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Standard method  Our adaptive method 

 10-3 = time 

Solution from  t= 0 to t =1 Solution from  t= 0 to t =2 

CPU time 
to reach 

t=1  

CPU time 
to reach 
t=1  

>>  

The problem in a nutshell 
For some anomalous diffusive  (subdiffusive)  particles, the pdf of 

finding them at a given place at a given time follows a fractional (i.e., an 

integro-differential ) diffusion equation.  When one solves this equation 

by means of standard finite difference methods, the CPU time and 

computer memory consumption  scale as  time2   !!! 



u(x,t): concentration 
of particles at x at t 

x 

Recorded random walk trajectories by Jean 
Baptiste Perrin.  Lef part: three designs 
obtained by tracing a small grain at intervals 
of 30 s. Right part: the starting point of each 
motion event is shifted to the origin. These 
figures constitute part of the measurement of 
Perrin, Dabrowski and Chaudesaigues 
leading to the determination of the Avogadro 
number. The result was 7.05×1023 

R. Metzler, J. Klafter / Physics Reports 339 
(2000) 1-77 
 

Brownian motion. Normal diffusion 

Jean Baptiste Perrin 
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@t
u(x; t) = D

@2

@x2
u(x; t)

u(x; t) =
1p
4¼Dt

e¡x
2=4Dt

Diffusion 
equation 

Green 
function 

Green 
function 

Fig.  from the web page 
of this Symposium 



Subdiffusion  in... 
 Physics  Geology  Finance 
  Chemistry  Ecology  …….  
  Biology  (see next) 
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Golding and Cox 
Physical Nature of 
Bacterial Cytoplasm 
PRL 96, 098102 (2006) 

(anomalous) diffusion 
exponent in vivo: γ =0.7 
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How can we model 
subdiffusion processes? 

? 



 CTRW with fat/heavy tail 

Subdiffusion: 0<<1 

GLCT 
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CTRW 

Subdiffusion 

P(x,t) 

Fractional diffusion equation 

Jump distribution  (x) with 
finite variance and 
waiting-time distribution ψ(t) 
with power-law decay @°

@t°
u(~r; t) = Kr2u(~r; t)

Non-Gaussian 
Green function 



 0<<1 
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Subdiffusion 

@°

@t°
y(t) ´ 1

¡(1¡ °)

Z t

0

d¿
1

(t¡ ¿)°
dy(¿)

d¿
; 0 < ° < 1

Fractional diffusion equation 

Caputo derivative:  

•  algorithms for obtaining numerical solutions 

• Easy inclusion of external fields and boundary conditions 

• analytical techniques and solutions for some basic 
problems (eigenfunction expansions, Green functions)  

• Limit equation of a (mesoscopic) CTRW model with power-
law distribution of waiting times  

@°

@t°
u(x; t) =K

@2

@x2
u(x; t)

• Linear  



Sn = ¡(2¡ °)K
(tn ¡ tn¡1)

°

(¢x)2
;

¡SnUn
j+1 +(1+ 2Sn)U

n
j ¡SnU

n
j¡1 =MUn

j + ~F(xj; tn)

MUn
j ´ Un¡1

j ¡
n¡2X

m=0

~T (°)
m;n

£
Um+1
j ¡Um

j

¤

@u= F ±U = F

£
±
°
t ¡K±2x

¤
Un
j = F(xj; tn)

·
@°

@t°
¡K

@2

@x2

¸
u(x; t) = F (x; t)

±
°
t U

n
j =

1

¡(2¡ °)

n¡1X

m=0

T (°)
m;n

£
Um+1
j ¡Um

j

¤
±2xu(xj; t) =

u(xj+1; t)¡ 2u(xj; t) + u(xj¡1; t)

(¢x)2

(1) 

(2) (3) 

Finite difference method: numerical scheme 



Fractional difference methods are heavy 

Um+1
jUm¡1

j ; Um
jUm¡2

j ;U0
j ; …… 

…… Um
j¡1Um¡1

j¡1 ;Um¡2
j¡1 ;U0

j¡1;

…… Um
j+1Um¡1

j+1 ;Um¡2
j+1 ;U0

j+1;

t0 tm¡1 tm tm+1tm¡2

Um+1
j¡1

Um+1
j+1

From  m  to  m+1: computational cost    m 

From  m=1  to  m=n+1: computational cost       
nX

m=1

m2 » n2 Huge!!! 

m  terms 

[ computational cost for normal diffusion    n  ] 
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Variable/adaptive timestesps:  Adaptive methods 

t 

u 

tm tm+1 tm-1 

Adaptive methods 
more reliable:  via  thorough sampling of difficult regions 

faster :   via  sparse sampling of quiet regions 

Small 
timesteps 

Large 
timesteps 

A good ODE integrator should exert some adaptive control over its own progress, making frequent 
changes in its stepsize.  […] Many small steps should tiptoe through treacherous terrain, while a few 
great strides should speed through smooth uninteresting countryside. The resulting gains in efficiency 
are not mere tens of percents or factors of two; they can sometimes be factors of ten, a hundred, or more 
Press et al, Numerical Recipes, section 16.2 



A testbed problem with wild  and quiet  regions 

as times goes by 

t 0+ 

t=1 

+ 

t =1+ 

t 1+ 

and so on 

● Dispersion of a constant flux of subdiffusive particles arising from a point source  
( one particle released every unit time at the source) 
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● Dispersion of a constant flux of subdiffusive particles ● one particle 
released every unit time at  x=0 :● 1D infinite medium 

A testbed problem with wild and quiet regions 

ψ(t)  

ψ(t)  ψ(t)  

ψ(t)  

ψ(t)  
t=0 

t=1 

tm 

tn 

tp 

x=0 

x=0 

x=0 

A particle appears at x=0 

A second particle appears at x=0 

The goal:  u(x,t) = density of probability of finding a particle at x at time t  

Source of particles 



Formation of morphogen gradients:   

standard reaction-diffusion model 

Source of 
particles 

Source of 
particles 

diffusion ↔ random walk 

1D testbed problem 

Particles (morphogens) 
may react and disappear 

development of morphogens gradients  

Long-time (stationary) distribution of morphogens 
in the medium is especially important 

Fast and accurate numerical 
methods are required 

+ 
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u(
0,

t)

t

The release of a particle at  x=0 is described by means of a Dirac delta function 

Exact solution 

   a new particle appears  at   t=n  :  u(x,n+)=u(x,n-)+δ(x) 
n 

Dirac 
delta 

function 

A testbed problem with wild  and quiet  regions 

u(0,t)  vs  t 

u(0,t) 

t 



u(xj; 0) =

½
1=¢x; j = 0

0; j 6= 0

Discretized numerical  approximation  
to the  Dirac’s delta initial condition: i 

Discretization of δ(x) 

δ(x)  

1/¢ x 

¢ x 

Dirac delta function approximated by a hat function 



Choosing the timesteps  

g(tm) = (Um
¡1 ¡ 2Um

0 +Um
1 )=(¢x)2 ' @2u(x; tm)=@x

2jx=0

► Arbitrary but with convenient features:  

•  Timestep decreases (increases) when the curvature increases (decreases) 

•  Prefixed maximum  and minimum values (0.02  and 0.0001, respectively) 

Out[40]=
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g  curvature 

tm+1 ¡ tm

tm+1 ¡ tm =min
£
10¡4 coth [jg(tm)j=1000] ;0:02

¤

  curvature at the origin 

Size of 
the 

timesteps 
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u(
x,

t)

x

t=0+ 

t=4.08 10-4 1 timestep 
t=0.034 10 timesteps 

t=1- 65 timesteps 

t=1+ 65 timesteps 
t=1.0004 

66 timesteps 
t=2- 141 timesteps 

Standard 
method  

 10-3 = time 

Adaptive 
method  
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Solution at the most 
difficult place, x=0, where 
the particles are born 

Solid symbols: adaptive method 
Hollow symbols: method with 
fixed timestep: tm+1-tm=0.001  
Line: exact solution 

Tiny 
timestep 

Medium 
timestep 

Large 
timestep 
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δ 

Error at the most difficult 
place, x=0, where the 
particles are born 

Dirac delta function approximated 
by a hat function 

Dirac delta function 
approximated by a hat function 

δ 

Solid symbols: adaptive method 
Hollow symbols: method with 
fixed timestep: tm+1-tm=0.001  
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Another testbed problem. Another adaptive algorithm 

u(x,0) 

0
4 2

3
4

0

0.2

0.4

0.6

0.8

1

u(x,t)=? 

@°u

@t°
=K

@2u

@x2

u(x= 0; t) = u(x= ¼; t) = 0

0 · x · ¼

u(x;0) = sinx

u(x; t) =E°(¡t°) sin(x)

K = 1

aprox. CI  for delta initial condition blur the unaccuracy ot the numerical algorithm 

A problem with initial condition easier to handle 
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How to choose the size of the timesteps? 
Another adaptive algorithm 

Out[40]=

20 40 60 80 100
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0.020

tm+1 ¡ tm =min
£
10¡4 coth [jg(tm)j=1000] ;0:02

¤

Previous criterium: taylored for the problem at hand 

 Goal:  a more general criterium.    

We explore an adaptive  algorithm of classic style  

A good ODE integrator should exert some adaptive control over its own progress, 
making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize 
control is to achieve some predetermined accuracy in the solution with minimum 
computational effort.  Many small steps should tiptoe through treacherous terrain, while a few 
great strides should speed through smooth uninteresting countryside. 

Prest et al.  Numerical recipes. 



Another adaptive algorithm 

We explore a straightforward  algorithm of classic style 

NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING  Section 16.2:  
 
Usually the purpose of this adaptive stepsize control is to achieve some predetermined accuracy in the solution with 
minimum computational effort. Many small steps should tiptoe through treacherous terrain, while a few great strides 
should speed through smooth uninteresting countryside. […] 
 
Implementation of adaptive stepsize control requires that the stepping algorithm return 
information about its performance, most important, an estimate of its truncation error. 
[…] Obviously, the calculation of this information will add to the computational overhead, 
but the investment will generally be repaid handsomely 
 
With fourth-order Runge-Kutta, … 

… the most straightforward technique by far is step doubling. We take each step twice, 
once as a full step, then, independently, as two half steps.  The difference between the 
two numerical estimates is a convenient indicator of truncation error. It is this difference 
that we shall endeavor to keep to a desired degree of accuracy, neither too large nor too 
small. We do this by adjusting [the timestep] 
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How to choose the size of the timesteps? A new algorithm 

2a. True:  then                               until   

¯̄
¯ bU(n)

k ¡U
(n)

k

¯̄
¯ < ¿¢n !¢n=R then  

2b. False: then                               until   ¢n !R¢n

¯̄
¯ bU(n)

k ¡U
(n)

k

¯̄
¯ > ¿ then  

tn = tn¡1+¢n

tn = tn¡1 +¢n=R

Step 2a  met. accurate 

Step 2b met. fast and still accurate 

3. Repeat [i.e., n! n+1 and go to 1]

1.   Boostrap of step n:    ¢n =¢n¡1 and  
¯̄
¯ bU(n)

k ¡U
(n)

k

¯̄
¯ > tolerance ´ ¿

? 

R: brave exploration coefficient  we use R=2    



Solid line: exact solution; squares: adaptive numerical solution up to n = 45

(t45 = 9:6268) and tolerance ¿ = 5£10¡4; stars: numerical solution up to n = 112

(t112 = 9:1690) and ¿ = 10¡4. In both cases ¢0 = 0:01 and ¢x = ¼=40.

Numerical results 
Step doubling algorithm 

γ=1/2 



Numerical errors at the mid-point of (i) the adaptive method with ¿ = 5£10¡4,¢0 = 0:01

(squares, 45 timesteps, CPU time ¼ 0:15s ); (ii) the adaptive method with ¿ = 10¡4

and ¢0 = 0:01 (stars, 112 timesteps, CPU time ¼ 0:75s); (iii) the method with constant

timesteps of size ¢n = 0:01 (triangles, 1010 timesteps, CPU time ¼ 440s); and (iv) the

method with uniform timesteps of size ¢n = 0:001 (circles, 10100 timesteps, CPU time

¼ 43800s). In all cases ° = 1=2 and ¢x = ¼=40.

Numerical results 

Errors in the 
adaptive algorithm 

are even (great!, 
compare with 
those for fixed 

timesteps) 

Step doubling algorithm 

γ=1/2 



Do the inevitable numerical 

perturbations (numerical noise, 

round-off errors) ruin the method? 

bU(m)

j ¡U
(m)

j = v
(m)

j

How do the perturbations evolve? 

m 1 

v
(m)

j

2 

AU(n) =MU(n) + ~F (n) Av(n) =Mv(n)
Linear 

unstable 

stable perturbed 
solution perturbation 

Eq. for the evolution of the perturbation 

Does the method always work? 
Stability 



v
(n)

j =
X

q

»(n)q eiqj¢x 1:   

Von Neumann stability analysis:  (Yuste-Acedo, arXiv:cs/0311011, SIAM J. Num. Anal. 05 ) 
Suscessful for numerical methods for fractional equations with Riemman-Liouville 
and Pareto derivatives and for Grünwald-Letnikov, L1 and L2 discretization 
schemes, and many others   

 2: Stability analysis of a generic subdiffusive mode: »
(n)
q eiqj¢x

Does the method always work? 
Stability 

Von Neumann procedure:   

Av(n) =Mv(n) A
h
»(n)q eiqj¢x

i
=M

h
»(n)q eiqj¢x

i

F
h
»fngq ; S(q)

i
= 0Equation for the evolution of »

(n)
q :

http://arxiv.org/abs/cs/0311011
http://arxiv.org/abs/cs/0311011
http://arxiv.org/abs/cs/0311011
http://arxiv.org/abs/cs/0311011
http://arxiv.org/abs/cs/0311011
http://arxiv.org/abs/cs/0311011
http://arxiv.org/abs/cs/0311011


Does the method always work? Stability 
First example:  von-Neumann stability analysis  of the Yuste-Acedo method (SIAM J. 
Num. Anal. 05 , fixed timesteps)  for Riemann-Liouville FDE 

@

@t
u(x; t) =K° 0D

1¡°
t

@2

@x2
u(x; t) »(n+1) = »(n) ¡ S(q)

nX

k=0

!
(1¡°)
k »(n¡k)

RL derivative Grunwald-Letnikov coefficients  S(q) ´ 4
(¢t)°

(¢x)2
sin2

µ
q¢x

2

¶

• Eq. of evolution of the amplitude of a generic mode.  
• Similar to those of  (non-fractional) multistep (multilevel) schemes.  
• This  equation and/or fractional difference methods  could be seen as particular cases 
of multilevel schemes where the number of levels increases with time. 

(*1) 

F
h
»fn+1g; S(q)

i
= 0

≡ 



Does the method always work? Stability 
First example:  Yuste-Acedo method (SIAM J. Num. Anal. 05 , fixed timesteps)  for RL FDE 

»(m+1) = »(m) ¡ S(q)

mX

k=0

!
(1¡°)
k »(m¡k)(*1) F

h
»fng; S(q)

i
= 0≡ 

Boundary of the stability  region: 
z = eiµ

S(q)! SB(q; µ)

Stability region: region (in the complex plane ) formed by those values of S(q;n) for which jznj · 1

zn = zn¡1 ¡ S(q)

n¡1X

k=0

!
(1¡°)
k zn¡1¡k

(*1)  Stable if the n roots of  

satisfy jznj · 1Stability 
polynomial 

S(q) ´ 4
(¢t)°

(¢x)2
sin2

µ
q¢x

2

¶

µ = 0! µ = 2¼with 

S(q) = S(q; n) ´ ¡zn + zn¡1
Pn¡1

k=0 !
(1¡°)
k zn¡1¡k



Does the method always work? Stability 

SB(q; µ; n) ´
¡ei(n+1)µ + einµ

Pn

k=0 !
(1¡°)
k ei(n¡k)µ

S(q; n) ´ ¡zn+1 + zn

Pn

k=0 !
(1¡°)
k zn¡k

z = eiµ

Stable 

SB(q; µ;100)γ=1/2 

4
(¢t)°

(¢x)2
· S£ = 2°

Numerical method for RL-FDE:  stable when 

Yuste-Acedo  arXiv:cs/0311011v1 [cs.NA] (2003)  

2γ 

First example:  Yuste-Acedo method (SIAM J. Num. Anal. 05 , fixed timesteps, explicit)  for RL FDE 

S(q) ´ 4
(¢t)°

(¢x)2
sin2

µ
q¢x

2

¶

SB(q; µ; n)

http://arxiv.org/abs/cs/0311011v1
http://arxiv.org/abs/cs/0311011v1
http://arxiv.org/abs/cs/0311011v1
http://arxiv.org/abs/cs/0311011v1
http://arxiv.org/abs/cs/0311011v1
http://arxiv.org/abs/cs/0311011v1


Does the method always work? Stability 
Second example: von-Neumann stability analysis  of the Liu-Zhuang-Anh-Turner method*   
(ANZIAM J. 47 (2006) ,fixed timesteps, implicit)  for Caputo FDE 

S(q; n) ´ ¡zn + zn¡1Pn¡1
k=1 [(k + 1)1¡° ¡ k1¡° ] zn¡k

@°u

@t°
=K

@2u

@x2

Estable 

Numerical method  stable for all S(q)>0   
 unconditionally stable  

SB(q; µ;100)

Stability polynomial 

SB(q; µ; n)

S(q) ´ 4
(¢t)°

(¢x)2
sin2

µ
q¢x

2

¶

*=present method for fixed timesteps 



Does the method always work? Stability 

A zoo of stability regions 

Unconditionally stable 

RL FDE, weighted-average method, 
(Yuste,  Journal of Computational Physics  (2006)) 

conditionally stable  
Unconditionally stable 

Fully implicit  

Explicit  (fractional) Crank-Nicholson 

SB(q; µ;100)

SB(q; µ;100)

http://landau.unex.es/public_html/santos/PUBLICATIONS/a06saJCompPhysv216p264.pdf
http://landau.unex.es/public_html/santos/PUBLICATIONS/a06saJCompPhysv216p264.pdf
http://landau.unex.es/public_html/santos/PUBLICATIONS/a06saJCompPhysv216p264.pdf


Does the method always work? Stability 

Does the (fractional) von-Neumann stability analysis work for variable timesteps?  

Present method (Caputo FDE, implicit) with variable timesteps:   ¢tm = (m+2)=10

Unconditionally stable 

SB(q; µ;100)

Fixed timesteps 



Does the method always work? Stability 

Present method (Caputo FDE, implicit) with  random variable timesteps:  ¢tm = r=10

 r=random number, uniform in [0,2] 

Unconditionally stable 

SB(q; µ;10)

SB(q; µ;20)

SB(q; µ;30)

SB(q; µ;50)

SB(q; µ; n)

Does the (fractional) von-Neumann stability analysis work for variable timesteps?  



The present implicit method for the FDE in the Caputo form with variable 
timesteps  is 

 unconditionally stable for any choice of timesteps  
(Yuste&Quintana-Murillo, Computer Physics Communications, Vol. 183, December 2012) 

°°°v(n)
°°°
2

·
°°°v(0)

°°°
2

Does the method always work? 
Stability 

It is proved there that  always! 
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Adaptive finite difference method for  
Diffusion-wave equation 

@°u

@t°
=K

@2u

@x2
+ F (x; t)

1< ° < 2



Finite difference method: Discretization of the FPDE 

L2 discretization of the 
fractional Caputo 
derivative 

±
°
t u(x; tn) =

1

¡(3¡ °)

n¡1X

m=0

n
A(°)
m;n [u(x; tm+1)¡ u(x; tm)]

¡B(°)
m;n [u(x; tm)¡ u(x; tm¡1)]

o

±2xu(xj; t) =
u(xj+1; t)¡ 2u(xj; t) + u(xj¡1; t)

(¢x)2

Discretization of the 
Laplacian: three point 

centered formula   

± ´ ±
°
t ¡K±2x@ ´ @°

@t°
¡K
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@x2

@°u

@t°

@2u

@x2

Sn =
¡(3¡ °)K(tn ¡ tn¡2)

2(tn ¡ tn¡1)1¡°(¢x)2

¡SnUn
j+1 +(1+ 2Sn)U

n
j ¡SnU

n
j¡1 =MUn

j + ~F(xj; tn)

MUn
j ´ U

(n¡1)
j +

tn ¡ tn¡1
tn¡1 ¡ tn¡2

h
U
(n¡1)
j ¡ U

(n¡2)
j

i

¡
n¡2X

m=0

³
Âm;n

h
U
(m+1)

j ¡ U
(m)

j

i
¡ B̂m;n

h
U
(m)

j ¡ U
(m¡1)
j

i´

1<γ<2  :  diffusion-wave equation 

 diffusion-wave 
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The testbed problem 

u(x,0) 
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u(x,t)=? 

@°u

@t°
=K

@2u

@x2

u(x= 0; t) = u(x= ¼; t) = 0
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Solid line: exact solution; symbols: adaptive method with ¿ = 10¡4 up to time

t100 = 13:1958 (squares), ¿ = 10¡5 up to time t150 = 11:3309 (circles), and

¿ = 10¡6 up to time t300 = 9:9783 (triangles). In all cases ¢x = ¼=40 and

¢0 = 0:01

Numerical results 

γ=3/2 

Step doubling algorithm 



Numerical errors at the mid-point, ju(¼=2; tn) ¡ Un
k j, of the adaptive method for ¿ =

5£ 10¡4 (squares), ¿ = 10¡5 (circles), and ¿ = 10¡6 (triangles). In all cases ¢0 = 0:01

and ¢x = ¼=40.

Numerical results 

γ=3/2 

Step doubling algorithm 



Exact solution (lines) and adaptive numerical solution (symbols) of the di®usion-

wave problem described in the main text for ° = 3=2 and t16 = 0:105 (squares),

t84 = 1:006 (circles), t156 = 3:015 (stars), and t233 = 5:741 (triangles), with

¿ = 10¡6, ¢0 = 0:01 and ¢x = ¼=40.

Numerical results 

γ=3/2 

Step doubling algorithm 



Numerical results. Diffusion-wave equation 
Some remarks 

Disappointing  results (in comparison with those for subdiffusion equations) 

R=1.02   (really timid exploration coefficient ) 

We cap the ratio between the lengths of two successive timesteps,

[ j¢n=¢m¡1j or j¢n¡1=¢nj] to be smaller than 1:1.

Results worsens when the lengths of two successive timesteps, ¢n and ¢n¡1, are
too di®erent

Worsens? Is the method stable? 

We have carried out extensive calculations and considered a large variety of 
timestep functions (including random distributions), and we have always found 
well-behaved (stable)  numerical solutions 

Numerical tests 



Diffusion-wave equation. Boundaries of stability 
for some methods with fixed timesteps  

SB(q; µ)

4
(¢t)°

(¢x)2
· S£ = 2°

Explicit  
 Gorenflo,Mainardi, Moretti & 

Paradisi 2002, Nonlinear Dyn.; also,  
Quintana-Murillo & Yuste, 2009, 

Physica Scripta 

Explicit  
Quintana-Murillo & Yuste.,2011. 

J. Comp.Nonlin. Dyn. 

Implicit 
Present method for fixed timesteps 

The stability analysis works fine… 

… but  



Diffusion-wave equation. Boundaries of stability 
for variable timesteps  

SB(q; µ)

4
(¢t)°

(¢x)2
· S£ = 2°

n=50 

? 
well-behaved (stable)  

numerical solution 

However 

SB(q; µ; n)

S(q) ´ 4
(¢t)°

(¢x)2
sin2

µ
q¢x

2

¶

¢tm = (m+2)=100

An example 
¢tm = (m+2)=100



Remarks and conclusions 
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Computational cost of fractional difference methods huge 

Different time scales usual 

 Adaptive finite difference method with non-uniform timesteps  {very convenienta must} 

von Neumann  stability analysis for homogeneous timesteps a breeze 

 von Neumann  stability analysis for variable timesteps: 

for subdifusion equations  works smoothly  

for diffusion-wave equations    ? 

Adaptive “step doubling method” fast and accurate (for subdiffusion equations) 


