
 Adaptive Finite Difference Method

with Variable Timesteps for

Fractional Diffusion

and Diffusion-Wave Problems

Santos B. Yuste and Joaquín Quintana-Murillo
 Dpt. Física, Univ. Extremadura

 Badajoz (Spain)

1

4
Standard method Our adaptive method

 10-3 = time

Solution from t= 0 to t =1 Solution from t= 0 to t =2

CPU time
to reach

t=1

CPU time
to reach
t=1

>>

The problem in a nutshell
For some anomalous diffusive (subdiffusive) particles, the pdf of

finding them at a given place at a given time follows a fractional (i.e., an

integro-differential) diffusion equation. When one solves this equation

by means of standard finite difference methods, the CPU time and

computer memory consumption scale as time2 !!!

u(x,t): concentration
of particles at x at t

x

Recorded random walk trajectories by Jean
Baptiste Perrin. Lef part: three designs
obtained by tracing a small grain at intervals
of 30 s. Right part: the starting point of each
motion event is shifted to the origin. These
figures constitute part of the measurement of
Perrin, Dabrowski and Chaudesaigues
leading to the determination of the Avogadro
number. The result was 7.05×1023

R. Metzler, J. Klafter / Physics Reports 339
(2000) 1-77

Brownian motion. Normal diffusion

Jean Baptiste Perrin

6

@

@t
u(x; t) = D

@2

@x2
u(x; t)

u(x; t) =
1p
4¼Dt

e¡x
2=4Dt

Diffusion
equation

Green
function

Green
function

Fig. from the web page
of this Symposium

Subdiffusion in...
 Physics  Geology  Finance
  Chemistry  Ecology  …….
 Biology (see next)

8

Golding and Cox
Physical Nature of
Bacterial Cytoplasm
PRL 96, 098102 (2006)

(anomalous) diffusion
exponent in vivo: γ =0.7

10

How can we model
subdiffusion processes?

?

 CTRW with fat/heavy tail

Subdiffusion: 0<<1

GLCT

12

CTRW

Subdiffusion

P(x,t)

Fractional diffusion equation

Jump distribution  (x) with
finite variance and
waiting-time distribution ψ(t)
with power-law decay @°

@t°
u(~r; t) = Kr2u(~r; t)

Non-Gaussian
Green function

 0<<1

13

Subdiffusion

@°

@t°
y(t) ´ 1

¡(1¡ °)

Z t

0

d¿
1

(t¡ ¿)°
dy(¿)

d¿
; 0 < ° < 1

Fractional diffusion equation

Caputo derivative:

•  algorithms for obtaining numerical solutions

• Easy inclusion of external fields and boundary conditions

• analytical techniques and solutions for some basic
problems (eigenfunction expansions, Green functions)

• Limit equation of a (mesoscopic) CTRW model with power-
law distribution of waiting times

@°

@t°
u(x; t) =K

@2

@x2
u(x; t)

• Linear

Sn = ¡(2¡ °)K
(tn ¡ tn¡1)

°

(¢x)2
;

¡SnUn
j+1 +(1+ 2Sn)U

n
j ¡SnU

n
j¡1 =MUn

j + ~F(xj; tn)

MUn
j ´ Un¡1

j ¡
n¡2X

m=0

~T (°)
m;n

£
Um+1
j ¡Um

j

¤

@u= F ±U = F

£
±
°
t ¡K±2x

¤
Un
j = F(xj; tn)

·
@°

@t°
¡K

@2

@x2

¸
u(x; t) = F (x; t)

±
°
t U

n
j =

1

¡(2¡ °)

n¡1X

m=0

T (°)
m;n

£
Um+1
j ¡Um

j

¤
±2xu(xj; t) =

u(xj+1; t)¡ 2u(xj; t) + u(xj¡1; t)

(¢x)2

(1)

(2) (3)

Finite difference method: numerical scheme

Fractional difference methods are heavy

Um+1
jUm¡1

j ; Um
jUm¡2

j ;U0
j ; ……

…… Um
j¡1Um¡1

j¡1 ;Um¡2
j¡1 ;U0

j¡1;

…… Um
j+1Um¡1

j+1 ;Um¡2
j+1 ;U0

j+1;

t0 tm¡1 tm tm+1tm¡2

Um+1
j¡1

Um+1
j+1

From m to m+1: computational cost  m

From m=1 to m=n+1: computational cost 
nX

m=1

m2 » n2 Huge!!!

m terms

[computational cost for normal diffusion  n]

22

Variable/adaptive timestesps: Adaptive methods

t

u

tm tm+1 tm-1

Adaptive methods
more reliable: via thorough sampling of difficult regions

faster : via sparse sampling of quiet regions

Small
timesteps

Large
timesteps

A good ODE integrator should exert some adaptive control over its own progress, making frequent
changes in its stepsize. […] Many small steps should tiptoe through treacherous terrain, while a few
great strides should speed through smooth uninteresting countryside. The resulting gains in efficiency
are not mere tens of percents or factors of two; they can sometimes be factors of ten, a hundred, or more
Press et al, Numerical Recipes, section 16.2

A testbed problem with wild and quiet regions

as times goes by

t 0+

t=1

+

t =1+

t 1+

and so on

● Dispersion of a constant flux of subdiffusive particles arising from a point source
( one particle released every unit time at the source)

24

● Dispersion of a constant flux of subdiffusive particles ● one particle
released every unit time at x=0 :● 1D infinite medium

A testbed problem with wild and quiet regions

ψ(t)

ψ(t) ψ(t)

ψ(t)

ψ(t)
t=0

t=1

tm

tn

tp

x=0

x=0

x=0

A particle appears at x=0

A second particle appears at x=0

The goal: u(x,t) = density of probability of finding a particle at x at time t

Source of particles

Formation of morphogen gradients:

standard reaction-diffusion model

Source of
particles

Source of
particles

diffusion ↔ random walk

1D testbed problem

Particles (morphogens)
may react and disappear

development of morphogens gradients

Long-time (stationary) distribution of morphogens
in the medium is especially important

Fast and accurate numerical
methods are required

+

37

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u(
0,

t)

t

The release of a particle at x=0 is described by means of a Dirac delta function

Exact solution

 a new particle appears at t=n : u(x,n+)=u(x,n-)+δ(x)
n

Dirac
delta

function

A testbed problem with wild and quiet regions

u(0,t) vs t

u(0,t)

t

u(xj; 0) =

½
1=¢x; j = 0

0; j 6= 0

Discretized numerical approximation
to the Dirac’s delta initial condition: i

Discretization of δ(x)

δ(x)

1/¢ x

¢ x

Dirac delta function approximated by a hat function

Choosing the timesteps

g(tm) = (Um
¡1 ¡ 2Um

0 +Um
1)=(¢x)2 ' @2u(x; tm)=@x

2jx=0

► Arbitrary but with convenient features:

• Timestep decreases (increases) when the curvature increases (decreases)

• Prefixed maximum and minimum values (0.02 and 0.0001, respectively)

Out[40]=

20 40 60 80 100

0.005

0.010

0.015

0.020

g  curvature

tm+1 ¡ tm

tm+1 ¡ tm =min
£
10¡4 coth [jg(tm)j=1000] ;0:02

¤

 curvature at the origin

Size of
the

timesteps

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u(
x,

t)

x
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u(
x,

t)

x
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u(
x,

t)

x

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u(
x,

t)

x
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u(
x,

t)

x

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u(
x,

t)

x

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u(
x,

t)

x

t=0+

t=4.08 10-4 1 timestep
t=0.034 10 timesteps

t=1- 65 timesteps

t=1+ 65 timesteps
t=1.0004

66 timesteps
t=2- 141 timesteps

Standard
method

 10-3 = time

Adaptive
method

0.000 0.002 0.004 0.006 0.008 0.010 0.012
1.0

1.5

2.0

2.5

3.0

3.5

u(
0,

t)

t

0.00 0.02 0.04 0.06 0.08 0.10
0.5

1.0

1.5

2.0

2.5

3.0

3.5

u(
0,

t)

t

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u(
0,

t)
t

Solution at the most
difficult place, x=0, where
the particles are born

Solid symbols: adaptive method
Hollow symbols: method with
fixed timestep: tm+1-tm=0.001
Line: exact solution

Tiny
timestep

Medium
timestep

Large
timestep

0.00 0.02 0.04 0.06 0.08 0.10
1E-3

0.01

0.1

1

|e
(0

,t)
|

t

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1E-3

0.01

0.1

1

|e
(0

,t)
|

t

δ

Error at the most difficult
place, x=0, where the
particles are born

Dirac delta function approximated
by a hat function

Dirac delta function
approximated by a hat function

δ

Solid symbols: adaptive method
Hollow symbols: method with
fixed timestep: tm+1-tm=0.001

46

Another testbed problem. Another adaptive algorithm

u(x,0)

0
4 2

3
4

0

0.2

0.4

0.6

0.8

1

u(x,t)=?

@°u

@t°
=K

@2u

@x2

u(x= 0; t) = u(x= ¼; t) = 0

0 · x · ¼

u(x;0) = sinx

u(x; t) =E°(¡t°) sin(x)

K = 1

aprox. CI for delta initial condition blur the unaccuracy ot the numerical algorithm

A problem with initial condition easier to handle

48

How to choose the size of the timesteps?
Another adaptive algorithm

Out[40]=

20 40 60 80 100

0.005

0.010

0.015

0.020

tm+1 ¡ tm =min
£
10¡4 coth [jg(tm)j=1000] ;0:02

¤

Previous criterium: taylored for the problem at hand

 Goal: a more general criterium.

We explore an adaptive algorithm of classic style 

A good ODE integrator should exert some adaptive control over its own progress,
making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize
control is to achieve some predetermined accuracy in the solution with minimum
computational effort. Many small steps should tiptoe through treacherous terrain, while a few
great strides should speed through smooth uninteresting countryside.

Prest et al. Numerical recipes.

Another adaptive algorithm

We explore a straightforward algorithm of classic style

NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING Section 16.2:

Usually the purpose of this adaptive stepsize control is to achieve some predetermined accuracy in the solution with
minimum computational effort. Many small steps should tiptoe through treacherous terrain, while a few great strides
should speed through smooth uninteresting countryside. […]

Implementation of adaptive stepsize control requires that the stepping algorithm return
information about its performance, most important, an estimate of its truncation error.
[…] Obviously, the calculation of this information will add to the computational overhead,
but the investment will generally be repaid handsomely

With fourth-order Runge-Kutta, …

… the most straightforward technique by far is step doubling. We take each step twice,
once as a full step, then, independently, as two half steps. The difference between the
two numerical estimates is a convenient indicator of truncation error. It is this difference
that we shall endeavor to keep to a desired degree of accuracy, neither too large nor too
small. We do this by adjusting [the timestep]

52

How to choose the size of the timesteps? A new algorithm

2a. True: then until

¯̄
¯ bU(n)

k ¡U
(n)

k

¯̄
¯ < ¿¢n !¢n=R then

2b. False: then until ¢n !R¢n

¯̄
¯ bU(n)

k ¡U
(n)

k

¯̄
¯ > ¿ then

tn = tn¡1+¢n

tn = tn¡1 +¢n=R

Step 2a  met. accurate

Step 2b met. fast and still accurate

3. Repeat [i.e., n! n+1 and go to 1]

1. Boostrap of step n: ¢n =¢n¡1 and
¯̄
¯ bU(n)

k ¡U
(n)

k

¯̄
¯ > tolerance ´ ¿

?

R: brave exploration coefficient we use R=2

Solid line: exact solution; squares: adaptive numerical solution up to n = 45

(t45 = 9:6268) and tolerance ¿ = 5£10¡4; stars: numerical solution up to n = 112

(t112 = 9:1690) and ¿ = 10¡4. In both cases ¢0 = 0:01 and ¢x = ¼=40.

Numerical results
Step doubling algorithm

γ=1/2

Numerical errors at the mid-point of (i) the adaptive method with ¿ = 5£10¡4,¢0 = 0:01

(squares, 45 timesteps, CPU time ¼ 0:15s); (ii) the adaptive method with ¿ = 10¡4

and ¢0 = 0:01 (stars, 112 timesteps, CPU time ¼ 0:75s); (iii) the method with constant

timesteps of size ¢n = 0:01 (triangles, 1010 timesteps, CPU time ¼ 440s); and (iv) the

method with uniform timesteps of size ¢n = 0:001 (circles, 10100 timesteps, CPU time

¼ 43800s). In all cases ° = 1=2 and ¢x = ¼=40.

Numerical results

Errors in the
adaptive algorithm

are even (great!,
compare with
those for fixed

timesteps)

Step doubling algorithm

γ=1/2

Do the inevitable numerical

perturbations (numerical noise,

round-off errors) ruin the method?

bU(m)

j ¡U
(m)

j = v
(m)

j

How do the perturbations evolve?

m 1

v
(m)

j

2

AU(n) =MU(n) + ~F (n) Av(n) =Mv(n)
Linear

unstable

stable perturbed
solution perturbation

Eq. for the evolution of the perturbation

Does the method always work?
Stability

v
(n)

j =
X

q

»(n)q eiqj¢x 1:

Von Neumann stability analysis: (Yuste-Acedo, arXiv:cs/0311011, SIAM J. Num. Anal. 05)
Suscessful for numerical methods for fractional equations with Riemman-Liouville
and Pareto derivatives and for Grünwald-Letnikov, L1 and L2 discretization
schemes, and many others

 2: Stability analysis of a generic subdiffusive mode: »
(n)
q eiqj¢x

Does the method always work?
Stability

Von Neumann procedure:

Av(n) =Mv(n) A
h
»(n)q eiqj¢x

i
=M

h
»(n)q eiqj¢x

i

F
h
»fngq ; S(q)

i
= 0Equation for the evolution of »

(n)
q :

http://arxiv.org/abs/cs/0311011
http://arxiv.org/abs/cs/0311011
http://arxiv.org/abs/cs/0311011
http://arxiv.org/abs/cs/0311011
http://arxiv.org/abs/cs/0311011
http://arxiv.org/abs/cs/0311011
http://arxiv.org/abs/cs/0311011

Does the method always work? Stability
First example: von-Neumann stability analysis of the Yuste-Acedo method (SIAM J.
Num. Anal. 05 , fixed timesteps) for Riemann-Liouville FDE

@

@t
u(x; t) =K° 0D

1¡°
t

@2

@x2
u(x; t) »(n+1) = »(n) ¡ S(q)

nX

k=0

!
(1¡°)
k »(n¡k)

RL derivative Grunwald-Letnikov coefficients S(q) ´ 4
(¢t)°

(¢x)2
sin2

µ
q¢x

2

¶

• Eq. of evolution of the amplitude of a generic mode.
• Similar to those of (non-fractional) multistep (multilevel) schemes.
• This equation and/or fractional difference methods could be seen as particular cases
of multilevel schemes where the number of levels increases with time.

(*1)

F
h
»fn+1g; S(q)

i
= 0

≡

Does the method always work? Stability
First example: Yuste-Acedo method (SIAM J. Num. Anal. 05 , fixed timesteps) for RL FDE

»(m+1) = »(m) ¡ S(q)

mX

k=0

!
(1¡°)
k »(m¡k)(*1) F

h
»fng; S(q)

i
= 0≡

Boundary of the stability region:
z = eiµ

S(q)! SB(q; µ)

Stability region: region (in the complex plane) formed by those values of S(q;n) for which jznj · 1

zn = zn¡1 ¡ S(q)

n¡1X

k=0

!
(1¡°)
k zn¡1¡k

(*1) Stable if the n roots of

satisfy jznj · 1Stability
polynomial

S(q) ´ 4
(¢t)°

(¢x)2
sin2

µ
q¢x

2

¶

µ = 0! µ = 2¼with

S(q) = S(q; n) ´ ¡zn + zn¡1
Pn¡1

k=0 !
(1¡°)
k zn¡1¡k

Does the method always work? Stability

SB(q; µ; n) ´
¡ei(n+1)µ + einµ

Pn

k=0 !
(1¡°)
k ei(n¡k)µ

S(q; n) ´ ¡zn+1 + zn

Pn

k=0 !
(1¡°)
k zn¡k

z = eiµ

Stable

SB(q; µ;100)γ=1/2

4
(¢t)°

(¢x)2
· S£ = 2°

Numerical method for RL-FDE: stable when

Yuste-Acedo arXiv:cs/0311011v1 [cs.NA] (2003)

2γ

First example: Yuste-Acedo method (SIAM J. Num. Anal. 05 , fixed timesteps, explicit) for RL FDE

S(q) ´ 4
(¢t)°

(¢x)2
sin2

µ
q¢x

2

¶

SB(q; µ; n)

http://arxiv.org/abs/cs/0311011v1
http://arxiv.org/abs/cs/0311011v1
http://arxiv.org/abs/cs/0311011v1
http://arxiv.org/abs/cs/0311011v1
http://arxiv.org/abs/cs/0311011v1
http://arxiv.org/abs/cs/0311011v1

Does the method always work? Stability
Second example: von-Neumann stability analysis of the Liu-Zhuang-Anh-Turner method*
(ANZIAM J. 47 (2006) ,fixed timesteps, implicit) for Caputo FDE

S(q; n) ´ ¡zn + zn¡1Pn¡1
k=1 [(k + 1)1¡° ¡ k1¡°] zn¡k

@°u

@t°
=K

@2u

@x2

Estable

Numerical method stable for all S(q)>0
 unconditionally stable

SB(q; µ;100)

Stability polynomial

SB(q; µ; n)

S(q) ´ 4
(¢t)°

(¢x)2
sin2

µ
q¢x

2

¶

*=present method for fixed timesteps

Does the method always work? Stability

A zoo of stability regions

Unconditionally stable

RL FDE, weighted-average method,
(Yuste, Journal of Computational Physics (2006))

conditionally stable
Unconditionally stable

Fully implicit

Explicit (fractional) Crank-Nicholson

SB(q; µ;100)

SB(q; µ;100)

http://landau.unex.es/public_html/santos/PUBLICATIONS/a06saJCompPhysv216p264.pdf
http://landau.unex.es/public_html/santos/PUBLICATIONS/a06saJCompPhysv216p264.pdf
http://landau.unex.es/public_html/santos/PUBLICATIONS/a06saJCompPhysv216p264.pdf

Does the method always work? Stability

Does the (fractional) von-Neumann stability analysis work for variable timesteps?

Present method (Caputo FDE, implicit) with variable timesteps: ¢tm = (m+2)=10

Unconditionally stable

SB(q; µ;100)

Fixed timesteps

Does the method always work? Stability

Present method (Caputo FDE, implicit) with random variable timesteps: ¢tm = r=10

 r=random number, uniform in [0,2]

Unconditionally stable

SB(q; µ;10)

SB(q; µ;20)

SB(q; µ;30)

SB(q; µ;50)

SB(q; µ; n)

Does the (fractional) von-Neumann stability analysis work for variable timesteps?

The present implicit method for the FDE in the Caputo form with variable
timesteps is

 unconditionally stable for any choice of timesteps
(Yuste&Quintana-Murillo, Computer Physics Communications, Vol. 183, December 2012)

°°°v(n)
°°°
2

·
°°°v(0)

°°°
2

Does the method always work?
Stability

It is proved there that always!

78

Adaptive finite difference method for
Diffusion-wave equation

@°u

@t°
=K

@2u

@x2
+ F (x; t)

1< ° < 2

Finite difference method: Discretization of the FPDE

L2 discretization of the
fractional Caputo
derivative

±
°
t u(x; tn) =

1

¡(3¡ °)

n¡1X

m=0

n
A(°)
m;n [u(x; tm+1)¡ u(x; tm)]

¡B(°)
m;n [u(x; tm)¡ u(x; tm¡1)]

o

±2xu(xj; t) =
u(xj+1; t)¡ 2u(xj; t) + u(xj¡1; t)

(¢x)2

Discretization of the
Laplacian: three point

centered formula

± ´ ±
°
t ¡K±2x@ ´ @°

@t°
¡K

@2

@x2

@°u

@t°

@2u

@x2

Sn =
¡(3¡ °)K(tn ¡ tn¡2)

2(tn ¡ tn¡1)1¡°(¢x)2

¡SnUn
j+1 +(1+ 2Sn)U

n
j ¡SnU

n
j¡1 =MUn

j + ~F(xj; tn)

MUn
j ´ U

(n¡1)
j +

tn ¡ tn¡1
tn¡1 ¡ tn¡2

h
U
(n¡1)
j ¡ U

(n¡2)
j

i

¡
n¡2X

m=0

³
Âm;n

h
U
(m+1)

j ¡ U
(m)

j

i
¡ B̂m;n

h
U
(m)

j ¡ U
(m¡1)
j

i´

1<γ<2 : diffusion-wave equation

 diffusion-wave

82

The testbed problem

u(x,0)

0
4 2

3
4

0

0.2

0.4

0.6

0.8

1

u(x,t)=?

@°u

@t°
=K

@2u

@x2

u(x= 0; t) = u(x= ¼; t) = 0

0 · x · ¼

u(x;0) = sinx

u(x; t) =E°(¡t°) sin(x)

K = 1

@u(x; t)=@tjt=0 = 0

Solid line: exact solution; symbols: adaptive method with ¿ = 10¡4 up to time

t100 = 13:1958 (squares), ¿ = 10¡5 up to time t150 = 11:3309 (circles), and

¿ = 10¡6 up to time t300 = 9:9783 (triangles). In all cases ¢x = ¼=40 and

¢0 = 0:01

Numerical results

γ=3/2

Step doubling algorithm

Numerical errors at the mid-point, ju(¼=2; tn) ¡ Un
k j, of the adaptive method for ¿ =

5£ 10¡4 (squares), ¿ = 10¡5 (circles), and ¿ = 10¡6 (triangles). In all cases ¢0 = 0:01

and ¢x = ¼=40.

Numerical results

γ=3/2

Step doubling algorithm

Exact solution (lines) and adaptive numerical solution (symbols) of the di®usion-

wave problem described in the main text for ° = 3=2 and t16 = 0:105 (squares),

t84 = 1:006 (circles), t156 = 3:015 (stars), and t233 = 5:741 (triangles), with

¿ = 10¡6, ¢0 = 0:01 and ¢x = ¼=40.

Numerical results

γ=3/2

Step doubling algorithm

Numerical results. Diffusion-wave equation
Some remarks

Disappointing results (in comparison with those for subdiffusion equations)

R=1.02 (really timid exploration coefficient)

We cap the ratio between the lengths of two successive timesteps,

[j¢n=¢m¡1j or j¢n¡1=¢nj] to be smaller than 1:1.

Results worsens when the lengths of two successive timesteps, ¢n and ¢n¡1, are
too di®erent

Worsens? Is the method stable?

We have carried out extensive calculations and considered a large variety of
timestep functions (including random distributions), and we have always found
well-behaved (stable) numerical solutions

Numerical tests

Diffusion-wave equation. Boundaries of stability
for some methods with fixed timesteps

SB(q; µ)

4
(¢t)°

(¢x)2
· S£ = 2°

Explicit
 Gorenflo,Mainardi, Moretti &

Paradisi 2002, Nonlinear Dyn.; also,
Quintana-Murillo & Yuste, 2009,

Physica Scripta

Explicit
Quintana-Murillo & Yuste.,2011.

J. Comp.Nonlin. Dyn.

Implicit
Present method for fixed timesteps

The stability analysis works fine…

… but 

Diffusion-wave equation. Boundaries of stability
for variable timesteps

SB(q; µ)

4
(¢t)°

(¢x)2
· S£ = 2°

n=50

?
well-behaved (stable)

numerical solution

However

SB(q; µ; n)

S(q) ´ 4
(¢t)°

(¢x)2
sin2

µ
q¢x

2

¶

¢tm = (m+2)=100

An example
¢tm = (m+2)=100

Remarks and conclusions

89

Computational cost of fractional difference methods huge

Different time scales usual

 Adaptive finite difference method with non-uniform timesteps  {very convenienta must}

von Neumann stability analysis for homogeneous timesteps a breeze

 von Neumann stability analysis for variable timesteps:

for subdifusion equations  works smoothly

for diffusion-wave equations ?

Adaptive “step doubling method” fast and accurate (for subdiffusion equations)

