Adaptive Finite Difference Method with Variable Timesteps for Fractional Diffusion and Diffusion-Wave Problems

Santos B. Yuste and Joaquín Quintana-Murillo
Dpt. Física, Univ. Extremadura
Badajoz (Spain)

The problem in a nutshell

For some anomalous diffusive (subdiffusive) particles, the pdf of finding them at a given place at a given time follows a fractional (i.e., an integro-differential) diffusion equation. When one solves this equation by means of standard finite difference methods, the CPU time and computer memory consumption scale as time ${ }^{2}$!!!

Solution from $t=0$ to $t=\mathbf{1}$

Standard method

Solution from $t=0$ to $t=\mathbf{2}$

Our adaptive method

Brownian motion. Normal diffusion

Recorded random walk trajectories by Jean Baptiste Perrin. Lef part: three designs obtained by tracing a small grain at intervals of 30 s . Right part: the starting point of each motion event is shifted to the origin. These figures constitute part of the measurement of Perrin, Dabrowski and Chaudesaigues leading to the determination of the Avogadro number. The result was 7.05×10^{23}

Jean Baptiste Perrin

Subdiffusion in...

- Physics • Geology • Finance
- Chemistry • Ecology •
- Biology (see next)

FIG. 2 (color online). Subdiffusivemotion of RNA molecules in the cell. Movies were read into Matlab software (Mathworks).

Anomalous Transport

Foundations and Applications

(anomalous) diffusion
exponent in vivo: $\gamma=0.7$

Golding and Cox Physical Nature of Bacterial Cytoplasm PRL 96, 098102 (2006)

How can we model subdiffusion processes?

$?$

CTRW with fat/heavy tail

\longrightarrow Subdiffusion

Fractional diffusion equation

Subdiffusion

Fractional diffusion equation

$$
\frac{\left\langle x^{2}\right\rangle \sim t^{\gamma}}{n<v<1} \longrightarrow \frac{\partial^{\gamma}}{\partial t^{\gamma}} u(x, t)=K \frac{\partial^{2}}{\partial x^{2}} u(x, t)
$$

$$
\text { Caputo derivative: } \quad \frac{\partial^{\gamma}}{\partial t^{\gamma}} y(t) \equiv \frac{1}{\Gamma(1-\gamma)} \int_{0}^{t} d \tau \frac{1}{(t-\tau)^{\gamma}} \frac{d y(\tau)}{d \tau}, \quad 0<\gamma<1
$$

- Limit equation of a (mesoscopic) CTRW model with powerlaw distribution of waiting times
- Linear
- Easy inclusion of external fields and boundary conditions
- \exists analytical techniques and solutions for some basic problems (eigenfunction expansions, Green functions)
- \exists algorithms for obtaining numerical solutions

Finite difference method: numerical scheme

$$
\partial u=F \quad \Longrightarrow \quad \delta U=F
$$

$$
\begin{equation*}
\left[\frac{\partial^{\gamma}}{\partial t^{\gamma}}-K \frac{\partial^{2}}{\partial x^{2}}\right] u(x, t)=F(x, t) \quad \Longrightarrow \quad\left[\delta_{t}^{\gamma}-K \delta_{x}^{2}\right] U_{j}^{n}=F\left(x_{j}, t_{n}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{t}^{\gamma} U_{j}^{n}=\frac{1}{\Gamma(2-\gamma)} \sum_{m=0}^{n-1} T_{m, n}^{(\gamma)}\left[U_{j}^{m+1}-U_{j}^{m}\right] \quad \text { (2) } \quad \delta_{x}^{2} u\left(x_{j}, t\right)=\frac{u\left(x_{j+1}, t\right)-2 u\left(x_{j}, t\right)+u\left(x_{j-1}, t\right)}{(\Delta x)^{2}} \tag{3}
\end{equation*}
$$

$$
S_{n}=\Gamma(2-\gamma) K \frac{\left(t_{n}-t_{n-1}\right)^{\gamma}}{(\Delta x)^{2}}
$$

Fractional difference methods are heavy

$$
\begin{array}{ll}
U_{j-1}^{0}, & U_{j-1}^{m-2}, U_{j-1}^{m-1}, U_{j-1}^{m} \\
U_{j}^{0}, & U_{j}^{m-2}, U_{j}^{m-1}, U_{j}^{m} \\
U_{j+1}^{0}, & U_{j+1}^{m-2}, U_{j+1}^{m-1}, U_{j+1}^{m}
\end{array}
$$

$$
\longrightarrow\left[\begin{array}{c}
U_{j-1}^{m+1} \\
U_{j}^{m+1} \\
U_{j+1}^{m+1}
\end{array}\right]
$$

m terms

From m to $m+1$: computational cost $\sim m$
From $m=1$ to $m=n+1$: computational cost $\sum_{m=1}^{n} m^{2} \sim n^{2} \quad$ Huge!!!
[computational cost for normal diffusion $\sim n$]

Variable/adaptive timestesps: Adaptive methods

Adaptive methods $\left\{\begin{array}{l}\text { more reliable: via thorough sampling of difficult regions } \\ \text { faster: via sparse sampling of quiet regions }\end{array}\right.$

A good ODE integrator should exert some adaptive control over its own progress, making frequent changes in its stepsize. [...] Many small steps should tiptoe through treacherous terrain, while a few great strides should speed through smooth uninteresting countryside. The resulting gains in efficiency are not mere tens of percents or factors of two; they can sometimes be factors of ten, a hundred, or more

Press et al, Numerical Recipes, section 16.2

A testbed problem with wild and quiet regions

- Dispersion of a constant flux of subdiffusive particles arising from a point source (\rightarrow one particle released every unit time at the source)

A testbed problem with wild and quiet regions

- Dispersion of a constant flux of subdiffusive particles - one particle released every unit time at $x=0: \bullet 1 \mathrm{D}$ infinite medium

Source of particles

Formation of morphogen gradients: standard reaction-diffusion model

Source of particles

Long-time (stationary) distribution of morphogens in the medium is especially important

Fast and accurate numerical methods are required

A testbed problem with wild and quiet regions

The release of a particle at $x=0$ is described by means of a Dirac delta function

Discretization of $\delta(x)$

Dirac delta function approximated by a hat function

Choosing the timesteps

$$
g\left(t_{m}\right)=\left(U_{-1}^{m}-2 U_{0}^{m}+U_{1}^{m}\right) /(\Delta x)^{2} \simeq \partial^{2} u\left(x, t_{m}\right) /\left.\partial x^{2}\right|_{x=0} \sim \text { curvature at the origin }
$$

- Arbitrary but with convenient features:
- Timestep decreases (increases) when the curvature increases (decreases)
- Prefixed maximum and minimum values (0.02 and 0.0001 , respectively)

Error at the most difficult place, $x=0$, where the particles are born

Solid symbols: adaptive method Hollow symbols: method with fixed timestep: $t_{m+1}-t_{m}=0.001$

Another testbed problem. Another adaptive algorithm
A problem with initial condition easier to handle

How to choose the size of the timesteps? Another adaptive algorithm

Goal: a more general criterium.

A good ODE integrator should exert some adaptive control over its own progress, making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize control is to achieve some predetermined accuracy in the solution with minimum computational effort. Many small steps should tiptoe through treacherous terrain, while a few great strides should speed through smooth uninteresting countryside.
Prest et al. Numerical recipes.

We explore an adaptive algorithm of classic style \rightarrow

Another adaptive algorithm

We explore a straightforward algorithm of classic style

NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING Section 16.2:

Usually the purpose of this adaptive stepsize control is to achieve some predetermined accuracy in the solution with minimum computational effort. Many small steps should tiptoe through treacherous terrain, while a few great strides should speed through smooth uninteresting countryside. [...]

Implementation of adaptive stepsize control requires that the stepping algorithm return information about its performance, most important, an estimate of its truncation error. [...] Obviously, the calculation of this information will add to the computational overhead, but the investment will generally be repaid handsomely

With fourth-order Runge-Kutta, ...
... the most straightforward technique by far is step doubling. We take each step twice, once as a full step, then, independently, as two half steps. The difference between the two numerical estimates is a convenient indicator of truncation error. It is this difference that we shall endeavor to keep to a desired degree of accuracy, neither too large nor too small. We do this by adjusting [the timestep]

How to choose the size of the timesteps? A new algorithm

Step $2 \mathrm{a} \rightarrow$ met. accurate

Step $2 b \rightarrow$ met. fast and still accurate

1. Boostrap of step $n: \Delta_{n}=\Delta_{n-1}$ and $\left|\widehat{U}_{k}^{(n)}-U_{k}^{(n)}\right| \stackrel{?}{>}$ tolerance $\equiv \tau$

2a. True: then $\Delta_{n} \rightarrow \Delta_{n} / R$ until $\left|\widehat{U}_{k}^{(n)}-U_{k}^{(n)}\right|<\tau \quad$ then $\quad t_{n}=t_{n-1}+\Delta_{n}$
2b. False: then $\Delta_{n} \rightarrow R \Delta_{n} \quad$ until $\quad\left|\widehat{U}_{k}^{(n)}-U_{k}^{(n)}\right|>\tau \quad$ then $\quad t_{n}=t_{n-1}+\Delta_{n} / R$
3. Repeat [i.e., $n \rightarrow n+1$ and go to 1]
R : brave exploration coefficient \rightarrow we use $R=2$

Numerical results

Solid line: exact solution; squares: adaptive numerical solution up to $n=45$ ($t_{45}=9.6268$) and tolerance $\tau=5 \times 10^{-4}$; stars: numerical solution up to $n=112$ $\left(t_{112}=9.1690\right)$ and $\tau=10^{-4}$. In both cases $\Delta_{0}=0.01$ and $\Delta x=\pi / 40$.

Numerical results

Numerical errors at the mid-point of (i) the adaptive method with $\tau=5 \times 10^{-4}, \Delta_{0}=0.01$ (squares, 45 timesteps, CPU time $\approx 0.15 \mathrm{~s}$); (ii) the adaptive method with $\tau=10^{-4}$ and $\Delta_{0}=0.01$ (stars, 112 timesteps, CPU time $\approx 0.75 \mathrm{~s}$); (iii) the method with constant timesteps of size $\Delta_{n}=0.01$ (triangles, 1010 timesteps, CPU time $\approx 440 \mathrm{~s}$); and (iv) the method with uniform timesteps of size $\Delta_{n}=0.001$ (circles, 10100 timesteps, CPU time $\approx 43800 \mathrm{~s})$. In all cases $\gamma=1 / 2$ and $\Delta x=\pi / 40$.

Does the method always work? Stability

Do the inevitable numerical perturbations (numerical noise,

How do the perturbations evolve? round-off errors) ruin the method?

$$
\begin{array}{rr}
\frac{\text { Linear }}{} \\
A U^{(n)}=\mathcal{M} U^{(n)}+\tilde{F}^{(n)}
\end{array} \Rightarrow A v^{(n)}=\mathcal{M} v^{(n)}
$$

Eq. for the evolution of the perturbation

Does the method always work? Stability

Von Neumann stability analysis: (Yuste-Acedo, arXiv:cs/0311011, SIAM J. Num. Anal. 05) Suscessful for numerical methods for fractional equations with Riemman-Liouville and Pareto derivatives and for Grünwald-Letnikov, L1 and L2 discretization schemes, and many others

Von Neumann procedure:

$$
\text { 1: } \quad v_{j}^{(n)}=\sum_{q} \xi_{q}^{(n)} e^{i q j \Delta x}
$$

2: Stability analysis of a generic subdiffusive mode: $\quad \xi_{q}^{(n)} e^{i q j \Delta x}$

$$
A v^{(n)}=\mathcal{M} v^{(n)} \quad A\left[\xi_{q}^{(n)} e^{i q j \Delta x}\right]=\mathcal{M}\left[\xi_{q}^{(n)} e^{i q j \Delta x}\right]
$$

Equation for the evolution of $\xi_{q}^{(n)}: \mathcal{F}\left[\xi_{q}^{\{n\}}, S(q)\right]=0$

Does the method always work? Stability

First example: von-Neumann stability analysis of the Yuste-Acedo method (SIAM J. Num. Anal. 05 , fixed timesteps) for Riemann-Liouville FDE

$$
\begin{gather*}
\text { RL derivative } S(q) \equiv 4 \frac{(\Delta t)^{\gamma}}{(\Delta x)^{2}} \sin ^{2}\left(\frac{q \Delta x}{2}\right) \\
\frac{\partial}{\partial t} u(x, t)=K_{\gamma}{ }_{0} D_{t}^{1-\gamma} \frac{\partial^{2}}{\partial x^{2}} u(x, t) \Longrightarrow \xi^{(n+1)}=\xi^{(n)}-S(q) \sum_{k=0}^{n} \omega_{k}^{(1-\gamma)} \xi^{(n-k)}\left({ }^{*} 1\right) \tag{*1}\\
\mathcal{F}\left[\xi^{\{n+1]}, S(q)\right]=0
\end{gather*}
$$

- Eq. of evolution of the amplitude of a generic mode.
- Similar to those of (non-fractional) multistep (multilevel) schemes.
- This equation and/or fractional difference methods could be seen as particular cases of multilevel schemes where the number of levels increases with time.

Does the method always work? Stability

First example: Yuste-Acedo method (SIAMJ. Num. Anal. 05 , fixed timesteps) for RL FDE
$\left({ }^{*} 1\right) \quad \xi^{(m+1)}=\xi^{(m)}-S(q) \sum_{k=0}^{m} \omega_{k}^{(1-\gamma)} \xi^{(m-k)} \equiv \mathcal{F}\left[\xi^{\{n\}}, S(q)\right]=0$
(*1) Stable if the n roots of

$$
\begin{gathered}
\begin{array}{c}
\text { Stability } \\
\text { polynomial }
\end{array} \\
z^{n}=z^{n-1}-S(q) \sum_{k=0}^{n-1} \omega_{k}^{(1-\gamma)} z^{n-1-k} \quad \text { satisfy }\left|z_{n}\right| \cdot 1
\end{gathered}
$$

$$
S(q)=S(q, n) \equiv \frac{-z^{n}+z^{n-1}}{\sum_{k=0}^{n-1} \omega_{k}^{(1-\gamma)} z^{n-1-k}}
$$

Stability region: region (in the complex plane) formed by those values of $S(q, n)$ for which $\left|z_{n}\right|$ • 1

$$
S(q) \equiv 4 \frac{(\Delta t)^{\gamma}}{(\Delta x)^{2}} \sin ^{2}\left(\frac{q \Delta x}{2}\right)
$$

Boundary of the stability region: $\left\{\begin{array}{l}z=e^{i \theta} \\ S(q) \rightarrow S_{B}(q, \theta) \text { with } \theta=0 \rightarrow \theta=2 \pi\end{array}\right.$

Does the method always work? Stability

First example: Yuste-Acedo method (SIAMJ. Num. Anal. 05 , fixed timesteps, explicit) for RL FDE

$$
S(q, n) \equiv \frac{-z^{n+1}+z^{n}}{\sum_{k=0}^{n} \omega_{k}^{(1-\gamma)} z^{n-k}} \xrightarrow{z=e^{i \theta}} \quad S_{B}(q, \theta, n) \equiv \frac{-e^{i(n+1) \theta}+e^{i n \theta}}{\sum_{k=0}^{n} \omega_{k}^{(1-\gamma)} e^{i(n-k) \theta}}
$$

$$
S(q) \equiv 4 \frac{(\Delta t)^{\gamma}}{(\Delta x)^{2}} \sin ^{2}\left(\frac{q \Delta x}{2}\right)
$$

Numerical method for RL-FDE: stable when

$$
4 \frac{(\Delta t)^{\gamma}}{(\Delta x)^{2}} \cdot S_{\times}=2^{\gamma}
$$

$$
\text { Yuste-Acedo } \underline{\text { arXiv:cs/0311011v1 [cs.NA] (2003) }}
$$

Does the method always work? Stability

Second example: von-Neumann stability analysis of the Liu-Zhuang-Anh-Turner method* (ANZIAM J. 47 (2006), fixed timesteps, implicit) for Caputo FDE
*=present method for fixed timesteps

$$
\frac{\partial^{\gamma} u}{\partial t^{\gamma}}=K \frac{\partial^{2} u}{\partial x^{2}} \quad \longleftrightarrow \quad S(q, n) \equiv \frac{\text { Stability polynomial }}{\sum_{k=1}^{n-1}\left[(k+1)^{1-\gamma}-k^{1-\gamma}\right] z^{n-k}}
$$

Numerical method stable for all $\mathrm{S}(\mathrm{q})>0$

$$
S(q) \equiv 4 \frac{(\Delta t)^{\gamma}}{(\Delta x)^{2}} \sin ^{2}\left(\frac{q \Delta x}{2}\right)
$$

Does the method always work? Stability

A zoo of stability regions

RL FDE, weighted-average method, (Yuste, Journal of Computational Physics (2006))

Fully implicit

Unconditionally stable
(fractional) Crank-Nicholson

Unconditionally stable

Explicit

conditionally stable

Does the method always work? Stability

Does the (fractional) von-Neumann stability analysis work for variable timesteps?

Present method (Caputo FDE, implicit) with variable timesteps: $\Delta t_{m}=(m+2) / 10$

Unconditionally stable

Does the method always work? Stability

Does the (fractional) von-Neumann stability analysis work for variable timesteps?

Present method (Caputo FDE, implicit) with random variable timesteps: $\Delta t_{m}=r / 10$

$r=$ random number, uniform in $[0,2]$

Unconditionally stable

Does the method always work? Stability

The present implicit method for the FDE in the Caputo form with variable timesteps is
unconditionally stable for any choice of timesteps
(Yuste\&Quintana-Murillo, Computer Physics Communications, Vol. 183, December 2012)

It is proved there that $\quad\left\|v^{(n)}\right\|_{2} \cdot\left\|v^{(0)}\right\|_{2} \quad$ always!

Adaptive finite difference method for Diffusion-wave equation

$$
\frac{\partial^{\gamma} u}{\partial t^{\gamma}}=K \frac{\partial^{2} u}{\partial x^{2}}+F(x, t)
$$

$$
1<\gamma<2
$$

Finite difference method: Discretization of the FPDE

diffusion-wave

$$
\begin{aligned}
& \partial \equiv \frac{\partial^{\gamma}}{\partial t^{\gamma}}-K \frac{\partial^{2}}{\partial x^{2}} \Longrightarrow \delta \equiv \delta_{t}^{\gamma}-K \delta_{x}^{2} \\
& \frac{\partial^{2} u}{\partial x^{2}} \\
& \Longrightarrow \delta_{x}^{2} u\left(x_{j}, t\right)=\frac{u\left(x_{j+1}, t\right)-2 u\left(x_{j}, t\right)+u\left(x_{j-1}, t\right)}{(\Delta x)^{2}}
\end{aligned}
$$

Discretization of the Laplacian: three point centered formula
$1<\gamma<2$: diffusion-wave equation

$$
\begin{gathered}
\frac{\partial^{\gamma} u}{\partial t^{\gamma}} \Longrightarrow \delta_{t}^{\gamma} u\left(x, t_{n}\right)=\frac{1}{\Gamma(3-\gamma)} \sum_{m=0}^{n-1}\left\{A_{m, n}^{(\gamma)}\left[u\left(x, t_{m+1}\right)-u\left(x, t_{m}\right)\right] \quad \begin{array}{l}
\text { L2 discretization of the } \\
\text { fractional Caputo } \\
\text { derivative }
\end{array}\right. \\
\left.-B_{m, n}^{(\gamma)}\left[u\left(x, t_{m}\right)-u\left(x, t_{m-1}\right)\right]\right\}
\end{gathered}
$$

$$
-S_{n} U_{j+1}^{n}+\left(1+2 S_{n}\right) U_{j}^{n}-S_{n} U_{j-1}^{n}=\mathcal{M} U_{j}^{n}+\tilde{F}\left(x_{j}, t_{n}\right)
$$

$$
S_{n}=\frac{\Gamma(3-\gamma) K\left(t_{n}-t_{n-2}\right)}{2\left(t_{n}-t_{n-1}\right)^{1-\gamma}(\Delta x)^{2}}
$$

The testbed problem

$$
u(x, 0)
$$

Numerical results

Solid line: exact solution; symbols: adaptive method with $\tau=10^{-4}$ up to time $t_{100}=13.1958$ (squares), $\tau=10^{-5}$ up to time $t_{150}=11.3309$ (circles), and $\tau=10^{-6}$ up to time $t_{300}=9.9783$ (triangles). In all cases $\Delta x=\pi / 40$ and $\Delta_{0}=0.01$

Numerical results

Numerical errors at the mid-point, $\left|u\left(\pi / 2, t_{n}\right)-U_{k}^{n}\right|$, of the adaptive method for $\tau=$ 5×10^{-4} (squares), $\tau=10^{-5}$ (circles), and $\tau=10^{-6}$ (triangles). In all cases $\Delta_{0}=0.01$ and $\Delta x=\pi / 40$.

Numerical results

Exact solution (lines) and adaptive numerical solution (symbols) of the diffusionwave problem described in the main text for $\gamma=3 / 2$ and $t_{16}=0.105$ (squares), $t_{84}=1.006$ (circles), $t_{156}=3.015$ (stars), and $t_{233}=5.741$ (triangles), with $\tau=10^{-6}, \Delta_{0}=0.01$ and $\Delta x=\pi / 40$.

Numerical results. Diffusion-wave equation Some remarks

Disappointing results (in comparison with those for subdiffusion equations)

Results worsens when the lengths of two successive timesteps, Δ_{n} and Δ_{n-1}, are too different

$$
\sqrt{v}
$$

> We cap the ratio between the lengths of two successive timesteps, $\left[\left|\Delta_{n} / \Delta_{m-1}\right|\right.$ or $\left|\Delta_{n-1} / \Delta_{n}\right|$] to be smaller than 1.1.
> $\mathrm{R}=1.02$ (really timid exploration coefficient)

$$
\text { Worsens? } \rightarrow \text { Is the method stable? }
$$

Numerical tests
We have carried out extensive calculations and considered a large variety of timestep functions (including random distributions), and we have always found well-behaved (stable) numerical solutions

Diffusion-wave equation. Boundaries of stability for some methods with fixed timesteps

Explicit
Gorenflo,Mainardi, Moretti \&
Paradisi 2002, Nonlinear Dyn.; also, Quintana-Murillo \& Yuste, 2009,

Physica Scripta

Explicit
Quintana-Murillo \& Yuste.,2011.
J. Comp.Nonlin. Dyn.

The stability analysis works fine...
... but \rightarrow

Implicit
Present method for fixed timesteps

Diffusion-wave equation. Boundaries of stability for variable timesteps

Remarks and conclusions

-Computational cost of fractional difference methods \rightarrow huge
-Different time scales \rightarrow usual

- Adaptive finite difference method with non-uniform timesteps \rightarrow \{very convenient $\approx a$ must $\}$
-von Neumann stability analysis for homogeneous timesteps \rightarrow a breeze
- von Neumann stability analysis for variable timesteps:
-for subdifusion equations \rightarrow works smoothly
- for diffusion-wave equations \rightarrow ?
-Adaptive "step doubling method" \rightarrow fast and accurate (for subdiffusion equations)

