\mathbf{e}_{IJ}$ is the unit vector from CG particle $J$ to $I$ given by $\mathbf{e}_{I J}=(\mathbf{R}_I-\mathbf{R}_J)/​R_{I J}$ with $R_{I J}=|\mathbf{R}_I-\mathbf{R}_J|$. The rotational symmetry of the CG pairs about the $\mathbf{e}_{IJ}$ suggests that, on average, $\mathbf{F}_{IJ}$ has no preference on the plane perpendicular to $\mathbf{e}_{IJ}$ and remains only nonzero component along $\mathbf{e}_{IJ}$. Here, $F_{IJ}^C(R_{I J})$ represents the magnitude of conservative force $\mathbf{F}_{IJ}^C$,​ which is time independent but distance dependent. 
 + 
 +Similarly, the fluctuating force defined as the deviation from the mean force is also decomposed into pairwise forces 
 +\begin{eqnarray}\label{equ:​FR} 
 + ​\delta\mathbf{F}_I &=& \mathbf{F}_I - \langle \mathbf{F}_I \rangle \approx \sum_{J\neq I}\delta\mathbf{F}_{IJ} \\ 
 + ​\delta\mathbf{F}_{IJ} &=& \mathbf{F}_{IJ}- \langle \mathbf{F}_{IJ} \rangle = \mathbf{F}_{IJ} -{F_{IJ}^C}(R_{IJ})\mathbf{e}_{IJ} 
 +\end{eqnarray} 
 + 
 +where $\mathbf{F}_{IJ}$ is the instantaneous force exerted by cluster $J$ on cluster $I$, and $\langle \mathbf{F}_{IJ}\rangle$ is the ensemble average of $\mathbf{F}_{IJ}$ obtained by Eq. (\ref{equ:​FC}). 
 + 
 +Now we consider the memory kernel in Eq. (\ref{equ:​EoM}). Based on the second approximation,​ the correlation of fluctuating forces between different pairs is ignored. Thus, we have 
 +\begin{eqnarray}\label{equ:​no_corelation} 
 +  &&​\sum_{J\neq I}\sum_{Y\neq X}\left \langle [\delta\mathbf{F}_{IJ}(t-s)] [\delta\mathbf{F}_{XY}(0)]^T \right \rangle \mathbf{V}_X(s) \nonumber\\ 
 +  &​=&​\left \langle [\delta\mathbf{F}_{IJ}(t-s)] [\delta\mathbf{F}_{IJ}(0)]^T \right \rangle \mathbf{V}_I(s)|_{X=I,​Y=J} + \nonumber\\ 
 +  &&​\left \langle [\delta\mathbf{F}_{IJ}(t-s)] [\delta\mathbf{F}_{JI}(0)]^T \right \rangle \mathbf{V}_J(s)|_{X=J,​Y=I} \nonumber\\ 
 +  &​=&​\left \langle [\delta\mathbf{F}_{IJ}(t-s)] [\delta\mathbf{F}_{IJ}(0)]^T \right \rangle \mathbf{V}_{IJ}(s) 
 +\end{eqnarray} 
 + 
 +where $\mathbf{V}_{IJ}=\mathbf{V}_{J}-\mathbf{V}_{J}$ is the relative velocity of CG particle $I$ to $J$. Moreover, ${\color{red}{Third\ approximation:​}}$ we assume that the memory on time is finite, e.g. history length $N\cdot\Delta t$ where $\Delta t$ is the time step of DPD simulations. Therefore, the time correlation between the fluctuating forces is zero when the time interval is larger than $N\Delta t$ 
 +\begin{equation}\label{equ:​no_history} 
 +\left\langle[\delta\mathbf{F}_I(t)] [\delta\mathbf{F}_X(0)]^T \right \rangle|_{t>​N\Delta t} = 0 
 +\end{equation} 
 + 
 +Then, the second term in Eq.(\ref{equ:​EoM}) can be expanded as follows: 
 + 
 +\begin{eqnarray}\label{equ:​FD} 
 +  &&​-{\beta} \sum_{X=1}^{K}\int_{0}^{t} ds \left\langle [\delta\mathbf{F}_I(t-s)] [\delta\mathbf{F}_X(0)]^T \right \rangle \mathbf{V}_X(s) \nonumber\\ 
 +  &=& -{\beta}\sum_{X=1}^{K}\int_{t-N\Delta t}^{t} ds \left \langle [\delta\mathbf{F}_I(t-s)] [\delta\mathbf{F}_X(0)]^T \right \rangle \mathbf{V}_X(s) \nonumber\\ 
 +  &=& -{\beta\cdot \Delta t}\sum_{X=1}^{K}\sum_{n=0}^{N}\alpha_n \left \langle [\delta\mathbf{F}_{I}(n\Delta t)] [\delta\mathbf{F}_{X}(0)]^T \right \rangle \mathbf{V}_X(t-n\Delta t) \nonumber\\ 
 +  &=& -{\beta\cdot \Delta t}\sum_{X=1}^{K}\sum_{J\neq I}\sum_{Y\neq X}\sum_{n=0}^{N}\alpha_n \left \langle [\delta\mathbf{F}_{IJ}(n\Delta t)] [\delta\mathbf{F}_{XY}(0)]^T \right \rangle \mathbf{V}_X(t-n\Delta t) \nonumber\\ 
 +  &=& -{\beta\cdot \Delta t}\sum_{J\neq I}\sum_{n=0}^{N}\alpha_n \left \langle [\delta\mathbf{F}_{IJ}(n\Delta t)] [\delta\mathbf{F}_{IJ}(0)]^T \right \rangle \mathbf{V}_{IJ}(t-n\Delta t) 
 +\end{eqnarray} 
 + 
 +We define the friction matrix ${\Gamma}_{IJ,​n}$ as 
 +\begin{equation}\label{equ:​Gamma} 
 +  {\Gamma}_{IJ,​n}=\beta \left \langle [\delta\mathbf{F}_{IJ}(n\Delta t)] [\delta\mathbf{F}_{IJ}(0)]^T \right \rangle 
 +\end{equation} 
 + 
 +where $\delta\mathbf{F}_{IJ}$ is the fluctuating force. Generally, the fluctuating force $\delta {\bf{F}}_{I J}$ is not parallel to the radial direction $\mathbf{e}_{IJ}$. However, $\delta {\bf{F}}_{I J}$, on average, is transversely isotropic with respect to $\mathbf{e}_{IJ}$ because the instantaneous pairwise force $\mathbf{F}_{IJ}$ has no preference between directions $\perp_1$ and $\perp_2$. 
 + 
 +When we calculate the friction matrix, we do not distinguish between the directions $\perp_1$ and $\perp_2$ and decompose $\delta\mathbf{F}_{IJ}$ into two parts 
 + 
 +\begin{align} 
 +\delta \mathbf{F}_{IJ}&​=(\mathbf{e}_{IJ}\mathbf{e}^T_{IJ})\cdot\delta\mathbf{F}_{IJ}+(\mathbf{1}- 
 +\mathbf{e}_{IJ}\mathbf{e}^T_{IJ})\cdot\delta\mathbf{F}_{IJ} \nonumber \\ &​=\delta\mathbf{F}^{\parallel}_{IJ}+\delta\mathbf{F}^{\perp}_{IJ} \ , \label{equ:​randomF} 
 +\end{align} 
 + 
 +where $\delta\mathbf{F}^{\parallel}_{IJ}$ is the component along vector $\mathbf{e}_{IJ}$ and $\delta\mathbf{F}^{\perp}_{IJ}$ the perpendicular part whose modulus is equally distributed on directions $\perp_1$ and $\perp_2$. 
 + 
 +**Remark:** The memory term given by Eq. (\ref{equ:​FD}) can be further simplified with a ${\color{red}{Markovian\ assumption}}$ that the memory of fluctuating force in time is short enough to be approximated by a Dirac delta function 
 + 
 +\begin{eqnarray} 
 +&\beta \langle [\delta\mathbf{F}_{IJ}(t-s)][\delta\mathbf{F}_{IJ}(0)]^T \rangle = 2 {\gamma}_{IJ} \delta(t-s) \ ,  \label{equ:​Mark_app1} \\ 
 +&​{\beta}\int_{0}^{t} ds \left \langle [\delta\mathbf{F}_{IJ}(t-s)][\delta\mathbf{F}_{IJ}(0)]^T \right \rangle {\mathbf{V}_{IJ}(s)} = \gamma_{IJ} \cdot {\mathbf{V}_{IJ}(t)} \ , \label{equ:​Mark_app2} 
 +\end{eqnarray}  
 + 
 +where $\gamma_{IJ}$ is the friction tensor defined by $\gamma_{I J} = \beta \int_{0}^{\infty} dt \left \langle [\delta\mathbf{F}_{IJ}(t)][\delta\mathbf{F}_{IJ}(0)]^T \right \rangle $. Then, the equation of motion of DPD particles based on the Markovian approximation can be expressed by 
 + 
 +\begin{eqnarray}\label{equ:​DPD} 
 +\frac{d\mathbf{P}_I}{dt}&​=&​\sum_{J\neq I}\left\{\right. F^C_{IJ}(R_{IJ})\mathbf{e}_{IJ} ​  
 +                         - {\gamma}_{IJ}(R_{IJ}) \left( \mathbf{e}_{IJ}\cdot \mathbf{V}_{IJ} \right)\mathbf{e}_{IJ} ​  
 +                         ​+\delta\mathbf{F}_{IJ}(t) \left.\right\} 
 +\end{eqnarray} 

Navigation
QR Code
QR Code Formulation of MZ-guided Markovian/Non-Markovian DPD (generated for current page)