Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
cg_zl [2014/08/21 21:36]
zl25
cg_zl [2014/08/21 21:42]
zl25
Line 24: Line 24:
  
 ${\color{red}{Second\ approximation:​}}$ In practice, we neglect the many-body correlations between different pairs, and assume that the force $\mathbf{F}_{I J}$ between two clusters $I$ and $J$ depends only on the relative COM positions $\mathbf{R}_{I}$ and $\mathbf{R}_{J}$ and is independent of the positions of the rest of clusters. ${\color{red}{Second\ approximation:​}}$ In practice, we neglect the many-body correlations between different pairs, and assume that the force $\mathbf{F}_{I J}$ between two clusters $I$ and $J$ depends only on the relative COM positions $\mathbf{R}_{I}$ and $\mathbf{R}_{J}$ and is independent of the positions of the rest of clusters.
 +
 +Therefore, the conservative term is in Eq.(\ref{equ:​EoM}) approximated by
 +\begin{equation}\label{equ:​FC}
 +  \frac{1}{\beta} \frac{\partial}{\partial \mathbf{R}_I} {\rm{ln}} \omega(\mathbf{R}) = \langle \mathbf{F}_I \rangle \approx \sum_{J\neq I}\langle \mathbf{F}_{IJ} \rangle = \sum_{J\neq I}{F_{IJ}^C}(R_{IJ})\mathbf{e}_{IJ}
 +\end{equation}
 +\noindent
 +where $\mathbf{e}_{IJ}$ is the unit vector from CG particle $J$ to $I$ given by $\mathbf{e}_{I J}=(\mathbf{R}_I-\mathbf{R}_J)/​R_{I J}$ with $R_{I J}=|\mathbf{R}_I-\mathbf{R}_J|$. The rotational symmetry of the CG pairs about the $\mathbf{e}_{IJ}$ suggests that, on average, $\mathbf{F}_{IJ}$ has no preference on the plane perpendicular to $\mathbf{e}_{IJ}$ and remains only nonzero component along $\mathbf{e}_{IJ}$. Here, $F_{IJ}^C(R_{I J})$ represents the magnitude of conservative force $\mathbf{F}_{IJ}^C$,​ which is time independent but distance dependent.
 +
 +\par
 +Similarly, the fluctuating force defined as the deviation from the mean force is also decomposed into pairwise forces
 +\begin{eqnarray}\label{equ:​FR}
 + ​\delta\mathbf{F}_I &=& \mathbf{F}_I - \langle \mathbf{F}_I \rangle \approx \sum_{J\neq I}\delta\mathbf{F}_{IJ} \\
 + ​\delta\mathbf{F}_{IJ} &=& \mathbf{F}_{IJ}- \langle \mathbf{F}_{IJ} \rangle = \mathbf{F}_{IJ} -{F_{IJ}^C}(R_{IJ})\mathbf{e}_{IJ}
 +\end{eqnarray}
 +\noindent
 +where $\mathbf{F}_{IJ}$ is the instantaneous force exerted by cluster $J$ on cluster $I$, and $\langle \mathbf{F}_{IJ}\rangle$ is the ensemble average of $\mathbf{F}_{IJ}$ obtained by Eq. (\ref{equ:​FC}).
 +
 +\par
 +Now we consider the memory kernel in Eq. (\ref{equ:​EoM}). Based on the second approximation,​ the correlation of fluctuating forces between different pairs is ignored. Thus, we have
 +\begin{eqnarray}\label{equ:​no_corelation}
 +  &&​\sum_{J\neq I}\sum_{Y\neq X}\left \langle [\delta\mathbf{F}_{IJ}(t-s)] [\delta\mathbf{F}_{XY}(0)]^T \right \rangle \mathbf{V}_X(s) \nonumber\\
 +  &​=&​\left \langle [\delta\mathbf{F}_{IJ}(t-s)] [\delta\mathbf{F}_{IJ}(0)]^T \right \rangle \mathbf{V}_I(s)|_{X=I,​Y=J} + \nonumber\\
 +  &&​\left \langle [\delta\mathbf{F}_{IJ}(t-s)] [\delta\mathbf{F}_{JI}(0)]^T \right \rangle \mathbf{V}_J(s)|_{X=J,​Y=I} \nonumber\\
 +  &​=&​\left \langle [\delta\mathbf{F}_{IJ}(t-s)] [\delta\mathbf{F}_{IJ}(0)]^T \right \rangle \mathbf{V}_{IJ}(s)
 +\end{eqnarray}
 +\noindent
 +where $\mathbf{V}_{IJ}=\mathbf{V}_{J}-\mathbf{V}_{J}$ is the relative velocity of CG particle $I$ to $J$. Moreover, {\color{red}Third approximation:​} we assume that the memory on time is finite, e.g. history length $N\cdot\Delta t$ where $\Delta t$ is the time step of DPD simulations. Therefore, the time correlation between the fluctuating forces is zero when the time interval is larger than $N\Delta t$
 +\begin{equation}\label{equ:​no_history}
 +\left\langle[\delta\mathbf{F}_I(t)] [\delta\mathbf{F}_X(0)]^T \right \rangle|_{t>​N\Delta t} = 0
 +\end{equation}
 +
 +Then, the second term in Eq.(\ref{equ:​EoM}) can be expanded as follows:
 +
 +\begin{eqnarray}\label{equ:​FD}
 +  &&​-{\beta} \sum_{X=1}^{K}\int_{0}^{t} ds \left\langle [\delta\mathbf{F}_I(t-s)] [\delta\mathbf{F}_X(0)]^T \right \rangle \mathbf{V}_X(s) \nonumber\\
 +  &=& -{\beta}\sum_{X=1}^{K}\int_{t-N\Delta t}^{t} ds \left \langle [\delta\mathbf{F}_I(t-s)] [\delta\mathbf{F}_X(0)]^T \right \rangle \mathbf{V}_X(s) \nonumber\\
 +  &=& -{\beta\cdot \Delta t}\sum_{X=1}^{K}\sum_{n=0}^{N}\alpha_n \left \langle [\delta\mathbf{F}_{I}(n\Delta t)] [\delta\mathbf{F}_{X}(0)]^T \right \rangle \mathbf{V}_X(t-n\Delta t) \nonumber\\
 +  &=& -{\beta\cdot \Delta t}\sum_{X=1}^{K}\sum_{J\neq I}\sum_{Y\neq X}\sum_{n=0}^{N}\alpha_n \left \langle [\delta\mathbf{F}_{IJ}(n\Delta t)] [\delta\mathbf{F}_{XY}(0)]^T \right \rangle \mathbf{V}_X(t-n\Delta t) \nonumber\\
 +  &=& -{\beta\cdot \Delta t}\sum_{J\neq I}\sum_{n=0}^{N}\alpha_n \left \langle [\delta\mathbf{F}_{IJ}(n\Delta t)] [\delta\mathbf{F}_{IJ}(0)]^T \right \rangle \mathbf{V}_{IJ}(t-n\Delta t)
 +\end{eqnarray}
 +\par
 +We define the friction matrix ${\Gamma}_{IJ,​n}$ as
 +\begin{equation}\label{equ:​Gamma}
 +  {\Gamma}_{IJ,​n}=\beta \left \langle [\delta\mathbf{F}_{IJ}(n\Delta t)] [\delta\mathbf{F}_{IJ}(0)]^T \right \rangle
 +\end{equation}
 +
 +where $\delta\mathbf{F}_{IJ}$ is the fluctuating force. Generally, the fluctuating force $\delta {\bf{F}}_{I J}$ is not parallel to the radial direction $\mathbf{e}_{IJ}$. However, $\delta {\bf{F}}_{I J}$, on average, is transversely isotropic with respect to $\mathbf{e}_{IJ}$ because the instantaneous pairwise force $\mathbf{F}_{IJ}$ has no preference between directions $\perp_1$ and $\perp_2$.
 +
 +When we calculate the friction matrix, we do not distinguish between the directions $\perp_1$ and $\perp_2$ and decompose $\delta\mathbf{F}_{IJ}$ into two parts
 +
 +\begin{align}
 +\delta \mathbf{F}_{IJ}&​=(\mathbf{e}_{IJ}\mathbf{e}^T_{IJ})\cdot\delta\mathbf{F}_{IJ}+(\mathbf{1}-
 +\mathbf{e}_{IJ}\mathbf{e}^T_{IJ})\cdot\delta\mathbf{F}_{IJ} \nonumber \\ &​=\delta\mathbf{F}^{\parallel}_{IJ}+\delta\mathbf{F}^{\perp}_{IJ} \ , \label{equ:​randomF}
 +\end{align}
 +
 +where $\delta\mathbf{F}^{\parallel}_{IJ}$ is the component along vector $\mathbf{e}_{IJ}$ and $\delta\mathbf{F}^{\perp}_{IJ}$ the perpendicular part whose modulus is equally distributed on directions $\perp_1$ and $\perp_2$.
 +
 +**Remark:** The memory term given by Eq. (\ref{equ:​FD}) can be further simplified with a {\color{red}Markovian assumption} that the memory of fluctuating force in time is short enough to be approximated by a Dirac delta function
 +
 +\begin{eqnarray}
 +&\beta \langle [\delta\mathbf{F}_{IJ}(t-s)][\delta\mathbf{F}_{IJ}(0)]^T \rangle = 2 {\gamma}_{IJ} \delta(t-s) \ ,  \label{equ:​Mark_app1} \\
 +&​{\beta}\int_{0}^{t} ds \left \langle [\delta\mathbf{F}_{IJ}(t-s)][\delta\mathbf{F}_{IJ}(0)]^T \right \rangle {\mathbf{V}_{IJ}(s)} = \gamma_{IJ} \cdot {\mathbf{V}_{IJ}(t)} \ , \label{equ:​Mark_app2}
 +\end{eqnarray} ​
 +
 +where $\gamma_{IJ}$ is the friction tensor defined by $\gamma_{I J} = \beta \int_{0}^{\infty} dt \left \langle [\delta\mathbf{F}_{IJ}(t)][\delta\mathbf{F}_{IJ}(0)]^T \right \rangle $. Then, the equation of motion of DPD particles based on the Markovian approximation can be expressed by
 +
 +\begin{eqnarray}\label{equ:​DPD}
 +\frac{d\mathbf{P}_I}{dt}&​=&​\sum_{J\neq I}\left\{\right. F^C_{IJ}(R_{IJ})\mathbf{e}_{IJ}  ​
 +                         - {\gamma}_{IJ}(R_{IJ}) \left( \mathbf{e}_{IJ}\cdot \mathbf{V}_{IJ} \right)\mathbf{e}_{IJ}  ​
 +                         ​+\delta\mathbf{F}_{IJ}(t) \left.\right\}
 +\end{eqnarray}
 +

Navigation
QR Code
QR Code Formulation of MZ-guided Markovian/Non-Markovian DPD (generated for current page)