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First things first: crime exhibits spatial and/or 
temporal patterning. 

April-June 2001 July-September 2001 

Residential burglaries in Long Beach, CA 



First things first: crime exhibits spatial and/or 
temporal patterning. 

Exact repeats Near repeats 

Repeat victimization observations rule out target 
heterogeneity as the sole cause of patterning. 



First things first: crime exhibits spatial and/or 
temporal patterning. 

Violent crimes between Clover and East Lake gangs in 

Los Angeles, 1999-2002 

Temporal clusters of violence 

Gaps with no violence 



Secondly, criminals commit crimes close to their 
home or other “anchor point” 

Distance from offender’s home to crime for 857 residential 

burglaries in Long Beach, CA from 2001-2005. 



What are the reasons behind this? 

• Environmental • Behavioral 

 

 

 

 

 

 

 

 

 

• Routine Activity Theory 
K. Keizer, S. Lindenberg, L. Steg, Science, 322 (2008) 

– “I always go back [to the same places] because, once 
you been there, you know just about when you been 
there before and when you can go back. And every 
time I hit a house, it’s always on the same day [of the 
week] I done been before cause I know there ain’t 
nobody there.” (Subject No. 51), Wright and Decker, 
Burglars on the Job (1996) 

– “It's about respect, see. If someone steps up, calls you 
a [EXPLETIVE] or ‘punk', and your crew [gang] sees that 
[EXPLETIVE], you better be ready to throw down 
[fight].  You got to keep your rep [reputation] solid. 
That's all you got in the `hood'. Your rep. And if 
someone does come at you, you got to get some back, 
and get it back hard. If you back down, man, they 
gonna think you weak.“ (Subject J.T.), Papachristos 
(2007) 



The “routine activity” theory of crime 

• This theory posits that crimes of opportunity are the 
most abundant, as opposed to highly planned 
offences 

• Three ingredients needed for a crime: 

– A potential target 

– A potential offender 

– A lack of security 

• Crimes can be committed by anyone going about 
their daily lives, if the opportunity arises. 
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A grounds-up hotspot model, in cartoon form: 
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dt Discrete timestep 

Lattice spacing 

A0 Intrinsic Attractiveness 

w Attractiveness decay rate 

Q Attractiveness increase 

h Spatial spread of A 

G Rate of burglar generation 



There are many parameters here 



In simulations, we see three types of behavior: 

Uniform crime Fixed hotspots 

Computer simulations of the cartoon model with different parameters 

Moving hotspots 



From a more mathematical perspective 

Starting from the discrete agent model, we derive the 
following continuum PDEs for target attractiveness 𝐴 
and criminal density 𝜌 

𝜕𝐴

𝜕𝑡
= 𝜂∆𝐴 − 𝐴 − 𝐴0 + 𝜌𝐴 

𝜕𝜌

𝜕𝑡
= 𝛻 𝛻𝜌 − 2𝜌𝛻ln𝐴 − 𝜌𝐴 + 𝐴 − 𝐴0  

Decay to baseline Near repeats Exact repeats 

Random motion Bias toward high A Removal after crimes 

Regeneration 



In this model, hotspots arise as a bifurcation off 
the uniform crime state, as parameters vary. 

Uniform crime Crime hotspots 

Numerical simulations of the hotspot PDEs with different parameters 



• Assume a spatially uniform value for A0.  The 
homogeneous equilibrium solution is then: 

 

 

• Perturb this solution via 

 

     

    keeping only linear terms in      and       

• What is the dispersion relation s(k)?  Does our 
perturbation grow or decay? 
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Gaining insight: linear stability analysis 
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The hotspot dispersion relation 

Linearly unstable if 𝐴0 < 𝐴∗
0 ≡
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A “physical” interpretation 



• Assume that we are just slightly unstable, such that 

 

     

    where e is a small control parameter that measures how 
unstable (or stable) the system is 

• Define a new, slow timescale T=e t and express A and  
as expansions in e (that depend on geometry).  Solve the 
resultant differential equations order by order in e, thus 
deriving a nonlinear amplitude equation for A. 

More is found through a weakly nonlinear analysis 
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What the steady state solutions 

look like - bumps and rings 
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Numerical steady state solutions validate 

theory at small e.  We also see that the 

bump solution can stably exist over some 

range of negative e values, as well as for 

all positive e. 

Full nonlinear behavior: 2D, radially symmetric 

bump 

 

ring 

analytic 



Compared to hexagonal geometry 

Radially symmetric 

Hexagons 
This is the preferred geometry in 2D. 
The “ring” solution is not stable here. 



A stability diagram summarizes the results 



Supercritical and subcritical hotspots respond 
differently to attempts at suppression. 

Supercritical spots respond by displacing 



Supercritical and subcritical hotspots respond 
differently to attempts at suppression. 

Subcritical spots respond by dissipating 



Modeling task 2: Geographic profiling 

• Problem: given the crime locations xi for a serial 
offender, predict the location z of his “anchor point” 

• A plausible task, given known distance to crime 
distributions 

• Various algorithms exist to do this.  Most widely 
used is perhaps Rossmo’s CGT (Criminal Geographic 
Targeting) algorithm. 

• But, they are unsatisfying… 



The CGT algorithm is simple – perhaps too much 
so 

1. Posit a distance to crime 
“score” function f(D).  
Parameter B is half of mean 
nearest-neighbor distance for 
crimes in question 

 

2. For each point y on a map, 
calculate the score S at that 
point via 

 

 

 

 

 

3. Interpret S(y) as the likelihood 
that point y is the anchor point 
for this criminal 
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This assumes target homogeneity and ignores 
geographic features 

• Many high score spots 
may be impossible anchor 
points 

• Ignores physical barriers 
between crime locations 
and potential anchor 
points such as lakes, 
mountains, highways, 
etc… 

• No accounting for 
variability in locations of 
other crime targets 



Our approach: model basic criminal behavior and 
recover distance decay 

• From routine activity theory – criminals will simply 
be people moving about their environment in quasi-
realistic ways, starting from their anchor point 

• We assume Brownian motion, with possible drift.  
Other options are readily implemented. 

• Criminals “interact” with the local crime rate A(x), 
which determines whether they commit a crime or 
not at point x, at which point they head back home 

• This is just the criminal portion of the agent-based 
model proposed earlier! 

 



This method includes heterogeneity of targets and 
environment naturally 

Of these three possible home 
locations: 
            : low prob. - path to the 
crime site is long and full of other 
targets 
            : medium prob. - path is 
short but still full of other targets 
            : high prob. - path is short 
with few targets 
 



Finally, the mathematics 

• In the continuum sense, the probability                 that the 
criminal is located at point x at time t is given by the 
solution of the Fokker-Planck equation: 

 

 

 

• Hence, the probability               that a criminal with 
anchor point z commits a crime at x is 
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Could be implemented at this point 

1. Divide your map into a number of cells, each representing a 
possible anchor point z 

2. For each potential anchor point, find                for each of 
the N crimes in the series 

3. Assuming event independence, the probability that the cell 
at z is the anchor point is 

 

 

        

       where           is a prior distribution of anchor points. 

 

But, this method is wasteful and slow, especially if the number 
of potential anchor points is high… 
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The backward equation is, therefore, more useful 

•                                satisfies the adjoint equation: 

 

 

    where the derivatives are now in z 

• Essentially, we start the criminals at the crime site and 
“follow” them home 

• We only need to calculate              for each crime site, 
then use 
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Simplest case: no drift, homogeneous parameters 

• Let                       .  Then 

 

 

• Distance decay is automatically recovered!   
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Test case: 244, N>2 residential burglary series from 
Los Angeles 

• We assume no drift, and that D is homogeneous 

• We model A(x)=Ab H(x), where H(x) is the 
distribution of residences as taken from the 2000 US 
Census.            is the population distribution, also 
from the Census. 

• For each series, we use the other 243 to fit the one 
effective parameter  using Maximum Likelihood 
Estimation, then Geoprofile the series in question. 
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Example Output: CGT Algorithm 



Example Output: Our Algorithm 



Comparing algorithms via “hit percent” 



Conclusions 

• Agent-based models seem capable of providing 
insight into several facets of criminal activity 

– Explaining crime hotspot formation 

– Explaining hotspot displacement versus dissipation 

– Explaining distance decay from home to target 

• That said, the continuum versions of these models 
are often more useful for analysis and computation 
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