Numerical method for stochastic delay differential equations

Wanrong Cao
Joint work with Professor Mingzhu Liu
Email: wrcao@seu.edu.cn

Department of Mathematics, Southeast University
Division of Applied Mathematics, Brown University

October 2010
1. Research objective

OUTLINE

1. Research objective
1. Research objective

2. Convergence of the semi-implicit Euler method for a linear SDDE
1. Research objective
2. Convergence of the semi-implicit Euler method for a linear SDDE
3. Mean square stability of the semi-implicit Euler method
1. Research objective
2. Convergence of the semi-implicit Euler method for a linear SDDE
3. Mean square stability of the semi-implicit Euler method
4. Mean square stability of the semi-implicit Milstein method
1. Research objective

2. Convergence of the semi-implicit Euler method for a linear SDDE

3. Mean square stability of the semi-implicit Euler method

4. Mean square stability of the semi-implicit Milstein method

5. T-stability of the semi-implicit Euler method for delay differential equations with multiplicative noise
OUTLINE

1. Research objective
2. Convergence of the semi-implicit Euler method for a linear SDDE
3. Mean square stability of the semi-implicit Euler method
4. Mean square stability of the semi-implicit Milstein method
5. T-stability of the semi-implicit Euler method for delay differential equations with multiplicative noise
6. Reference
OUTLINE

1. Research objective
2. Convergence of the semi-implicit Euler method for a linear SDDE
3. Mean square stability of the semi-implicit Euler method
4. Mean square stability of the semi-implicit Milstein method
5. T-stability of the semi-implicit Euler method for delay differential equations with multiplicative noise
6. Reference
7. Future research
Research objective
General form of the stochastic differential delay equations (SDDEs)

The general form of the SDDEs is

\[
\begin{cases}
dX(t) = f(t, X(t), X(t - \tau))\,dt + g(t, X(t), X(t - \tau))\,dW(t), \\
X(t) = \psi(t), \quad t \in [-\tau, 0],
\end{cases}
\]

(1.1)

- where \(\tau \) is a positive fixed delay
- \(W(t) \) is a \(d \)-dimensional standard Wiener process
- \(\psi(t) \) is a \(C([-\tau, 0], R^m) \)-valued initial segment
- \(f : R^+ \times R^m \times R^m \to R^m \)
- \(g : R^+ \times R^m \times R^m \to R^{m \times d} \)
Objective of my research

- Explicit solutions can rarely be obtained for SDDEs.
Objective of my research

- Explicit solutions can rarely be obtained for SDDEs.
- It is necessary to develop numerical methods and study the properties of these methods.
Explicit solutions can rarely be obtained for SDDEs.

It is necessary to develop numerical methods and study the properties of these methods.

My research focused on the stability and convergence of several kinds of numerical methods for linear SDDEs.
Objective of my research

- Explicit solutions can rarely be obtained for SDDEs.

- It is necessary to develop numerical methods and study the properties of these methods.

- My research focused on the stability and convergence of several kinds of numerical methods for linear SDDEs.

- In my research, Eq. (1.1) is interpreted in the Itô sense.
Convergence of the semi-implicit Euler method for a linear SDDE
a linear SDDE

\[
\begin{aligned}
\begin{cases}
 dX(t) &= [aX(t) + bX(t - \tau)]dt + [cX(t) + dX(t - \tau)]dW(t), \\
 X(t) &= \xi(t), \quad t \in [-\tau, 0],
\end{cases}
\end{aligned}
\]

(2.1)

- \(a, b, c, d \in \mathbb{R}\)
- \(\tau\) is a positive fixed delay
- \(W(t)\) is a 1-dimensional standard Wiener process
- \(\xi(t)\) is a \(C([-\tau, 0]; \mathbb{R})\)-valued initial segment
Some assumptions

- Let \((\Omega, \mathcal{F}, P)\) be a probability space with a filtration \((\mathcal{F}_t)_{t \geq 0}\), which satisfies the usual conditions.

- Let \(W(t), t \geq 0\) in Eq.(2.1) be \(\mathcal{F}_t\)-adapted and independent of \(\mathcal{F}_0\).

- \(|\cdot|\) is the Euclidean norm in \(\mathbb{R}\) and \(\|\xi\|\) is defined by \(\|\xi\| = \sup_{-\tau \leq t \leq 0} |\xi(t)|\).

- Assume \(\xi(t), t \in [-\tau, 0]\) to be \(\mathcal{F}_0\)-measurable and right continuous, and \(E\|\xi\|^2 < \infty\).

- Under the above assumptions, Eq.(2.1) has a unique strong solution \(X(t) : [-\tau, 0] \cup [0, +\infty) \to \mathbb{R}\).
Some assumptions

- Let (Ω, \mathcal{F}, P) be a probability space with a filtration $(\mathcal{F}_t)_{t \geq 0}$, which satisfies the usual conditions.
- Let $W(t), t \geq 0$ in Eq.(2.1) be \mathcal{F}_t-adapted and independent of \mathcal{F}_0.
- $|\cdot|$ is the Euclidean norm in \mathbb{R} and $\|\xi\|$ is defined by $\|\xi\| = \sup_{-\tau \leq t \leq 0} |\xi(t)|$.
- Assume $\xi(t), t \in [-\tau, 0]$ to be \mathcal{F}_0-measurable and right continuous, and $E\|\xi\|^2 < \infty$.

Under the above assumptions, Eq.(2.1) has a unique strong solution $X(t) : [-\tau, 0] \cup [0, +\infty) \rightarrow \mathbb{R}$.
- $X(t)$ satisfies Eq.(2.1)
Some assumptions

- Let \((\Omega, \mathcal{F}, P)\) be a probability space with a filtration \((\mathcal{F}_t)_{t \geq 0}\), which satisfies the usual conditions.
- Let \(W(t), t \geq 0\) in Eq.(2.1) be \(\mathcal{F}_t\)-adapted and independent of \(\mathcal{F}_0\).
- \(|\cdot|\) is the Euclidean norm in \(R\) and \(\|\xi\|\) is defined by \(\|\xi\| = \sup_{-\tau \leq t \leq 0} |\xi(t)|\).
- Assume \(\xi(t), t \in [-\tau, 0]\) to be \(\mathcal{F}_0\)-measurable and right continuous, and \(E\|\xi\|^2 < \infty\).
- Under the above assumptions, Eq.(2.1) has a unique strong solution \(X(t) : [-\tau, 0] \cup [0, +\infty) \to R\).
- \(X(t)\) satisfies Eq.(2.1)
- \(X(t)\) is a measurable, sample-continuous and \(\mathcal{F}_t\)-adapted process.
Several important estimate inequalities

For any given $T > 0$, there exist positive numbers C_1, C_2 and M, such that the solution of Eq. (2.1) satisfies

$$E\left(\sup_{-\tau \leq t \leq T} |X(t)|^2 \right) \leq C_1 [1 + E\|\xi\|^2] \tag{2.2}$$

for all $t \in [-\tau, T]$,

$$E|X(t) - X(s)|^2 \leq C_2 (t - s) \tag{2.3}$$

for any $0 \leq s < t \leq T, t - s < 1$, and

$$E|aX(t) + bX(t - \tau)| \leq \sqrt{2M} (1 + E\|\xi\|^2) \tag{2.4}$$

for all $t \in [0, T]$.
The semi-implicit Euler method for Eq. (2.1)

\[X_{n+1} = X_n + \alpha (aX_{n+1} + bX_{n-m+1}) \]
\[+ (1 - \alpha) (aX_n + bX_{n-m}) h + [cX_n + dX_{n-m}] \Delta W_n, \]

(2.5)

- \(\alpha \) is a parameter with \(0 \leq \alpha \leq 1 \)
The semi-implicit Euler method for Eq.(2.1)

\[X_{n+1} = X_n + \left[\alpha(aX_{n+1} + bX_{n-m+1}) \right. \]
\[\left. + (1 - \alpha)(aX_n + bX_{n-m}) \right] h + [cX_n + dX_{n-m}] \Delta W_n, \]

(2.5)

- \(\alpha\) is a parameter with \(0 \leq \alpha \leq 1\)
- \(h > 0\) is a stepsize which satisfies \(\tau = mh\) for a positive integer \(m\), and \(t_n = nh\).
The semi-implicit Euler method for Eq.(2.1)

\[X_{n+1} = X_n + \left[\alpha(aX_{n+1} + bX_{n-m+1}) \right. \\
+ \left. (1 - \alpha)(aX_n + bX_{n-m}) \right] h + [cX_n + dX_{n-m}] \Delta W_n, \]

\[(2.5) \]

- \(\alpha \) is a parameter with 0 \(\leq \) \(\alpha \) \(\leq \) 1
- \(h > 0 \) is a stepsize which satisfies \(\tau = mh \) for a positive integer \(m \), and \(t_n = nh \).
- \(X_n \) is an approximation to \(X(t_n) \), if \(t_n \leq 0 \), we have \(X_n = \xi(t_n) \)
The semi-implicit Euler method for Eq. (2.1)

\[X_{n+1} = X_n + \left[\alpha(aX_{n+1} + bX_{n-m+1}) \right. \]
\[+ (1 - \alpha)(aX_n + bX_{n-m}) \left] h + \left[cX_n + dX_{n-m} \right] \Delta W_n, \]
\[(2.5) \]

- \(\alpha \) is a parameter with \(0 \leq \alpha \leq 1 \)
- \(h > 0 \) is a stepsize which satisfies \(\tau = mh \) for a positive integer \(m \), and \(t_n = nh \).
- \(X_n \) is an approximation to \(X(t_n) \), if \(t_n \leq 0 \), we have \(X_n = \xi(t_n) \)
- increments \(\Delta W_n := W(t_{n+1}) - W(t_n) \), are independent \(N(0, h) \)-distributed Gaussian random variables
The semi-implicit Euler method for Eq.(2.1)

\[X_{n+1} = X_n + \left[\alpha (aX_{n+1} + bX_{n-m+1}) + (1 - \alpha)(aX_n + bX_{n-m}) \right] h + [cX_n + dX_{n-m}] \Delta W_n, \]

(2.5)

- \(\alpha \) is a parameter with \(0 \leq \alpha \leq 1 \)
- \(h > 0 \) is a stepsize which satisfies \(\tau = mh \) for a positive integer \(m \), and \(t_n = nh \).
- \(X_n \) is an approximation to \(X(t_n) \), if \(t_n \leq 0 \), we have \(X_n = \xi(t_n) \)
- increments \(\Delta W_n := W(t_{n+1}) - W(t_n) \), are independent \(N(0, h) \)-distributed Gaussian random variables
- we assume that \(X_n \) is \(\mathcal{F}_{t_n} \)-measurable at the mesh-point \(t_n \).
The local truncation error is defined by

\[
\delta_{n+1} = X(t_{n+1}) - \left\{X(t_n) + \alpha[aX(t_{n+1}) + bX(t_{n-m+1})]h + (1 - \alpha)[aX(t_n) + bX(t_{n-m})]h + [cX(t_n) + dX(t_{n-m})]\Delta W_n \right\}
\]
(2.6)

and the global error is defined by

\[
\epsilon_n = X(t_n) - X_n.
\]
(2.7)
A Lemma for δ_n

Lemma

The numerical solution produced by the semi-implicit Euler Scheme (2.5) to approximate the solution of Eq. (2.1) satisfies

$$\max_{0 \leq n \leq N} |E(\delta_n)| \leq C_3 h^2 \quad \text{as} \quad h \to 0,$$

(2.8)

and

$$\max_{0 \leq n \leq N} (E(\delta_n)^2)^{\frac{1}{2}} \leq C_4 h \quad \text{as} \quad h \to 0,$$

(2.9)

where C_3, C_4 are positive constants which are independent of h.

WR Cao

Numerical methods for SDDE
Assume that $ah\alpha < 1$. The numerical solution produced by the semi-implicit Euler method (2.5) is convergent to the exact solution of Eq. (2.1) on the mesh-point in the mean-square sense with order $1/2$, i.e. there exists a positive constant C_0 such that

$$\max_{1 \leq n \leq N} (E(\epsilon_n^2))^{\frac{1}{2}} \leq C_0 h^{\frac{1}{2}} \quad \text{as} \quad h \to 0. \quad (2.10)$$
Proof of the above conclusion

- Using the estimates (2.2)-(2.4) and Hölder inequality, Cauchy’s inequality, Doob’s inequality, the lemma can be proved.
- The lemma and the energy techniques were used to prove the theorem.
- Constant C_0 is independent on stepsize h but dependent on T.
We consider

\[
\begin{aligned}
\text{d}X(t) &= [aX(t) + bX(t-1)]\text{d}t + [cX(t) + dX(t-1)]\text{d}W(t), \\
X(t) &= t + 1, \quad t \in [-1, 0].
\end{aligned}
\]

The solution for \(t \in [0, 1] \) is given by

\[
X(t) = \Phi_{t, 0} \left(\xi(0) + \int_0^t \Phi_{s, 0}^{-1} (b - cd) s \, ds + \int_0^t d s \, \Phi_{s, 0}^{-1} \, dW_s \right),
\]

where

\[
\Phi_{t, 0} = \exp \left(\int_0^t (a - \frac{1}{2} c^2) ds + \int_0^t c \, dW_s \right).
\]
For time $t \in [1, 2]$, we obtain the explicit solution by using the explicit solution given above as a new initial function.

<table>
<thead>
<tr>
<th>Stepsize</th>
<th>1/8</th>
<th>1/16</th>
<th>1/32</th>
<th>1/64</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_I</td>
<td>0.0288</td>
<td>0.0091</td>
<td>0.0044</td>
<td>0.0020</td>
</tr>
<tr>
<td>ε_{II}</td>
<td>0.0339</td>
<td>0.0154</td>
<td>0.0026</td>
<td>0.0013</td>
</tr>
</tbody>
</table>

- **Example I:** $a = -2, b = 0.1, c = 0.5, d = 0,$
- **Example II:** $a = -2, b = 0.1, c = 0, d = 0.5.$
- $T = 2, \alpha = 0.5$
- $\omega_{ij} : 1 \leq i \leq 20, 1 \leq j \leq 100$ are simulated.
- $\varepsilon(i) = 1/100 \sum_{j=1}^{100} |X(T, \omega_{ij}) - X_N(\omega_{ij})|^2$
- $\varepsilon = 1/20 \sum_{i=1}^{20} \varepsilon(i)$
Proof of the convergence theorem (1)

It is easy to see that (2.5) has a solution when \(ah\alpha < 1 \). From (2.5), (2.6) and (2.7), we have

\[
\epsilon_{n+1} = X(t_{n+1}) - \left\{ X_n + \alpha[aX_{n+1} + bX_{n-m+1}]h \right. \\
+ (1 - \alpha)[aX_n + bX_{n-m}]h + \left. [cX_n + dX_{n-m}]\Delta W_n \right\}
\]

and

\[
\epsilon_{n+1} = \epsilon_n + u_n + \delta_{n+1},
\]

where

\[
u_n : = ah\alpha(X(t_{n+1}) - X_{n+1}) + [ah(1 - \alpha) \\
+ c\Delta W_n](X(t_n) - X_n) + bh\alpha(X(t_{n-m+1}) - X_{n-m+1}) \\
+ [bh(1 - \alpha) + d\Delta W_n](X(t_{n-m}) - X_{n-m}).
\]
\[\text{(2.12)} \]
Proof of the convergence theorem (2)

Clearly,

$$|E(u_n)| \leq C_u h \left(E|\epsilon_{n+1}| + E|\epsilon_n| + E|\epsilon_{n-m+1}| + E|\epsilon_{n-m}| \right), \quad (2.13)$$

where $C_u = \max\{|a|, |b|\}$, and

$$E(u_n^2) \leq C'_u h \left(E(\epsilon_{n+1}^2) + E(\epsilon_n^2) + E(\epsilon_{n-m+1}^2) + E(\epsilon_{n-m}^2) \right), \quad (2.14)$$

where $C'_u = \max\{a^2 + c^2 + |ab| + |cd|, b^2 + d^2 + |ab| + |cd|\}$.

Proof of the convergence theorem (3)

Hence

\[
E(\epsilon_{n+1}^2 | \mathcal{F}_t) \leq E(\epsilon_n^2 | \mathcal{F}_t) + E(\delta_{n+1}^2 | \mathcal{F}_t) + E(u_n^2 | \mathcal{F}_t) \\
+ 2|E(\delta_{n+1} u_n | \mathcal{F}_t)| + 2|E(\delta_{n+1} \epsilon_n | \mathcal{F}_t)| + 2|E(\epsilon_n u_n | \mathcal{F}_t)|.
\]

(2.15)

Using the Hölder inequality, the properties of conditional expectation and inequalities (2.8), (2.9), (2.13) and (2.14), we have

\[
E(\delta_{n+1}^2 | \mathcal{F}_t) = E(E(\delta_{n+1}^2 | \mathcal{F}_{t_n}) | \mathcal{F}_t) \leq C_4^2 h^2,
\]

\[
E(u_n^2 | \mathcal{F}_t) \leq C'_u h \left[E(\epsilon_{n+1}^2 | \mathcal{F}_t) + E(\epsilon_n^2 | \mathcal{F}_t) \\
+ E(\epsilon_{n-m+1}^2 | \mathcal{F}_t) + E(\epsilon_{n-m}^2 | \mathcal{F}_t) \right],
\]
Proof of the convergence theorem (4)

\[
2 \left| E(\delta_{n+1} u_n \mid \mathcal{F}_t_0) \right| \leq 2 \left[E(\delta_{n+1}^2 \mid \mathcal{F}_t_0) \right]^{\frac{1}{2}} \left[E(u_n^2 \mid \mathcal{F}_t_0) \right]^{\frac{1}{2}} \\
\leq E(\delta_{n+1}^2 \mid \mathcal{F}_t_0) + E(u_n^2 \mid \mathcal{F}_t_0) \\
\leq C_4^2 h^2 + C_u' h \left[E(\epsilon_{n+1}^2 \mid \mathcal{F}_t_0) + E(\epsilon_n^2 \mid \mathcal{F}_t_0) \right. \\
\quad \left. + E(\epsilon_{n-m+1}^2 \mid \mathcal{F}_t_0) + E(\epsilon_{n-m}^2 \mid \mathcal{F}_t_0) \right],
\]

\[
2 \left| E(\delta_{n+1} \epsilon_n \mid \mathcal{F}_t_0) \right| \leq 2 \left(E(E(\delta_{n+1} \mid \mathcal{F}_t_n))^2 \mid \mathcal{F}_t_0 \right)^{\frac{1}{2}} E(\epsilon_n^2 \mid \mathcal{F}_t_0)^{\frac{1}{2}} \\
\leq 2 \left[E(C_3^2 h^4) \right]^{\frac{1}{2}} E(\epsilon_n^2 \mid \mathcal{F}_t_0)^{\frac{1}{2}} \\
\leq C_3^2 h^2 + h E(\epsilon_n^2 \mid \mathcal{F}_t_0),
\]
Proof of the convergence theorem (5)

\[2|E(\epsilon_n u_n | \mathcal{F}_{t_0})| \leq 2E\left(|E(u_n | \mathcal{F}_{t_n})||\epsilon_n | | \mathcal{F}_{t_0}\right) \]

\[\leq 2E\left[C_u h (|\epsilon_n|^2 + |\epsilon_{n+1}| |\epsilon_n| \right] \]

\[+ |\epsilon_{n-m+1}| |\epsilon_n| + |\epsilon_{n-m}| |\epsilon_n| \right) | \mathcal{F}_{t_0} \right] \]

\[\leq 5C_u h E(\epsilon_n^2 | \mathcal{F}_{t_0}) + C_u h \left[E(\epsilon_{n+1}^2 | \mathcal{F}_{t_0}) \right] \]

\[+ E(\epsilon_{n-m+1}^2 | \mathcal{F}_{t_0}) + E(\epsilon_{n-m}^2 | \mathcal{F}_{t_0}) \right].\]
Proof of the convergence theorem (6)

Adding the above inequalities, then (2.15) becomes

\[
(1 - C'_6 h) E(\epsilon^2_{n+1} | \mathcal{F}_t_0) \leq (1 + C'_5 h) E(\epsilon^2_n | \mathcal{F}_t_0) \\
+ C'_6 h E(\epsilon^2_{n-m+1} | \mathcal{F}_t_0) + C'_6 h E(\epsilon^2_{n-m} | \mathcal{F}_t_0) + C'_7 h^2,
\]

(2.16)

where \(C'_5 = 2C'_u + 5C_u + 1 \), \(C'_6 = 2C'_u + C_u \), \(C'_7 = 2C^2_4 + C^2_3 \). Let

\[
E_n = \max_{0 \leq i \leq n} \left\{ E(\epsilon^2_i | \mathcal{F}_t_0) \right\}.
\]

(2.17)
Proof of the convergence theorem (7)

Assume $1 - C_6' h \geq 1/2$. Due to $h \to 0$, the assumption is reasonable. We have from (2.16)

$$E_{n+1} \leq \frac{1 + C_5' h}{1 - C_6' h} E_n + \frac{C_6' h}{1 - C_6' h} (E_{n-m+1} + E_{n-m}) + \frac{C_7'}{1 - C_6' h} h^2$$

$$\leq \left(1 + \frac{C_5' + C_6'}{1 - C_6' h} h\right) E_n + 2C_6' h (E_{n-m+1} + E_{n-m}) + 2C_7' h^2. \quad (2.18)$$

Let $C_5 = 2(C_5' + C_6')$, $C_6 = 2C_6'$, $C_7 = 2C_7'$, then the inequality (2.18) becomes

$$E_{n+1} \leq (1 + C_5 h) E_n + C_6 h E_{n-m+1} + C_6 h E_{n-m} + C_7 h^2. \quad (2.19)$$
Proof of the convergence theorem(8)

Now we will proceed by using an induction argument over consecutive intervals of the length τ up to the end of the interval $[0, T]$.

Case 1 \(0 \leq t_n < \tau, t_{n+1} \leq \tau\).

Since \(\epsilon_{n-m} = \epsilon_{n-m+1} = 0\) in this case, we have from (2.19)

\[
E_{n+1} \leq (1 + C_5 h)E_n + C_7 h^2
\]

\[
\leq C_7 h^2 \sum_{i=0}^{n} (1 + C_5 h)^i
\]

\[
= C_7 h^2 \frac{(1 + C_5 h)^{n+1} - 1}{1 + C_5 h - 1} \leq C_8 h,
\]

where \(C_8 = C_7(e^{C_5 T} - 1)/C_5\).
Proof of the convergence theorem(9)

Case 2 \(t_n = \tau, \tau < t_{n+1} \leq 2\tau. \)

In this case, \(\epsilon_{n-m} = 0 \), by (2.19), we obtain

\[
E_{n+1} \leq (1 + C_5 h) E_n + C_6 h E_{n-m+1} + C_7 h^2.
\]

Since \(0 \leq t_{n-m+1} \leq \tau \), we have the following estimation about \(E_{n-m+1} \) from Case 1:

\[
E_{n-m+1} \leq C_8 h.
\]

Hence, by (2.19), it is obvious that

\[
E_{n+1} \leq (1 + C_5 h) E_n + C_6 C_8 h^2 + C_7 h^2 \\
\leq (1 + C_5 h) E_n + C_9 h (e^{C_5 T} - 1)
\]

for \(C_9 = (C_6 C_8 + C_7)/C_5 \).
Combining Case 1 and Case 2, we obtain

\[E_{n-m} = 0, \ E_{n-m+1} \leq C_8 h, \ E_{n+1} \leq C_{10} h \]

for \(t_n \in [0, \tau] \), where \(C_{10} = C_9 (e^{C_5 T} - 1) \).

Case 3 \(t_n \in [k\tau, (k+1)\tau], \ k \leq s - 1 \).

We make the assumption

\[E_{n-m} \leq C_{11} h, \ E_{n-m+1} \leq C_{11} h \quad (2.21) \]

for a positive constant \(C_{11} \), then we have from (2.19) and (2.21)
Proof of the convergence theorem (11)

\[E_{n+1} \leq (1 + C_5 h) E_n + C_6 h (E_{n-m+1} + E_{n-m}) + C_7 h^2 \]

\[\leq (1 + C_5 h) E_n + 2C_6 C_{11} h^2 + C_7 h^2 \]

\[\leq C_{12} h (e^{C_5 T} - 1) \]

by the same arguments as above, where \(C_{12} = (2C_6 C_{11} + C_7) / C_5 \).

This implies

\[(E_{n+1})^{\frac{1}{2}} \leq C_0 h^{\frac{1}{2}}, \]

i.e.

\[\max_{1 \leq n \leq N} \left[E(\epsilon_n^2 | \mathcal{F}_{t_0}) \right]^{\frac{1}{2}} \leq C_0 h^{\frac{1}{2}}, \]

where \(C_0 = \sqrt{C_{12} (e^{C_5 T} - 1)} \). The theorem is proved.
Mean square stability of the semi-implicit Euler method
Mean square stability of the analytical solutions

Lemma

If

\[a < -|b| - \frac{1}{2} (|c| + |d|)^2, \]

(3.1)

then the solution of Eq. (2.1)

\[
\begin{cases}
 dX(t) = [aX(t) + bX(t - \tau)]dt + [cX(t) + dX(t - \tau)]dW(t), \\
 X(t) = \xi(t), t \in [-\tau, 0],
\end{cases}
\]

is mean square stable, that is

\[
\lim_{t \to \infty} E|X(t)|^2 = 0.
\]

(3.2)
Definition

Under the condition (3.1), a numerical method is said to be mean square stable (MS-stable), if there exists a $h_0(a, b, c, d) > 0$, such that any application of the method to the problem (2.1) generates numerical approximations X_n, which satisfy

$$\lim_{n \to \infty} E|X_n|^2 = 0$$

for all $h \in (0, h_0(a, b, c, d))$ with $h = \tau/m$. A numerical method is said to be general mean square stable (GMS-stable), if any application of the method to the problem (2.1) generates numerical approximations X_n, which satisfy

$$\lim_{n \to \infty} E|X_n|^2 = 0$$

for every stepsize $h = \tau/m$.
Assume the condition (3.1) is satisfied and let

\[K = \frac{|a| + |b|}{2|a|} + \frac{2a + 2|b| + (|c| + |d|)^2}{2|a|(|a| + |b|)}. \]

(3.3)

(1) If \(K < 0 \), then for every \(\alpha \in [0, 1] \), the semi-implicit Euler method is GMS-stable.

(2) If \(K \geq 0 \), then for \(\alpha \in (K, 1] \), the semi-implicit Euler method is GMS-stable; for \(\alpha \in [0, K] \), it is MS-stable.
Theorem

\[h_0(a, b, c, d) = \min \{ h', h'' \} \]

where \(h' = \max \{ h_1, h_2 \} \), \(h'' = \max \{ \frac{1}{|a|}, h_2 \} \), and

\[h_1 = \min \left\{ \frac{1}{|a|}, \frac{-(2a + 2|b| + (|c| + |d|)^2)}{(a + |b|)^2} \right\}, \]

\[h_2 = \frac{-(2a + 2|b| + (|c| + |d|)^2)}{(|a| + |b|)^2}. \]
Proof of the theorem (1)

\[
(1 - a h \alpha)^2 X_{n+1}^2 = [1 + ah(1 - \alpha) + c \Delta W_n]^2 X_n^2 + b^2 h^2 \alpha^2 X_{n-m+1}^2
\]
+ \([bh(1 - \alpha) + d \Delta W_n]^2 X_{n-m}^2\]
+ \([b h(1 - \alpha) + c \Delta W_n] bh \alpha X_n X_{n-m+1}\]
+ \(2[bh(1 - \alpha) + c \Delta W_n] bh \alpha X_{n-m+1} X_{n-m}\]
+ \([1 + ah(1 - \alpha) + c \Delta W_n] [bh(1 - \alpha) + d \Delta W_n] X_n X_{n-m}\].

WR Cao
Numerical methods for SDDE
Proof of the theorem (2)

Note that

$$E(\Delta W_n) = 0, \ E[(\Delta W_n)^2] = h$$

and X_n, X_{n-m+1}, X_{n-m} are \mathcal{F}_{t_n}-measurable, hence

$$E(\Delta W_n X_i X_j) = E[X_i X_j E(\Delta W_n|\mathcal{F}_{t_n})] = 0,$$
$$E[(\Delta W_n)^2 X_i^2] = E[X_i^2 E((\Delta W_n)^2|\mathcal{F}_{t_n})] = hE(X_i)^2,$$

$i, j \in \{n, n-m+1, n-m\}$.

Let $Y_n = E|X_n|^2$, we have
Proof of the theorem (3)

\[(1 - ah\alpha)^2 Y_{n+1} \leq P(a, b, c, d, h, \alpha) Y_n + Q(a, b, h, \alpha) Y_{n-m+1} + R(a, b, c, d, h, \alpha) Y_{n-m},\]

where

\[P(a, b, c, d, h, \alpha) = \left[1 + ah(1 - \alpha)\right]^2 + |1 + ah(1 - \alpha)| \left(|bh\alpha| + |bh(1 - \alpha)|\right) + |cd|h + c^2h,\]

\[Q(a, b, h, \alpha) = b^2h^2\alpha^2 + |bh\alpha| \left(|1 + ah(1 - \alpha)| + |bh(1 - \alpha)|\right),\]

\[R(a, b, c, d, h, \alpha) = b^2h^2(1 - \alpha)^2 + d^2h + |cd|h + |bh(1 - \alpha)| \left(|1 + ah(1 - \alpha)| + |bh\alpha|\right).\]
Proof of the theorem (4)

Note that condition (3.1) implies $1 - ah\alpha \neq 0$, then

$$Y_{n+1} \leq \frac{1}{(1 - ah\alpha)^2} \left(P(a, b, c, d, h, \alpha) + Q(a, b, h, \alpha) + R(a, b, c, d, h, \alpha) \right) \max\{Y_n, Y_{n-m+1}, Y_{n-m}\}.$$

By recursive calculation we conclude that $Y_n \to 0$ ($n \to \infty$) if

$$[P(a, b, c, d, h, \alpha) + Q(a, b, h, \alpha) + R(a, b, c, d, h, \alpha)] < (1 - ah\alpha)^2$$

(3.4)
In Figs 1-3, we consider the equation (2.1) with coefficients $a = -10$, $b = 7$, $c = 1$ and $d = 0.5$. In this case $K = 0.8390$. By Theorem 5, the semi-implicit Euler method is GMS-stable if $0.8390 < \alpha \leq 1$ and MS-stable if $0 \leq \alpha \leq 0.8390$ and $h_0(a, b, c, d) = 1/10$.

Figure: Simulations with fixed parameter $\alpha = 0.9$. Left: $h = 1/4$, right: $h = 1/8$.

![Numerical examples Fig 1](image-url)
Figure: Simulations with fixed stepsize $h = 1/4$. Upper left: $\alpha = 0$, upper right: $\alpha = 0.2$, lower left: $\alpha = 0.85$, lower right: $\alpha = 1$.
Figure: Simulations with fixed parameter $\alpha = 0.1$. Upper: $h = 1/5$, middle: $h = 1/10$, lower: $h = 1/20$.
Figure: Simulations with fixed stepsize $h = 1/2$. Left: $\alpha = 0.01$, right: $\alpha = 0$.

In Fig 4 we consider the equation (2.1) with $a = -0.8$, $b = 0.2$, $c = 0.2$ and $d = 0.2$. We use a large stepsize $h = 1/2$ and choose $\alpha = 0.01$ (left figure), $\alpha = 0$ (right figure). In this case, $K = -0.025 < 0$. It is shown that the method is mean square stable for any α and $h > 0$.
Mean square stability of the semi-implicit Milstein method
the semi-implicit Milstein method

\[X_{n+1} = X_n + \left[\alpha(aX_{n+1} + bX_{n-m+1}) \right. \\
\left. + (1 - \alpha)(aX_n + bX_{n-m}) \right] h + (cX_n + dX_{n-m}) \Delta W_n \\
\left. + \frac{1}{2} (c + d)(cX_n + dX_{n-m})(\Delta W_n^2 - h) \right]
\]
\[(4.1) \]

The convergence result of the semi-implicit Milstein method is

\[\max_{1 \leq n \leq N} \left(E(X(t_n) - X_n)^2 \right)^{1/2} \leq C h \quad \text{as} \quad h \to 0. \]
\[(4.2) \]
Assume the condition (3.1) is satisfied and let

\[M = \frac{H}{2|a|(|a| + |b|)} \]

\[K = \frac{H + 2a + 2|b| + (|c| + |d|)^2}{2a(|a| + |b|)} \]

where, \(H = \frac{1}{2} (c + d)^2 (|c| + |d|)^2 + (|a| + |b|)^2 \). Then

- If \(\alpha \geq M \), the semi-implicit Milstein method is GMS-stable.
- If \(\alpha < M \) and \(\alpha > K \), the semi-implicit Milstein method is GMS-stable; if \(\alpha \leq K \), then the semi-implicit Milstein method is MS-stable.

Specially, if \(K < 0 \), then for all \(0 \leq \alpha \leq 1 \), the semi-implicit Milstein method is GMS-stable.
T-stability of the semi-implicit Euler method for delay differential equations with multiplicative noise
a linear delay differential equations with multiplicative noise

\[
\begin{cases}
 dX(t) = [aX(t) + bX(t - \tau)]dt + cX(t)dW(t),
 t \geq 0, \\
 X(t) = \xi(t), t \in [-\tau, 0],
\end{cases}
\]

- \(a, b, c \in \mathbb{R}\)
- \(\tau\) is a positive fixed delay
- \(W(t)\) is a 1-dimensional standard Wiener process
- \(\xi(t)\) is a \(C([-\tau, 0]; \mathbb{R})\)-valued initial segment
Stochastically asymptotically stable in the large of the analytical solution

Lemma

If

\[a < -|b| - \frac{1}{2}c^2, \]

then the solution of Eq.(5.1) is stochastically asymptotically stable in the large, that is

\[P(\lim_{t \to \infty} X(t, \xi) = 0) = 1 \]

for all \(\xi \).
Definition of T-stability

Assume that the condition (5.2) is fulfilled. A numerical scheme equipped with a specified driving process is said to be T-stable if $|X_n| \to 0 (n \to \infty)$ almost surely holds for the driving process, where X_n is the numerical solution produced by the numerical scheme applied to the test equation (5.1).
The semi-implicit Euler method equipped with two-point random variables

The semi-implicit Euler method for Eq. (5.1) has a form as follows:

\[X_{n+1} = X_n + \left[\alpha(aX_{n+1} + bX_{n-m+1}) + (1 - \alpha)(aX_n + bX_{n-m}) \right] h + cX_n \Delta W_n, \quad (5.3) \]

where \(\alpha \) is a parameter with \(0 \leq \alpha \leq 1 \). \(h > 0 \) is a stepsize which satisfies \(\tau = mh \) for a positive integer \(m \), and \(t_n = nh \). \(X_n \) is an approximation to \(X(t_n) \), if \(t_n \leq 0 \), we have \(X_n = \xi(t_n) \).

Moreover, the increments \(\Delta W_n := U_n \sqrt{h} \), \(P(U_n = \pm 1) = 1/2 \), where \(P \) indicates probability.
If condition (5.2) holds, we have $a < 0$, then $1 - ah\alpha > 0$. By (5.3) we have

$$|X_{n+1}| = \frac{1}{(1 - ah\alpha)} |(1 + ah(1 - \alpha) + c\Delta W_n)X_n + bh\alpha X_{n-m+1} + bh(1 - \alpha)X_{n-m}| \leq \frac{1}{(1 - ah\alpha)} \left[|1 + ah(1 - \alpha) + c\Delta W_n| + |b|h\alpha + |b|h(1 - \alpha) \right] \max\{|X_n|, |X_{n-m+1}|, |X_{n-m}|\}.$$

Obviously, $|X_n| \to 0$ a.s. ($n \to \infty$) if $R(h; \alpha; a, b, c) < 1$ with probability 1, where

$$R(h; \alpha; a, b, c) = \frac{1}{1 - ah\alpha} \left[|1 + ah(1 - \alpha) + c\Delta W_n| + |b|h \right].$$
Stability function (2)

Considering on the selection of the driving process and the two-point distribution, it is enough to take two steps for averaging. That is

\[R^{(2)}(h; \alpha; a, b, c) = \frac{1}{(1 - ah\alpha)^2} \left(|1 + ah(1 - \alpha) + c\sqrt{h}| + |b|h \right) \cdot \left(|1 + ah(1 - \alpha) - c\sqrt{h}| + |b|h \right) \]

and \(|X_n| \to 0 \) a.s. as \(n \to \infty \) if

\[R^{(2)}(h; \alpha; a, b, c) < 1. \quad (5.4) \]
Let condition (5.2) be satisfied. For every \(\alpha \in [0, 1] \), there is a constant \(h_0(\alpha, a, b, c) \). The semi-implicit Euler method equipped with two-point random variables for the driving process is \(T \)-stable, if \(h \in (0, h_0(\alpha, a, b, c)) \).
In the following tests, we show the influence of parameter α and stepsize h on T-stability of the semi-implicit Euler method.

In Figs 1 and 2, we consider the equation (5.5) with coefficients $a = -5$, $b = 4$, $c = 1$.

\[
\begin{align*}
\left\{ \begin{array}{l}
dX(t) &= [aX(t) + bX(t - 1)]dt + cX(t)dW(t), \quad t \geq 0, \\
X(t) &= t + 1, \quad t \in [-1, 0].
\end{array} \right.
\end{align*}
\] (5.5)
Figure: Simulations with fixed parameter $\alpha = 0.1$. Upper: $h = 1/2$, middle: $h = 1/8$, lower: $h = 1/32$.

$$h_0(\alpha, a, b, c) = 0.0417$$

It is shown that the numerical method is unstable if h is large enough. The fact that the method is stable when $h = 1/8$ demonstrates that the range of h in Theorem 10 is not optimal.
Figure: Simulations with fixed stepsize $h = 1/4$. Upper: $\alpha = 0$, middle: $\alpha = 0.5$, lower: $\alpha = 0.95$.

- $\alpha = 0$, then $h_0(\alpha, a, b, c) = 0.0370$
- $\alpha = 0.5$, then $h_0(\alpha, a, b, c) = 0.4799$
- $\alpha = 0.95$, then $h_0(\alpha, a, b, c) = 23.3137$

We usually take $h < 1$ in numerical computation, so the condition $h < 23.3137$ can be explained as that the method is T-stable for arbitrary h.

We usually take $h < 1$ in numerical computation, so the condition $h < 23.3137$ can be explained as that the method is T-stable for arbitrary h.

We usually take $h < 1$ in numerical computation, so the condition $h < 23.3137$ can be explained as that the method is T-stable for arbitrary h.

We usually take $h < 1$ in numerical computation, so the condition $h < 23.3137$ can be explained as that the method is T-stable for arbitrary h.

We usually take $h < 1$ in numerical computation, so the condition $h < 23.3137$ can be explained as that the method is T-stable for arbitrary h.

We usually take $h < 1$ in numerical computation, so the condition $h < 23.3137$ can be explained as that the method is T-stable for arbitrary h.

We usually take $h < 1$ in numerical computation, so the condition $h < 23.3137$ can be explained as that the method is T-stable for arbitrary h.

We usually take $h < 1$ in numerical computation, so the condition $h < 23.3137$ can be explained as that the method is T-stable for arbitrary h.

We usually take $h < 1$ in numerical computation, so the condition $h < 23.3137$ can be explained as that the method is T-stable for arbitrary h.

We usually take $h < 1$ in numerical computation, so the condition $h < 23.3137$ can be explained as that the method is T-stable for arbitrary h.

We usually take $h < 1$ in numerical computation, so the condition $h < 23.3137$ can be explained as that the method is T-stable for arbitrary h.

We usually take $h < 1$ in numerical computation, so the condition $h < 23.3137$ can be explained as that the method is T-stable for arbitrary h.

We usually take $h < 1$ in numerical computation, so the condition $h < 23.3137$ can be explained as that the method is T-stable for arbitrary h.
Figure: Simulations with fixed parameter $\alpha = 1$ and $h = 1$. Left: $a = -5$, $b = 4$, $c = 1$, right: $a = -4.5$, $b = 2$, $c = 2$.

In Fig 7, we show the T-stability of the semi-implicit Euler method with $\alpha = 1$. In fact, based on the theorem, the numerical method is T-stable for arbitrary h. It is shown that the numerical method is T-stable when $\alpha = 1$ even h is very large.
Additionally, we do a numerical test (see Fig 4) to show the T-stability of the semi-implicit Euler method for a two Wiener processes linear problem

\[
\begin{align*}
 dX(t) &= [aX(t) + bX(t - \tau)]dt \\
 &\quad + cX(t)dW_1(t) + c_1X(t - \tau)dW_2(t), \quad t \geq 0, \quad (5.6)
\end{align*}
\]

where \(W_1(t) \) and \(W_2(t) \) are independent 1-dimensional standard Wiener processes. We take \(a = -9, b = 7, c = c_1 = 0.5, \tau = 1 \) and \(X(t) = t + 1, \quad t \in [-\tau, 0] \).
The semi-implicit Euler method for Eq. (5.6) is

\[X_{n+1} = X_n + \left[\alpha (aX_{n+1} + bX_{n-m+1}) \right. \\
+ (1 - \alpha) (aX_n + bX_{n-m}) \left. \right] h + cX_n \Delta W^1_n + c_1 X_{n-m} \Delta W^2_n, \]

(5.7)

where the increments

\[\Delta W^1_n := U^1_n \sqrt{h}, \; \Delta W^2_n := U^2_n \sqrt{h}, \]

\[P(U^1_n = \pm 1) = P(U^2_n = \pm 1) = 1/2. \]
The T-stability of the semi-implicit Euler method for Eq. (5.6) is similar to it for Eq. (5.1).

Figure: Simulations with the semi-implicit Euler method for Eq.(5.6). Upper left: $\alpha = 0.1$, $h = 0.25$, Upper right: $\alpha = 0.1$, $h = 0.125$, lower left: $\alpha = 0.9$, $h = 0.25$, lower right: $\alpha = 1$, $h = 0.5$.

[Image of the plots showing the simulations for different parameters]
Reference

Reference

Future research

- Numerical scheme for stochastic partial differential equations
- Numerical methods for multi-delay and multi-white noises differential equations
- High order numerical method for stochastic differential equations
- Numerical methods for stochastic differential equations with other stochastic process.
Thank you!

Email: wrcao@seu.edu.cn