Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
cg_zl [2014/08/21 21:41]
zl25
cg_zl [2014/08/21 21:42]
zl25
Line 65: Line 65:
 \end{eqnarray} \end{eqnarray}
 \par \par
-We define the friction matrix ${\bm \Gamma}_{IJ,​n}$ as+We define the friction matrix ${\Gamma}_{IJ,​n}$ as
 \begin{equation}\label{equ:​Gamma} \begin{equation}\label{equ:​Gamma}
-  {\bm \Gamma}_{IJ,​n}=\beta \left \langle [\delta\mathbf{F}_{IJ}(n\Delta t)] [\delta\mathbf{F}_{IJ}(0)]^T \right \rangle+  {\Gamma}_{IJ,​n}=\beta \left \langle [\delta\mathbf{F}_{IJ}(n\Delta t)] [\delta\mathbf{F}_{IJ}(0)]^T \right \rangle
 \end{equation} \end{equation}
  
Line 84: Line 84:
  
 \begin{eqnarray} \begin{eqnarray}
-&\beta \langle [\delta\mathbf{F}_{IJ}(t-s)][\delta\mathbf{F}_{IJ}(0)]^T \rangle = 2 {\bm\gamma}_{IJ} \delta(t-s) \ ,  \label{equ:​Mark_app1} \\ +&\beta \langle [\delta\mathbf{F}_{IJ}(t-s)][\delta\mathbf{F}_{IJ}(0)]^T \rangle = 2 {\gamma}_{IJ} \delta(t-s) \ ,  \label{equ:​Mark_app1} \\ 
-&​{\beta}\int_{0}^{t} ds \left \langle [\delta\mathbf{F}_{IJ}(t-s)][\delta\mathbf{F}_{IJ}(0)]^T \right \rangle {\mathbf{V}_{IJ}(s)} = \bm\gamma_{IJ} \cdot {\mathbf{V}_{IJ}(t)} \ , \label{equ:​Mark_app2}+&​{\beta}\int_{0}^{t} ds \left \langle [\delta\mathbf{F}_{IJ}(t-s)][\delta\mathbf{F}_{IJ}(0)]^T \right \rangle {\mathbf{V}_{IJ}(s)} = \gamma_{IJ} \cdot {\mathbf{V}_{IJ}(t)} \ , \label{equ:​Mark_app2}
 \end{eqnarray} ​ \end{eqnarray} ​
  
-where $\bm\gamma_{IJ}$ is the friction tensor defined by $\bm\gamma_{I J} = \beta \int_{0}^{\infty} dt \left \langle [\delta\mathbf{F}_{IJ}(t)][\delta\mathbf{F}_{IJ}(0)]^T \right \rangle $. Then, the equation of motion of DPD particles based on the Markovian approximation can be expressed by+where $\gamma_{IJ}$ is the friction tensor defined by $\gamma_{I J} = \beta \int_{0}^{\infty} dt \left \langle [\delta\mathbf{F}_{IJ}(t)][\delta\mathbf{F}_{IJ}(0)]^T \right \rangle $. Then, the equation of motion of DPD particles based on the Markovian approximation can be expressed by
  
 \begin{eqnarray}\label{equ:​DPD} \begin{eqnarray}\label{equ:​DPD}
 \frac{d\mathbf{P}_I}{dt}&​=&​\sum_{J\neq I}\left\{\right. F^C_{IJ}(R_{IJ})\mathbf{e}_{IJ}  ​ \frac{d\mathbf{P}_I}{dt}&​=&​\sum_{J\neq I}\left\{\right. F^C_{IJ}(R_{IJ})\mathbf{e}_{IJ}  ​
-                         - {\bm\gamma}_{IJ}(R_{IJ}) \left( \mathbf{e}_{IJ}\cdot \mathbf{V}_{IJ} \right)\mathbf{e}_{IJ}  ​+                         - {\gamma}_{IJ}(R_{IJ}) \left( \mathbf{e}_{IJ}\cdot \mathbf{V}_{IJ} \right)\mathbf{e}_{IJ}  ​
                          ​+\delta\mathbf{F}_{IJ}(t) \left.\right\}                          ​+\delta\mathbf{F}_{IJ}(t) \left.\right\}
 \end{eqnarray} \end{eqnarray}
  

Navigation
QR Code
QR Code Formulation of MZ-guided Markovian/Non-Markovian DPD (generated for current page)