A Survey of Nonlocal Diffusion Equations and the Underlying Jump Processes

Nathanial Burch
Statistical and Applied Mathematical Sciences Institute
North Carolina State University

This is joint work with:
- Richard Lehoucq (SNL)
Outline

1. Background and Overview

2. Compound Poisson Processes

3. Survey of Other Topics
 - Infinite Activity Lévy Jump Processes
 - Exit-times and Escape Probabilities
 - Anisotropic Jump Processes
 - Non-Markovian Finite Activity Jump Processes

4. Conclusions
Outline

1. Background and Overview

2. Compound Poisson Processes

3. Survey of Other Topics
 - Infinite Activity Lévy Jump Processes
 - Exit-times and Escape Probabilities
 - Anisotropic Jump Processes
 - Non-Markovian Finite Activity Jump Processes

4. Conclusions
Background

Consider the nonlocal diffusion equation,

\[u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy. \]

- \(u \) is a field, e.g., probability density
- “nonlocal”, in contrast to \(u_t(x, t) = \Delta u(x, t) \)
- \(\gamma \) is a nonnegative and symmetric propagator/dispersal kernel, i.e.,

\[\gamma(x, y) = \gamma(y, x) \]

represents the mechanism “relating” \(x \) to \(y \)
- in many cases, \(\gamma \) has compactly support
Background

Consider the nonlocal diffusion equation,

\[u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy. \]

- \(u \) is a field, e.g., probability density
- “nonlocal”, in contrast to \(u_t(x, t) = \Delta u(x, t) \)
- \(\gamma \) is a nonnegative and symmetric propagator/dispersal kernel, i.e.,
 \[\gamma(x, y) = \gamma(y, x) \]
 represents the mechanism “relating” \(x \) to \(y \)
- in many cases, \(\gamma \) has compactly support
- \(u(x, t) \) is the probability density function for a jump process \(X_t \)
 note: analogous to classical diffusion and Brownian motion

\[u_t(x, t) = \Delta u(x, t) \] is the Fokker-Planck equation for \(\sqrt{2} W_t \)
Consider the nonlocal diffusion equation,

\[u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy. \]

● model for **anomalous diffusion**, i.e.,

the diffusing particle satisfies

\[\langle X_t^2 \rangle \sim t^\beta \]

- **normal diffusion** if \(\beta = 1 \)
- **super-diffusion** if \(\beta > 1 \)
Background

Consider the nonlocal diffusion equation,

$$u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy.$$

- model for anomalous diffusion, i.e., the diffusing particle satisfies
 $$\langle X_t^2 \rangle \sim t^\beta$$
 - normal diffusion if $\beta = 1$
 - super-diffusion if $\beta > 1$

- an alternative to classical diffusion when Fick’s first law is not valid
 - contaminant flow in groundwater
 - sporadic movement of foraging spider monkeys
 - turbulence in fluids
 - dynamics of financial markets
 - long-range population/disease dispersion
Background

Consider the nonlocal diffusion equation

\[u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy. \]

- **master equation** for a jump process \(X_t \)
- **note**: analogous to classical diffusion and Brownian motion

\[u_t(x, t) = \Delta u(x, t) \] is the **Fokker-Planck** equation for \(\sqrt{2} W_t \)

(a) Brownian Motion
Background

Consider the nonlocal diffusion equation

\[u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy. \]

- **master equation** for a jump process \(X_t \)
- **note**: analogous to classical diffusion and Brownian motion

\[u_t(x, t) = \Delta u(x, t) \] is the Fokker-Planck equation for \(\sqrt{2} W_t \)

(a) Brownian Motion (b) compound Poisson process (c) \(\alpha \)-stable process
Background

Consider the nonlocal diffusion equation,

\[u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy. \]

- let \(\Omega \) denote a open, bounded domain
- constraints are posed on the volume \(\Gamma \subseteq \mathbb{R}^d \setminus \Omega \)
 - constraints are not posed solely on the surface \(\partial \Omega \)
 - intuitive, nonlocal dynamics \(\Rightarrow \) “nonlocal boundaries”
 - necessary, e.g., surface constraints may not be well-defined
Overview

Existing and recent work:

- theory, mathematical analysis, nonlocal calculus, variational formulations, and numerical methods for volume-constrained nonlocal operators
 - F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo (2010)
 - X. Chen and M. Gunzburger (2011)

- probabilistic theory relating the unconstrained nonlocal operators to symmetric jump processes
Overview

Existing and recent work:

- theory, mathematical analysis, nonlocal calculus, variational formulations, and numerical methods for volume-constrained nonlocal operators
 - F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo (2010)
 - X. Chen and M. Gunzburger (2011)
- probabilistic theory relating the unconstrained nonlocal operators to symmetric jump processes

The contribution of this work:

- the volume-constrained nonlocal diffusion equation is the master equation for a symmetric jump process on a bounded domain
 - well-posed formulation of master equation for a general class of symmetric jump processes on bounded domains
 - boundary conditions for the jump processes prescribe volume constraints
 - numerical method for computing the density that avoids simulation
 - computation of statistics, e.g., exit-times and escape probabilities
Outline

1. Background and Overview

2. Compound Poisson Processes

3. Survey of Other Topics
 - Infinite Activity Lévy Jump Processes
 - Exit-times and Escape Probabilities
 - Anisotropic Jump Processes
 - Non-Markovian Finite Activity Jump Processes

4. Conclusions
Compound Poisson Processes

Consider the nonlocal diffusion equation

$$u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy.$$

Assumptions:

- \(\gamma \geq 0 \)
- \(\gamma \) is a symmetric, radial function, i.e., \(\gamma(x, y) = \gamma(y, x) = \gamma(|x - y|) \)
- \(\gamma \in L^1(\mathbb{R}^d) \)
- \(\gamma = \frac{1}{\lambda} \phi \), where \(\int_{\mathbb{R}^d} \phi(z) \, dz = 1 \)
Compound Poisson Processes

Consider the nonlocal diffusion equation

\[u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy. \]

Assumptions:
- \(\gamma \geq 0 \)
- \(\gamma \) is a symmetric, radial function, i.e., \(\gamma(x, y) = \gamma(y, x) = \gamma(|x - y|) \)
- \(\gamma \in L^1(\mathbb{R}^d) \)
- \(\gamma = \frac{1}{\lambda} \phi \), where \(\int_{\mathbb{R}^d} \phi(z) \, dz = 1 \)

So, for now, we focus on the equation

\[u_t(x, t) = \frac{1}{\lambda} \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \phi(x - y) \, dy. \]
Compound Poisson Processes

Consider the nonlocal diffusion equation

$$u_t(x, t) = \frac{1}{\lambda} \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \phi(x - y) \, dy.$$

- master equation for the compound Poisson process

$$Y_t = \sum_{k=1}^{N_t} R_k$$

- wait-times are exponentially distributed with mean λ
- N_t is a Poisson process with intensity $1/\lambda$
- $R_k \overset{iid}{\sim} \phi$ and independent of N_t
Consider the nonlocal diffusion equation

$$u_t(x, t) = \frac{1}{\lambda} \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \phi(x - y) \, dy.$$

- master equation for the compound Poisson process

$$Y_t = \sum_{k=1}^{N_t} R_k$$

- wait-times are exponentially distributed with mean λ
- N_t is a Poisson process with intensity $1/\lambda$
- $R_k \sim \phi$ and independent of N_t
Consider the nonlocal diffusion equation

\[u_t(x, t) = \frac{1}{\lambda} \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \phi(x - y) \, dy. \]

- “behaves like” classical diffusion as nonlocality vanishes, e.g., if \(\lambda = \varepsilon^2 \) and \(\phi(\xi) = 1 - \varepsilon^2 |\xi|^2 + o(\varepsilon^2) \), then as \(\varepsilon \to 0 \),

\[\hat{u}_t(\xi, t) = \frac{1}{\varepsilon^2} (\phi(\xi) - 1) \hat{u}(\xi, t) \to -|\xi|^2 \hat{u}(\xi, t) \]
Consider the nonlocal diffusion equation

\[u_t(x, t) = \frac{1}{\lambda} \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \phi(x - y) \, dy. \]

“behaves like” classical diffusion as nonlocality vanishes, e.g., if \(\lambda = \varepsilon^2 \) and \(\hat{\phi}(\xi) = 1 - \varepsilon^2 |\xi|^2 + o(\varepsilon^2) \), then as \(\varepsilon \to 0 \),

\[\hat{u}_t(\xi, t) = \frac{1}{\varepsilon^2} (\hat{\phi}(\xi) - 1) \hat{u}(\xi, t) \to -|\xi|^2 \hat{u}(\xi, t) \]

note: we have weak convergence of the underlying processes, e.g.,

\[Y_t \xrightarrow{d} \sqrt{2} W_t, \]

by the Levy Continuity Theorem
Consider the nonlocal diffusion equation

\[u_t(x, t) = \frac{1}{\lambda} \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \phi(x - y) \, dy. \]

Solutions need not be differentiable (or continuous).

Note: operator maps \(L^2(\mathbb{R}^d) \rightarrow L^2(\mathbb{R}^d) \).

(a) \(\alpha = 2, \varepsilon = 0.0100 \)

(c) Classical diffusion
Compound Poisson Processes

Consider the nonlocal diffusion equation

\[u_t(x, t) = \frac{1}{\lambda} \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \phi(x - y) \, dy. \]

- solutions need not be differentiable (or continuous)

note: operator maps \(L^2(\mathbb{R}^d) \rightarrow L^2(\mathbb{R}^d) \)

Graphs:

(a) \(\alpha = 2, \varepsilon = 0.0100 \)

(b) \(\alpha = 2, \varepsilon = 0.0025 \)

(c) classical diffusion
Volume Constraints

Consider the nonlocal diffusion equation

\[u_t(x, t) = \frac{1}{\lambda} \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \phi(x - y) \, dy. \]

the absorbing volume-constrained problem reads

\[
\begin{cases}
 u_t(x, t) = \frac{1}{\lambda} \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \phi(x - y) \, dy, & x \in \Omega, \\
 u(x, t) = 0, & x \in \Gamma, \\
 u(x, 0) = u_0(x), & x \in \Omega.
\end{cases}
\]
Numerical Solutions and Simulations

We compare numerical solutions of the master equation to density estimates from simulations of a compound Poisson process.

- u^h is the numerical solution to the nonlocal boundary value problem

$$u^h(x, t) = \sum_{i=1}^{n} c_i(t) 1_{\Omega_i}(x)$$

- μ_N^h is the density estimate from N simulations

$$\mu_N^h(x, t) = \sum_{i=1}^{m} \left(\frac{\#(Y_t^{(i)} \in \hat{\Omega}_i)}{N\hat{h}} \right) 1_{\hat{\Omega}_i}(x)$$
Numerical Solutions and Simulations

We compare numerical solutions of the master equation to density estimates from simulations of a compound Poisson process.

- u^h is the numerical solution to the nonlocal boundary value problem

\[u^h(x, t) = \sum_{i=1}^{n} c_i(t) 1_{\Omega_i}(x) \]

- $\hat{\mu}_N^h$ is the density estimate from N simulations

\[\hat{\mu}_N^h(x, t) = \sum_{i=1}^{m} \left(\frac{\#(Y_t^{(j)} \in \hat{\Omega}_i)}{N\hat{h}} \right) 1_{\hat{\Omega}_i}(x) \]
Numerical Solutions and Simulations

We compare numerical solutions of the master equation to density estimates from simulations of a compound Poisson process.

- u^h is the numerical solution to the nonlocal boundary value problem

$$u^h(x, t) = \sum_{i=1}^{n} c_i(t) 1_{\Omega_i}(x)$$

- $\hat{\mu}_N^h$ is the density estimate from N simulations

$$\hat{\mu}_N^h(x, t) = \sum_{i=1}^{m} \left(\frac{\#(Y_t^{(i)} \in \hat{\Omega}_i)}{N\hat{h}} \right) 1_{\hat{\Omega}_i}(x)$$

Take-home message:

- ability to compute the density of a jump process restricted to a bounded domain via a well-posed master equation suitably constrained
Outline

1 Background and Overview

2 Compound Poisson Processes

3 Survey of Other Topics
 - Infinite Activity Lévy Jump Processes
 - Exit-times and Escape Probabilities
 - Anisotropic Jump Processes
 - Non-Markovian Finite Activity Jump Processes

4 Conclusions
Outline

1. Background and Overview

2. Compound Poisson Processes

3. Survey of Other Topics
 - Infinite Activity Lévy Jump Processes
 - Exit-times and Escape Probabilities
 - Anisotropic Jump Processes
 - Non-Markovian Finite Activity Jump Processes

4. Conclusions
Consider the nonlocal diffusion equation

\[u_t(x, t) = \int_{\mathbb{R}^d} \left(u(y, t) - u(x, t) \right) \nu(x - y) \, dy, \]

where the so-called Lévy measure \(\nu \) satisfies

\[\int_{\mathbb{R}^d \setminus B_\delta(0)} \nu(x) \, dx < \infty \quad \text{and} \quad \int_{B_\delta(0)} |x|^2 \nu(x) \, dx < \infty. \]
Infinite Activity Lévy Jump Processes

Consider the nonlocal diffusion equation

\[u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \nu(x - y) \, dy, \]

where the so-called Lévy measure \(\nu \) satisfies

\[\int_{\mathbb{R}^d \setminus B_\delta(0)} \nu(x) \, dx < \infty \quad \text{and} \quad \int_{B_\delta(0)} |x|^2 \nu(x) \, dx < \infty. \]

\(\nu \in L^1(\mathbb{R}^d) \)

- finite activity, i.e., a finite number of jumps on every compact interval
- the operator maps \(L^2(\mathbb{R}^d) \rightarrow L^2(\mathbb{R}^d) \)
Infinite Activity Lévy Jump Processes

Consider the nonlocal diffusion equation

\[u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \nu(x - y) \, dy, \]

where the so-called Lévy measure \(\nu \) satisfies

\[\int_{\mathbb{R}^d \setminus B_\delta(0)} \nu(x) \, dx < \infty \quad \text{and} \quad \int_{B_\delta(0)} |x|^2 \nu(x) \, dx < \infty. \]

- \(\nu \in L^1(\mathbb{R}^d) \)
 - finite activity, i.e., a finite number of jumps on every compact interval
 - the operator maps \(L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d) \)

- \(\nu \notin L^1(\mathbb{R}^d) \), e.g.,
 \[\frac{c_1}{|x|^{d+\alpha}} \leq \nu(x) \leq \frac{c_2}{|x|^{d+\alpha}}, \quad \alpha \in (0, 2) \]
 - infinite activity, i.e., an infinite number of jumps on every compact interval
 - the operator maps \(H^{\alpha/2}(\mathbb{R}^d) \to H^{-\alpha/2}(\mathbb{R}^d) \)
Consider the nonlocal diffusion equation

\[u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \nu(x - y) \, dy, \]

where the so-called Lévy measure \(\nu \) satisfies

\[\int_{\mathbb{R}^d \setminus B_\delta(0)} \nu(x) \, dx < \infty \quad \text{and} \quad \int_{B_\delta(0)} |x|^2 \nu(x) \, dx < \infty. \]

- \(\nu \in L^1(\mathbb{R}^d) \)
 - finite activity, i.e., a finite number of jumps on every compact interval
 - the operator maps \(L^2(\mathbb{R}^d) \rightarrow L^2(\mathbb{R}^d) \)

- \(\nu \notin L^1(\mathbb{R}^d) \), e.g., \(\frac{c_1}{|x|^{d+\alpha}} \leq \nu(x) \leq \frac{c_2}{|x|^{d+\alpha}} \), \(\alpha \in (0, 2) \)
 - infinite activity, i.e., an infinite number of jumps on every compact interval
 - the operator maps \(H^{\alpha/2}(\mathbb{R}^d) \rightarrow H^{-\alpha/2}(\mathbb{R}^d) \)

Activity of the jump process \(\Leftrightarrow \) “smoothing” of the solution operator
Infinite Activity Lévy Jump Processes

Consider the nonlocal diffusion equation

\[u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \nu(x - y) \, dy, \]

where the so-called Lévy measure \(\nu \) satisfies

\[\int_{\mathbb{R}^d \setminus B_\delta(0)} \nu(x) \, dx < \infty \quad \text{and} \quad \int_{B_\delta(0)} |x|^2 \nu(x) \, dx < \infty. \]

we again compare numerical solutions of the master equation to density estimates from simulations of the jump process

- simulations of the process are performed via the Poisson approximation
- note the smoothing of the solution operator

\[u^h(x, t) \text{ and } \mu_N^{5h} \text{ for } \tau = 0.001 \]
Outline

1. Background and Overview

2. Compound Poisson Processes

3. Survey of Other Topics
 - Infinite Activity Lévy Jump Processes
 - Exit-times and Escape Probabilities
 - Anisotropic Jump Processes
 - Non-Markovian Finite Activity Jump Processes

4. Conclusions
Exit-times and Escape Probabilities

Consider the volume-constrained nonlocal diffusion equation

\[
\begin{cases}
 u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy, & x \in \Omega, \\
 u(x, t) = 0, & x \in \Gamma, \\
 u(x, 0) = u_0(x), & x \in \Omega.
\end{cases}
\]

\[F_T(t) = \text{Pr}(T \leq t) = 1 - \text{Pr}(T > t) = 1 - \int_{\Omega} u(x, t) \, dx\]

let \(T\) denote the exit-time random variable for the process, then
Exit-times and Escape Probabilities

Consider the volume-constrained nonlocal diffusion equation

\[
\begin{cases}
 u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy, & x \in \Omega, \\
 u(x, t) = 0, & x \in \Gamma, \\
 u(x, 0) = u_0(x), & x \in \Omega.
\end{cases}
\]

- let \(T \) denote the exit-time random variable for the process, then

\[
F_T(t) = \Pr(T \leq t) = 1 - \Pr(T > t) = 1 - \int_{\Omega} u(x, t) \, dx
\]

- the mean exit-time is finite, e.g., \(\mathbb{E}(T) \leq c \| u_0 \|^2_{L^2(\Omega)} \)
Exit-times and Escape Probabilities

Consider the volume-constrained nonlocal diffusion equation

\[
\begin{cases}
 u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy, & x \in \Omega, \\
 u(x, t) = 0, & x \in \Gamma, \\
 u(x, 0) = u_0(x), & x \in \Omega.
\end{cases}
\]

- Let \(T \) denote the exit-time random variable for the process, then

\[
F_T(t) = \Pr(T \leq t) = 1 - \Pr(T > t) = 1 - \int_{\Omega} u(x, t) \, dx
\]

- The mean exit-time is finite, e.g., \(\mathbb{E}(T) \leq c \|u_0\|_{L^2(\Omega)}^2 \)

- We have the decomposition into escape probabilities

\[
\int_{\Omega} u(x, t) \, dx = 1 - \sum_k \sum_j M_{\Gamma_j}^{k}(t)
\]
Exit-times and Escape Probabilities

Consider the volume-constrained nonlocal diffusion equation

\[
\begin{cases}
 u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy, & x \in \Omega, \\
 u(x, t) = 0, & x \in \Gamma, \\
 u(x, 0) = u_0(x), & x \in \Omega.
\end{cases}
\]

The formulation of such volume-constrained problems allows for “non-standard” domains, e.g., unconnected domains

- as an illustration, consider \(\Omega = (0, 0.5) \cup (0.6, 1) \) with \(u_0(x) = 2 \cdot 1_{(0,0.5)}(x) \)
Exit-times and Escape Probabilities

Consider the volume-constrained nonlocal diffusion equation

\[
\begin{aligned}
 u_t(x, t) &= \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy, \quad x \in \Omega, \\
 u(x, t) &= 0, \quad x \in \Gamma, \\
 u(x, 0) &= u_0(x), \quad x \in \Omega.
\end{aligned}
\]

The formulation of such volume-constrained problems allows for “non-standard” domains, e.g., unconnected domains.

- As an illustration, consider \(\Omega = (0, 0.5) \cup (0.6, 1) \) with \(u_0(x) = 2 \cdot 1_{(0,0.5)}(x) \).
Exit-times and Escape Probabilities

Consider the volume-constrained nonlocal diffusion equation

\[
\begin{cases}
 u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy, & x \in \Omega, \\
 u(x, t) = 0, & x \in \Gamma, \\
 u(x, 0) = u_0(x), & x \in \Omega.
\end{cases}
\]

• the formulation of such volume-constrained problems allows for “non-standard” domains, e.g., unconnected domains
Outline

1. Background and Overview

2. Compound Poisson Processes

3. Survey of Other Topics
 - Infinite Activity Lévy Jump Processes
 - Exit-times and Escape Probabilities
 - Anisotropic Jump Processes
 - Non-Markovian Finite Activity Jump Processes

4. Conclusions
Anisotropic Jump Processes

Consider the nonlocal diffusion equation

\[u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy, \]

where \(\gamma \) is not a radial kernel, e.g.,

\[\gamma(x, y) = 50 \exp \left(-5 \left(x - \frac{3}{4} \right)^2 - 5 \left(y - \frac{3}{4} \right)^2 \right) \mathbf{1}_{(-1/2, 1/2)}(x - y). \]
Anisotropic Jump Processes

Consider the nonlocal diffusion equation

\[
 u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy,
\]

where \(\gamma \) is not a radial kernel, e.g.,

\[
 \gamma(x, y) = 50 \exp \left(-5 \left(x - \frac{3}{4} \right)^2 - 5 \left(y - \frac{3}{4} \right)^2 \right) \mathbf{1}_{(-1/2, 1/2)}(x - y).
\]
Outline

1. Background and Overview

2. Compound Poisson Processes

3. Survey of Other Topics
 - Infinite Activity Lévy Jump Processes
 - Exit-times and Escape Probabilities
 - Anisotropic Jump Processes
 - Non-Markovian Finite Activity Jump Processes

4. Conclusions
Non-Markovian Finite Activity Jump Processes

The master equation for more general finite activity jump processes is

$$u_t(x, t) = \int_0^t \Lambda(t - t') \int_{\mathbb{R}^d} (u(y, t') - u(x, t')) \gamma(x, y) \, dy \, dt'.$$

Λ is a so-called memory kernel capable of incorporating temporal effects of the material, non-Markovian effects, etc.
Non-Markovian Finite Activity Jump Processes

The master equation for more general finite activity jump processes is

\[u_t(x, t) = \int_0^t \Lambda(t - t') \int_{\mathbb{R}^d} (u(y, t') - u(x, t')) \gamma(x, y) \, dy \, dt'. \]

- \(\Lambda \) is a so-called memory kernel capable of incorporating temporal effects of the material, non-Markovian effects, etc.
- we obtain the nonlocal diffusion equation,

\[u_t(x, t) = \frac{1}{\lambda} \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \phi(x - y) \, dy, \]

by taking \(\Lambda(t - t') = \frac{1}{\lambda} \delta(t - t') \) and \(\gamma(x, y) = \phi(x - y) \in L^1(\mathbb{R}^d) \).
Non-Markovian Finite Activity Jump Processes

The master equation for more general finite activity jump processes is

$$u_t(x, t) = \int_0^t \Lambda(t - t') \int_{\mathbb{R}^d} (u(y, t') - u(x, t')) \gamma(x, y) \, dy \, dt'.$$

- Λ is a so-called memory kernel capable of incorporating temporal effects of the material, non-Markovian effects, etc.
- We obtain the nonlocal diffusion equation,

$$u_t(x, t) = \frac{1}{\lambda} \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \phi(x - y) \, dy,$$

by taking $\Lambda(t - t') = \frac{1}{\lambda} \delta(t - t')$ and $\gamma(x, y) = \phi(x - y) \in L^1(\mathbb{R}^d)$
- We obtain the nonlocal Cattaneo-Vernotte equation,

$$u_t(x, t) + \frac{\tau}{2} u_{tt}(x, t) = \frac{1}{\beta} \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \phi(x - y) \, dy,$$

by taking $\Lambda(t - t') = \frac{1}{\beta \tau} \frac{2}{\tau} \exp \left(-\frac{t-t'}{\tau/2} \right)$ and $\gamma(x, y) = \phi(x - y) \in L^1(\mathbb{R}^d)$
Outline

1. Background and Overview
2. Compound Poisson Processes
3. Survey of Other Topics
 - Infinite Activity Lévy Jump Processes
 - Exit-times and Escape Probabilities
 - Anisotropic Jump Processes
 - Non-Markovian Finite Activity Jump Processes
4. Conclusions
Conclusions

Conclusions:
• give a probabilistic interpretation of the nonlocal diffusion equation,

\[u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy, \]

with volume constraints as the master equation for a symmetric jump process on a bounded domain

• well-posed formulation of master equation for a general class of symmetric jump processes on bounded domains
• boundary conditions for the jump processes prescribe volume constraints
• numerical method for computing the density that avoids simulation
• computation of statistics, e.g., exit-times and escape probabilities
Conclusions:

- Give a probabilistic interpretation of the nonlocal diffusion equation,

\[
 u_t(x, t) = \int_{\mathbb{R}^d} (u(y, t) - u(x, t)) \gamma(x, y) \, dy,
\]

with volume constraints as the master equation for a symmetric jump process on a bounded domain

- Well-posed formulation of master equation for a general class of symmetric jump processes on bounded domains
- Boundary conditions for the jump processes prescribe volume constraints
- Numerical method for computing the density that avoids simulation
- Computation of statistics, e.g., exit-times and escape probabilities

Thanks for your attention.
References