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U d l i Ph i d M h i IUnderlying Physics and Mechanics I

Power law PhenominaSoft matter mechanics

Fractional derivative equations 

Nonstandard statistical mechanics Calculus for fractal
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Underlying Physics and Mechanics II

 Soft matter: Materials in between ideal solids and Newtonian fluids, such as polymer, 
emulsions, sediment, biomaterials, oil, et al. Classical models of integer-order 
derivatives can not properly describe “anomalous” behaviors of soft matter, e.g., p p y , g ,
frequency-dependent energy dissipation.

 Power law phenomena: Empirical formula of time- and path-dependent mechanics 
f h f i i h d l i h iprocesses often have a power function expression, whose underlying mechanics 

constitutive relationship does not obey a variety of standard “gradient” laws, such as 
granular Darcy law,  Fourier heat conduction, Newtonian viscosity, Fickian diffusion, g y y
et. al. 

 Calculus description of fractal: Differential expression of fractal models. 

 Calculus description of abnormal statistical mechanics and physics: Levy stable 
distribution, fractional Brownian motion. 
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Soft Matter PhysicsSoft Matter Physics

Pierre-Gilles de Gennes 
proposed the term in his Nobel 
acceptance speech in 1991acceptance speech in 1991.

P G De Gennes called Newton of our timesP. G. De Gennes, called Newton of our times
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Typical Soft mattersⅠTypical Soft mattersⅠ

 Granular materials

 Colloids, liquid crystals, emulsions, foams, 

 Polymers, textiles, rubber, glass,

 Rock layers sediments oil soil DNA Rock layers, sediments, oil, soil, DNA, 

 Multiphase fluids,

 Biopolymers and biological materials
highly deformable, porous, thermal 

fl l l h hl blfluctuations play major role, highly unstable
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Typical Soft matters II
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Difficulties with soft matters
Very slow internal dynamics
Highly unstable system equilibriumHighly unstable system equilibrium
Nonlinearity and friction
Entropy significant

a jammed colloid system, a pile of sand, 
l l f ldi ia polymer gel, or a folding protein.

N. Pan, Lecture on Physics of Fibrous Soft Matters, December 11, 2006N. Pan, Lecture on Physics of Fibrous Soft Matters, December 11, 2006
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Challenging modeling issues in 
complex mechanics

A li d d d li d li Amplitude-dependency: nonlinear modeling 

 Frequency-dependency: fractional derivative q y p y
modeling

H i f i l d i i li Hysteresis: fractional derivative or nonlinear
modeling?

 Stress softening and hardening? 
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Mechanics constitutive relationships

H ki l i id l lid kF• Hookian law in ideal solids: kxF 

u
• Ideal Newtonian fluids: 

y
uF





• Newtonian 2nd law for rigid solids:
2

2

dt
xdmF 

• Fractional model of soft matter:

dt


 xdF  20  Fractional model of soft matter:


dt
F  20  
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Non-Gaussian distribution of Turbulence

A. La Porta, et al.. Nature 409(2001), 1017–1019 11/55



M d b bilit d it f h fMeasured probability density of changes of 
the wind speed over 4 sec

J Peinke et al Ann Phys (Leipzig) 13 No 7–8 450 – 460 (2004)J. Peinke, et al, Ann. Phys. (Leipzig) 13, No. 7–8, 450 – 460 (2004)

12/55



Power law of English vocabularyPower law of English vocabulary

B J W U i i f llli i U b Ch i M 15 2006Bruce J. West, University of  lllinois at Urbana-Champaign, May 15, 2006.
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Fractional derivative modeling vs. 
Nonlinear modeling

Hi t d th d d ( M k i ) History- and path-dependency (non-Markovian)

 Global interaction

 Fewer physical parameters (simple= beautiful)

 Competition or complementary？
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Definitions of fractional time derivativeDefinitions of fractional time derivative

（1）Gruwald-Letnikov fractional derivative:

( ) lim ( 1) ( )
p n

p r pd f t h f t rh  
  

（1）Gruwald Letnikov fractional derivative:

  0 0
lim ( 1) ( )p h rnh t a

h f t rh
rdt 

 

   
 



（2）Riemann-Liouville fractional derivative:

( ) 1 ( ) ( )    (0 1)
(1 )

tp
p

p

d f t d t f d p
dt dt

    
  ＜

（2）Riemann Liouville fractional derivative:

(1 )p
adt p dt  

（3）Caputo fractional derivative:
( )

1

( ) 1 ( )    ( 1 )
( ) ( )

tp n

p p n

d f t f d n p n
dt n p t

 
     

 

（3）Capu o ac o a de va ve:

( ) ( )p p
adt n p t   
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Definitions based on Fourier transform
Fourier transform of fractional 

time derivativetime derivative

  PipdFT 






   Pi

dt
FT  
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Examples: fractional derivativeExamples: fractional derivative 
operation and equation

21
21

21 2 t
dt

td


Operation:

 


  p

dt
tpd 021

21

I iti l l bl
 




 Ap

dt

0
Initial value problems: 

Fractional Hamiltonian: Hx




  Hp 


 

p
 pd

pdxx 
 

x
p



17/55
dt
pp p

dt
x  

G. Turchetti, Hamiltonian systems with fractional time derivative, 2000.



Definitions of fractional Laplacian

   PkpF  2 0< <1 Fourier transform:   
        


  dpxpp 1Difference definition:    

     
  


   d

xd
p d 2

Difference definition:

             




 

 dSNDhxpxp
S dd 




















  2222*
1

Integral definition:

  xxnS  



 

W.Chen and S. Holm, Journal of Acoustic Society of  America,W.Chen and S. Holm, Journal of Acoustic Society of  America, 115(4), 1424115(4), 1424--1430, 20041430, 2004
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Fractional Laplacian model of p
dissipative acoustic wave

2

t
p

ct
p

c
p









0

0
2

2

2
0

21 Damped wave equation( =0):

Thermoviscous equation( =1):  p
t

c
t
p

c
p 








 002

2

2
0

21 

2 1
0

2 2 1
0 0

21

cos

p pp
c t tc










 

  
 

Modified Szabo’s wave equation：
0 cos

2
(0 2,  1)

c

   
0

0
tan

2c
    

  p
tct

p
c

p y










 1
0

0
2

2

2
0

21Fractional Laplacian wave equation：
(0< <1)(0< <1)
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A l diff i ti fAnomalous diffusion equation of 
fractional time-space derivativesp

  0    0 ptp  

10 10  10 10 
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Advances of numerical simulations

 Numerical methods for fractional 
time derivative equations

 Numerical methods for fractional 
space derivative equations
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Numerical methods for fractional time 
derivative equations I

Fi i diff h dFinite difference methods
 Explicit methods

 Implicit methods

 Crank-Nicholson method Crank Nicholson method

V lt i t l ti th dVolterra integral equation method
 Prediction-correction method

 Block by block method
…….
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Numerical methods for fractional time 
d i i i IIderivative equations II

 Homotopy perturbation method Homotopy perturbation method

 Laplace transform method

 Variational iteration methodVa at o a te at o et od

 Differential transformation method

 Adomian decomposition methodp

 Random walker methods

 Finite element method

 Discontinuous Galerkin method

 Meshless methods 

 Kansa’s method

 Laplace transformed boundary particle methodp y p

……. 23/55



Numerical examplesNumerical examples

( ) ( ) ( ) (0 2) 
p

p

d u t Bu t f t p
dt

   

 0<p<1: fractional relaxation equation for concrete colloid soil

(0)u C

 0<p<1: fractional relaxation equation for concrete, colloid, soil, 
et. al; creep under known stress. u(t) stress, f(t) strain function, C
initial conditioninitial condition.

 1<p<2：fractional damped vibration equation for complex 
i (t) di l t f(t) t l f C i iti lviscous. u(t) displacement, f(t) external force, C initial 

displacement.
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A comparison of four different kinds 
of numerical method

1  
Explicit

0.9

Explicit
P-C
ATM
DTM
Exact solution

0 7
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s

Exact solution
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0.7

S
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0 5 ti t 0 1 i iti l t (B 1 (0) 1)p=0.5;  time step 0.1; initial stress (B=1，u(0)=1)
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Meshless method-Kansa’s methodMeshless method Kansa s method
1D time fractional diffusion problem

       
2

2

, ,
+ , , ,    0< 1,0 2, 0

u x t u x t
u x t Q x t x t

t x



 
 

     
 

       2 2 22, 2 2 2
3

Q x t t x x t x x t


    

 

   0, 2, 0,    0u t u t t  

 0 0 0 2u x x   ,0 0,    0 2u x x  

Interpolation basis (MQ function)

 2t  

   2 2,i j i jx x x x c   

Convergence order  t Convergence order
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A comparison of FDM and LTBPMp

27/55
Fu ZJ et al. Journal of Computational Physics, 2013, 235: 52-66.



2D time fractional diffusion problem
         2,

, , ,    0,1 , 0,
u x t

u x t Q x t x t T
t






    

    Merr( ) ,maxu u i u i 

   2, ,    , 0,x yu x t t e x t T  

  0 =0u x x t 

t    
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 0 0,    , 0u x x t 
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2

1

Rerr( ) ,i
NT

i

u
u i









 3   

Table 1 Errors at T=1: LTBPM(            ) vs domain-type RBF method(            )0.2h  0.1h 

Merr(u) Rerr(u) Rerr(u,x) Rerr(u,y)

LTBPM(M=10) 4.135e-4 5.596e-5 5.596e-5 5.596e-5

DRBF(                ) 1.234e-2 2.073e-3 6.864e-3 6.864e-3

DRBF(                     )* 3.046e-4 5.116e-5 1.694e-4 1.694e-4

0.1t 
0.004t 

 
28/55

* Calculated from the formula                  in reference（Computational Mechanics, 48,1-12,2011) 2t  

Save the computing cost for long-range time simulation



2D subdiffusion convection problem

    2u x t u x t          2

1

, ,
, 0.005 ,    1,1 , 0,

u x t u x t
u x t x t T

t x
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Numerical solution

Significant S g
convection 

effect

LTBPM
( )0 2h(             )

results
(x1=0

ti )

0.2h 

section)

Left endpoint
h d ti



has dramatic
changes with
different 
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Contaminant transport（I）
Transport process of Bromide ion in underground aquifers（Nevada, US）

p （ ）

Mathematical model
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Contaminant transport（I）p （ ）

Experiment and numerical results Long-time history evolution for solute 
concentration

Sun HG, et al. Philosophical Transactions of Royal Society A (In press)
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Contaminant transport（II）
Transport process of Hydrogen isotopes (Tritium) in Natural Media （ (Mississippi , US)）

p （ ）

Location Measurement 
points

Aquifer 
ingredients
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points ingredients
Boggs, J. M., et al., Water Resour. Res., 28(12), 243 3281-3291, 1992



Contaminant transport（II）p （ ）

Y Zhang et al Water Resour Res 43 (2009): W05439

1.1 

Y. Zhang , et al. Water Resour. Res., 43 (2009): W05439
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Contaminant transport（II）p （ ）

Variable order 
FPDE model
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Contaminant transport（II）p （ ）

36/55Variable order 
FPDE model



Contaminant transport（III）Contaminant transport（III）
Transport process of  Sodium fluorescein in Natural fractured media (Grimsel , Switzerland )

Factors on diffusion behavior: Media structure, porosity, saturation

37/55Kosakowski, G., et al., PSI Rep. 05-03, Paul Scherrer Inst., Switzerland, 2005.



Numerical methods for spatial 
f i i i ifractional derivative equations

 ( ) Finite difference methods (FDM)

 Random walker model (RWM) for anomalous diffusion Random walker model (RWM) for anomalous diffusion

 Comparison between FDM and RWM：p
1. The RWM is based on mechanics and physics of anomalous 
diffusion process
2 The FDM is a type of numerical solution method for2. The FDM is a type of numerical solution method for 
fractional derivative equations. 
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N i l l S ti l f ti lNumerical examples － Spatial fractional 
anomalous diffusion equation 

( , ) ( , )( , ) ( , ),   1 2u x t u x td x t q x t
t



 
 

     
( , ) ( ); ( , ) ( )L M

t x
u x t a t u x t b t

    


( ,0) ( )u x c x






Master equation for various anomalous diffusions in porous 
media, complex fluids and turbulence.
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Finite difference method for spatial anomalous

0.13  
Exact solution

Finite difference method for spatial anomalous 
diffusion equation
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( )

Comparison of numerical and analytical solutions at x=0.45
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Continuous Time Random WalkContinuous Time Random Walk

41/55



Ultrasonic Medical ImagingUltrasonic Medical Imaging

Configuration of the CARI 
i i f b t t

Imaging figure of breast 
imaging of breast tumor tumors by CARI 

Ultrasonics, 42, 919-925, 2004 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7591649
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Fractional Laplacian wave equationp q

2
/20

2 2 1
0 0

21 ( )pp p
c t c t







 
   

 0 0

α0fat=15.8/(2π)1.7dB/m/MHz1.7, f
c0fat=1475m/s, ηfat =1.7

α0tum=57.0/(2π)1.3dB/m/MHz1.3, 0tum ( ) ,
c0tum=1527m/s, ηtum =1.3

2D configuration of the CARI 
technique of breast tumorstechnique of breast tumors
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Numerical solution-1Numerical solution-1

Human fatty tissue Human tumor tissue

Figure 3.75MHz ultrasound propagation at t=1.3μs

Human fatty tissue Human tumor tissue
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Numerical solution-2Numerical solution-2

Tissue with a 0.4mm×0.4mm Normalized sound pressure
centered tumor under 
3.75MHz ultrasound 

Normalized sound pressure 
along the reflecting line 
(x=2mm) when t=1.3μs.

propagation at t=1.3μs
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Modified Szabo’s wave equationq

2 121  2 1
0

2 2 1
0 0

21

cos
2

p pp
c t tc










 

  
 

(0 2,  1)   

0F =15.8/(2)1.7dB/m/MHz1.7,
c0F=1475m/s, F =1.7 

0T=57.0/(2)1.3dB/m/MHz1.3, 
c0T =1527m/s, T =1.3

3D configuration of the CARI 
t h i f b t ttechnique of breast tumors
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Numerical solution-1Numerical solution-1

Normalized sound pressure on the reflecting plate (x=2mm) 
at time t=1.3s of normal (fatty) tissue and 

tissue with a centered 0.5mm×1mm×1mm tumor
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Numerical solution-2Numerical solution-2

N li d d l th fl ti li ( 2 2 )
48/55

Normalized sound pressure along the reflecting line (x=2mm, z=2mm) 
at time t=1.3s versus axial sizes of tumors



Summary of numerical methodsSummary of numerical methods
 The Caputo definition of fractional derivative is suitable for time p

fractional derivative equation discretization.

 The Grunwald Letnikov and the Riesz Feller definitions can be The Grunwald-Letnikov and the Riesz–Feller definitions can be 
used to the discretization of spatial fractional derivative equations.

V i bl d FPDE d l b h i d ib h Variable order FPDE model may be a choice to describe the 
contaminant transport in natural media 

 Random walk model has more explicit mechanics significance but 
is feasible only for a particular use, anomalous diffusion.

 Laplace transformed Meshless method may be a competitive 
method to save the computing cost for long-range time simulation p g g g
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Opening issuesOpening issues

 The solution of large-scale fractional models is still a challenging 
issue thanks to the exponential increase of CPU time and storage 
requirements with expanding space domain；

 The solution of multidimensional fractional space derivative p
equation has not been reported in literature；

 Implementation of boundary conditions in fractional space Implementation of boundary conditions in fractional space 
derivative models；

 No commercial codes available for fractional derivative models No commercial codes available for fractional derivative models.
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Comments
 Finite difference methods are of a dominant numerical 

scheme for fractional derivative models；

 Numerical methods for fractional time derivative equations 
are much more mature than those for fractional spatialare much more mature than those for fractional spatial 
derivative equations;

 Very little research on stability convergence accuracy of Very little research on stability, convergence, accuracy of 
meshless methods for fractional derivative equations. 

V i bl d FPDE d l C d FPDE d l Variable order FPDE model or Constant order FPDE model 

51/55



O tl k A h ll t itOutlook: A challenge, an opportunity

 Fast computational methods；

 Basic computational mathematics issues of fractional Basic computational mathematics issues of fractional 
derivative equations;

 Related computational mechanics software；

 Inherent relationship between fractional derivative Inherent relationship between fractional derivative 
equations and statistical mechanics approaches. 
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More information

 Website for fractional dynamics and power law phenomena：
http://www.ismm.ac.cn/ismmlink/PLFD/index_c.html

 Conferences：ASME Workshop on “Fractional calculus 
modeling”, each odd year (e.g. Sept. 4-7, 2007, Las Vegas)，IFA g , y ( g p , , g )
Workshop on “Fractional calculus and its Applications”, France 
2004, Portugal 2006, Turkey 2008, Spain 2010, China 2012, Some , g , y , p , ,
physicist conferences about “anomalous diffusion”, e.g., Denmark 
2003, New Zealand 2005.2003, New Zealand 2005.
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Search Indices:Search Indices:

h i bi i f i f di Geophysics, bioinformatics, soft matter, porous media

 frequency dependency, power law, non-gradient law

 History- and path-dependent process, memory

 Levy stable distribution, fractional Brownian motion

 Fractal, microstructures, self-similarity

 Fractional calculus, fractional derivative,

 Entropy, irreversibility

54/55



Thanks!Thanks!

chenwen@hhu.edu.cn  

http://www.ismm.ac.cn/ismmlink/PLFD/index_c.html
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