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Abstract
The decision making model (DMM) [1, 2] has been shown to generate

phase transitions, to be topologically complex and to manifest temporal
complexity through size-dependent random fluctuations in the switching
times between the two critical states of consensus. These properties are
entailed by the fundamental assumption that the network elements in the
DMM imperfectly imitate one another. The process of subordination es-
tablishes that a single network element can be described by a fractional
master equation whose analytic solution yields the observed autocorrela-
tion function obtained by numerical integration of the DMM to a high
degree of accuracy.

1 Introduction
Fractional differential equations have been found to be a convenient way to
describe the dynamics of complex phenomena that are characterized by multi-
ple scales, that is, to describe the time evolution of fractal processes [3] with
no single scale being dominant. In spite of the success of the mathematical
descriptions of such processes there has been a lack of identification and in-
terpretation of mechanisms that entail fractional dynamic equations in a social
context. Herein we provide an explanation of one source of a fractional dif-
ferential equation that describes the dynamics of a complex network using a
fractional master equation.
West and Turalska [4] adopted imitation as a basic social/psychological

mechanism that is part of what it means to be human. Imitation as a mech-
anism for explaining social behavior dates back to the turn of the twentieth
century [5, 6, 7] and is used [4] to construct a complex dynamic social network.
In this social network the hypothesis that imperfect imitation (termed an echo
response) is a fundamental mode of human behavior is made and implemented
through the choice of interaction coefficients in the mathematics of the decision
making model (DMM) [1, 2, 8]. The resulting dynamics were then used to deter-
mine what properties emerged as a consequence of the echo response hypothesis.
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It was shown that the hypothesis entails behavior, such as the phenomenon of
consensus, that is not implicit in the initial statement of the model. In other
words the hypothesis was implemented through the choice of the coupling co-
efficients in the DMM and the resulting critical dynamics was used to explain
such collective effects as herding, flocking and schooling as well as manifesting
stochastic behavior. The DMM is sketched out in Section 2.
Stochastic differential equations have historically been derived in physical

systems using Hamiltonian-based arguments in which the system of interest is
coupled to an infinitely large environment. These derivations produce Langevin
equations, which involve coarse graining the dynamic description so that the
influence of the environment appears in the equation of motion as a linear dissi-
pation and random fluctuations that are interdependent through a flluctuation-
dissipation relation [9]. This technique basically decomposes the system into
macroscopic and microscopic time scales with the later providing the random
fluctuations associated with thermal effects. More recently it was shown that
when the microscopic dynamics are given by a non-integrable Hamiltonian the
separation of time scales no longer occurs because the microscopic time scales
diverge to macroscopic size, resulting in a fractional Langevin equation for the
system dynamics [10]. Herein we find a similar result, in the sense that the dy-
namics of the smallest component of the complex network, the individual, can
be described by a fractional Langevin equation as shown in Section 3. However
in the present approach no coarse graining is envoked.
In the DMM neither the single individual nor the dynamics of the social net-

work are specified by Hamiltonians. The predicted behavior of the single element
dynamics is compared with the numerical results from the DMM implemented
on a two-dimensional lattice in Section 4. The influence of the network on the
dynamics on the individual is measured by the individual autocorrelation func-
tion. The autocorrelation function is shown to be a stretched exponential in the
subcritical region, to be a modulated stretched exponential in the supercritical
domain and a modulated Mittag-Leffler function in the critical region. In all
three regions the analytic solutions to fractional Langevin equations provide
excellent fits to the numerical calculations of the complex network.
In Section 5 some conclusions are drawn.

2 Decision Making Model (DMM)
The DMM of a complex social network represents the dynamics of the probabil-
ity for an individual to be in either of two states, yes or no, up or down, on or
off, by a set of coupled two-state master equations. Turalska et al. [2, 8] showed
that this set of equations for a complex network has the same structural form
as that of the individual elements of the network:

d

dt
p1 = −g12p1 + g21p2, (1)

d

dt
p2 = −g21p2 + g12p1. (2)
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The quantity pj (t) is the probability of the network being in the state j = 1, 2
at time t and the probability is normalized at all times such that

p1(t) + p2(t) = 1. (3)

The dynamics are determined by the choice of the functional form of the tran-
sition rates in Eqs.(1) and (2). In this first case each probability is influenced
by the states occupied by all the elements of the network as determined by the
transition rates

gij(t) = g0 exp [K {Σj(t)−Σi(t)}] ; i 6= j = 1, 2 (4)

where

Σs (t) =
Ns (t)

N
. (5)

N denotes the total number of elements in the network and Ns (t) is the number
of elements in the state s = 1, 2 at time t. The parameter K is the control
parameter that determines the strength of the interactions between elements of
the network. It is evident that the quantity Σs is an erratic function of time,
and is a global property, obtained from an observation of the entire network.
We define the stochastic global variable

ξ(t) ≡ Σ1(t)−Σ2(t) =
N1 (t)−N2 (t)

N
, (6)

whose variability is characteristic of the entire network of echoes, that is, the
echoing response of the network to the echoed opinions of its coupled con-
stituents.
In the situation where the number of nearest neighbors coupled to the el-

ement of interest consists of all the other individuals in the network we have
all-to-all (ATA) coupling. Consider the ATA coupling case and assume that
the total number of elements within the network N becomes infinite. In the
N →∞ case the fluctuation frequencies collapse into probabilities according to
the law of large numbers Σs = ps. In physics this replacement goes by the name
of the mean field approximation in which case the transition rates in the ME
are written

g
ij = g0 exp

£
−K(pi − pj )

¤
; i 6= j = 1, 2. (7)

The formal manipulation of the master equation even in this simplified case is
made a little simpler if we introduce the difference in the probabilities

Π ≡ p
1
− p

2
. (8)

Subtracting Eq. (2) from Eq. (1) after some algebra yields the highly nonlinear
rate equation for the difference variable

d

dt
Π = −(g12 + g21)Π+ (g21 − g12) (9)
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where the nonlinearity enters through the transition rate dependence on the
difference variable

g12 = g0 exp [−KΠ] ; g21 = g0 exp [KΠ] (10)

in the mean field approximation. By inserting Eq. (10) into Eq. (9) we obtain

d

dt
Π = −∂V

∂Π
(11)

and the network dynamics are determined by the potential function V (Π), which
is a symmetric double well potential with the explicit form

V (Π) =
2g0
K

∙
Π sinhKΠ− K + 1

K
coshKΠ

¸
. (12)

Note that the social network is not described by a Hamiltonian and yet the
global dynamics is indeed described by an effective Hamiltonian, that being the
double well potential.
The cooperative behavior of the infinitely large ATA coupled network de-

scribed by Eq.(11) is that of an overdamped particle hopping from one potential
minimum to the other, whose position is Π within the potential Eq.(12). For
K < 1, half of the nodes are in the state 1 and half are in the state 2 because
there is only a single broad minimum in the potential. At the critical value
of the control parameter K = Kc = 1 a bifurcation occurs and the potential
develops two wells separated by a barrier as discussed by Turalska et al. [2].
The height of the barrier increases with the value of the control parameter.
It is interesting that at the critical value of the control parameter the ATA

version of the DMM undergoes a phase transition. Note that the amplitude
of ξ(t) depends on the value of the control parameter K. When K = 0, all
elements in the network are independent Poisson processes; thereby an average
taken at any moment of time over all of them yields zero. Once the value of the
coupling becomes nonzero, K > 0, single elements are less and less independent,
resulting in nonzero averages. The quantityKc is the critical value of the control
parameterK, at which point a phase transition to a global majority state occurs.
In numerical calculations we use the time average ξeq = h|ξ (t)|i as a measure of
this global majority. More precisely, after an initial 106 time steps, the average
is taken over the same number of the consecutive time steps of the model. In
Figure 1 the thin line indicates the ATA phase transition as measured by ξeq.
The other phase transitions indicated are for the Ising model (dashed line) and
the DMM model on a two-dimensional lattice as discussed elsewhere [8].
Real-world networks are not ATA coupled since interactions typically have

finite range and elements are spatially separated. Moreover, real-world networks
have finite numbers of elements. It is therefore useful to examine how strongly
the mean field solutions are violated when we relax these constraints. The
stability condition can be violated in at least two different ways. The first way
is by reducing the number of elements N to a finite value. The second way is
by restricting the number of links so the network no longer has ATA coupling.
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Figure 1: The phase diagram for the global variable ξeq. The thin solid line and
the dashed line are the theoretical predictions for the fully connected and the
two-dimensional regular network, respectively. In both cases N = ∞ and the
latter case is the Onsager theoretical prediction [?] for a two-dimensional regular
lattice. The dots corresponds to the global states observed for the DMM on a
two-dimensional regular lattice (N = 100× 100 nodes) and g0 = 0.01. Periodic
boundary conditions were applied in the DMM calculations. (From [2] with
permission.)

In real-world networks both sources of equilibrium disruption are expected to
occur. For the time being we retain the ATA coupling within the network and
consider the number of elements N to be finite. In this latter case we can no
longer make the mean field approximation and the dynamic picture stemming
from the above master equation is significantly changed.
If the number of elements is still very large, but finite, we consider the

mean-field approximation to be nearly valid and replace the deterministic equa-
tion Eq.(11) with the variable Π replaced by the global variable ξ to obtain a
stochastic differential equation [1, 2]:

dξ (t)

dt
= −∂V (ξ)

∂ξ
+ ε (t) (13)
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and the additive fluctuations ε (t) have amplitudes that are computationally
determined to be on the order of 1/N . Here again we see the influence of the
imperfect imitations that echo between individuals in the network.
Note that the double-well potential in the mean field approximation persists

in the present description. The random fluctuations induce transitions between
the two states of the potential well. Consequently, for a network with a finite
but large number of elements the phase synchronization of Eq.(11) is not stable
and the stochastic differential equation represents the dynamics of the network
that must be solved. Furthermore the fluctuations can drive the particle from
one well of the potential to the other when its amplitude is sufficient to traverse
the barrier separating the wells. However, here the fluctuations arise from the
finite number of elements in the network rather than from non-existent thermal
excitations and are consequently suppressed as the network size increases.

Figure 2: The fluctuation of the mean field-average phase as a function of time.
For a system of N = 500 elements (top), N = 1500 elements (middle), and
N = 2500 elements (bottom). The coupling constant is K = 1.05 and g = 0.01
in all three cases. (From [2] with permission.)

Although Eq. (13) is written in the continuous time representation, in prac-
tice the numerical calculations of DMM correspond to the adoption of a finite
integration time step ∆t = 1. Note that the stochastic rate equation Eq.(13)
replaces Eq. (11) in the case of a finite N , and that Eq. (11) is recovered in the
ideal case N =∞. Consider the ATA coupling condition with a finite number
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of elements by numerically integrating the master equation for each element in
the network and then calculating the number of elements in each of the two
states. In Figure 2 the fluctuating global variable ξ(t) is depicted as a function
of time, under differing conditions. Notice that with increasing N the fluctua-
tion ξ(t) become more distinctly dichotomous-like, with an increasingly sharp
transition from the ’up’ to the ’down’ state. This pattern corresponds to the
entire network keeping a decision for a longer and longer time as the size of the
network increases. The condition of a decision lasting forever is reached in the
ideal case N = ∞. The global variable fluctuates between the two minima of
the double-well potential as described by Eq.(13) for K = 1.05 > Kc and three
values of the size of the network corresponding to an ever increasing influence
of the echo network. The single element follows the fluctuations of the global
variable, switching back and forth from the condition where the +1 state is
preferred statistically to that where the −1 sate is preferred statistically. The
complete properties of the ATA DMM are explored by Turaska et al. [2, 8].

3 Subordination and Fractional Dynamics
Note that if attention is concentrated on a single network element when the
network is in a consensus state that individual would still appear to make tran-
sitions according to an exponential distribution as suggested by Figure 3. That
is the situation on a large scale view of the calculations on a two-dimensional
lattice with nearest neighbor interactions and a critical control parameter value
of Kc = 1.7. The strict exponential is indicated by the black dotted curve. The
single particle survival probabilities do not look too much different, the light gray
dashed curve with the subcritical value K = 1.5 < Kc is very close to the ex-
ponential. The remaining single particle curves, whether critical K = Kc = 1.7
or supercritical K > Kc appear to be exponential on this graph. The difference
in the behavior of the individual from that in the non-interacting state would
be that she tends to be more reluctant to change her mind.
The deviation of the individual survival probability from the exponential

form appears to be modest when compared with the dramatically greater devi-
ation of the survival probability of the global variable from the exponential. The
average network behavior differs markedly as the control parameter is increased
from the subcritical through the supercritical regions. However the influence of
the global variable on the behavior of the individual does not appear to induce
a significant change. For the individual the change is a subtle yet profound
difference and is a direct result of the hypothesized imitation mechanism. So
if the individual survival probability is not exponential, what is it? To answer
this question we turn our attention to describing an alternate construction of
the individual element dynamics.
The master equation for a single isolated element is according to the numer-

ical simulation given by

φ (n∆τ)− φ ([n− 1]∆τ) = −g0φ ([n− 1]∆τ)∆τ , (14)
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whose discrete solution is

φ (n) = (1− g0∆τ)
n
φ (0) . (15)

Here φ (n) is the difference variable for a single individual chosen from the
network at random and as n→∞ and ∆τ → 0 such that clock time is t = n∆τ
we have the apparently trivial result

φ (t) = e−g0tφ (0) . (16)

Figure 3: The survival probability Ψ (t) of the global variable (solid lines) is
compared with the transitions between two stable states for a single unit sj
(dashed lines). Simulations were performed on a lattice of size N = 50× 50 for
g0 = 0.01 and increasing values of the control parameter K. The critical value of
the control parameter is Kc = 1.72. Dotted line corresponds to the exponential
decay with rate g0. The slope of the inverse power law region is μ− 1 = 0.50.

However when the individual is part of the network the exponential is not
what is observed. The straightforward interpretation of the index n given above
is no longer correct. Instead there exists a stochastic connection between what
is now the discrete operational time n and the chronological or clock time t,
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one that is referred to as subordination in the mathematics literature [11]. We
adopt the subordination interpretation here and assume that the time interval
t lies between the values (n − 1)∆τ ≤ t ≤ n∆τ . Consequently the time t is
derived from a waiting-time pdf given by that of the network as a whole:

ψ (t) =
(μ− 1)Tμ−1

(T + t)
μ (17)

where the survival probability as determined from Figure 3 to be [1, 2]

Ψ (t) =

∞Z
t

ψ (t0) dt0 =

µ
T

T + t

¶μ−1
. (18)

An event occurring at time n is an abrupt change from φ (n− 1) to the state
φ (n) . At a generic time t we can write the average probability difference as the
generalized master equation (GME)

hφ (t)i =
∞X
n=0

tZ
0

dt0ψn (t
0)Ψ (t− t0)φ (n) (19)

where φ (n) is given by Eq.(15). Here we see that the GME replaces the two-
state master equation of the DMM.
Note that dtψn (t) is the probability that n events have occurred, the last

one occurring in the time interval (t, t + dt). The function Ψ (t) denotes the
probability that no event occurs up to time t and is given by Eq.(18). The
occurrence of an event corresponds to activating a decision with (1 − g0∆τ),
so that activating n such events transforms the initial condition φ (0) into the
product (1− g0∆τ)

n
φ (0).This form of the equation is kept from time t0, at

which time the last event occurs, up to time t, the time interval t − t0 being
characterized by no event occurring. Of course, the expression Eq.(19) takes
into account that the number of possible events may range from the no-event
case to that of infinitely many events. The conditions necessary for this result
to occur are discussed by Svenkenson et al. [12].
It is useful to introduce Laplace variables in our discussion. The Laplace

transform of a function f(t) is denoted

bf(s) ≡ ∞Z
0

e−stf(t)dt. (20)

Consequently using the convolution theorem Eq.(19) can be expressed in terms
of Laplace transformed quantitiesDbφ (s)E = ∞X

n=0

bψn (s) bΨ (s) (1− g0∆τ)
n φ (0) . (21)
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We assume the intervals between successive transitions are independent of one
another so that the waiting time pdf for n transitions is the product of n single
transition pdf ’s: bψn (s) = hbψ (s)in (22)

and the Laplace transform of the survival probability is

bΨ (s) = 1

s

h
1− bψ (s)i . (23)

Inserting these last two expressions into Eq.(21) and evaluating the sum yieldsDbφ (s)E = 1

s+ g0∆τ bΦ (s)φ (0) (24)

whose inverse Laplace transform yields the GME:

d hφ (t)i
dt

= −g0∆τ
Z
Φ (t− t0) hφ (t0)i dt0. (25)

3.1 Fractional Langevin Equation

The function Φ (t) is a memory kernel containing the information on how the
other elements in the network influence the dynamics of the individual element
selected. The Laplace transform of the memory kernel is

bΦ (s) = sbψ (s)
1− bψ (s) (26)

and a complete discussion of its properties is now given in textbooks [3].
Previous analysis has shown that the waiting-time pdf is an inverse power-

law distribution. The asymptotic behavior of the GME is determined by con-
sidering the waiting-time pdf given by Eq.(17) as s→ 0 :

bψ (s) ≈ 1− Γ(2− μ) (sT )μ−1 (27)

so that Eq.(24) reduces toDbφ (s)E = 1

s+ λμ−1s2−μ
φ (0) (28)

and the rate parameter has the value

λμ−1 =
g0∆τ

Γ (2− μ)Tμ−1 ; 1 < λ < 2. (29)

We now assume that the exact equation for the single person dynamics has both
an average and a fluctuating part just as we found in the mean field treatment of
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the double well potential [1, 8]. Consequently in terms of the Laplace variables
we have the stochastic equation

bφ (s) = 1

s+ λμ−1s2−μ
φ (0) +

1

s+ λμ−1s2−μ
bε (s) , (30)

which has the inverse Laplace transform

Dμ−1
t [φ (t)]− t1−μ

Γ (2− μ)
φ (0) = −λμ−1φ (t) + ε (t) . (31)

This is a stochastic fractional master equation or fractional Langevin equation
(FLE) in which the stochastic properties of ε (t) are determined by the fluctua-
tions of the complex social network. The fractional derivative in this equation
is of the Riemann-Liouville form [?]

Dq
t [f(t)] ≡

1

Γ (m− q)

dm

dtm

tZ
0

f(t0)dt0

(t− t0)q−m+1
(32)

due to the global dynamics of the network q = μ− 1 > 0, with the requirement
that m is the smallest integer such that m − 1 < q < m so that m = 1 in
Eq.(32).
The solution to the FLE is given by

φ (t) = φ (0)Eμ−1
³
− (λt)μ−1

´
+

tZ
0

(t− t0)
μ−2

Eμ−1,μ−1
³
− (λ [t− t0])

μ−1
´
ε (t0) dt0. (33)

where the homogeneous solution to the fractional equation is the Mittag-Leffler
function (MLF)

Eθ

¡
−zθ

¢
=
∞X
k=0

(−1)k zkθ
Γ (1 + kθ)

; θ > 0 (34)

and the kernel of the integral is in terms of the second order MLF taken up in
the next section.
It is useful to replace Eq.(30) with the Laplace transform of the single-

element autocorrelation function

bC(s) ≡ E
hDbφ (s)Eφ (0)i
E
h
φ (0)

2
i =

1

s+ λμ−1s2−μ
(35)

where E[·] is an average over an ensemble of initial states. Again assuming
the existence of fluctuations and rearranging the terms in Eq.(35), the inverse
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Laplace transform [?] of the resulting equation yields the fractional differential
equation for the autocorrelation function

Dμ−1
t [C (t)]− t1−μ

Γ (2− μ)
= −λμ−1C (t) + E [ε (t)φ (0)]

E
h
φ (0)2

i . (36)

It is clear that the solution to the homogeneous fractional equation is again the
MLF, but the behavior of the individual autocorrelation function also depends
on the the properties of the random fluctuations as we show in the next section.

4 Fractional Dynamics and Complex Networks
The solution to the GME is obtained from the exact Laplace transform equation
Eq.(24). However it is notoriously difficult to obtain analytic expressions by
direct inversion of the resulting equations due to the complexity of the exact
form of the Laplace transform memory kernel. Consequently, the strategy is to
consider the asymptotic forms of the solution, which we do by examining the
solutons to the FLE. We find that the properties of the fluctuations change as
the control parameter is varied from the subcritical, critical and supercritical
regions.

4.1 Subcritical Solution

The analytic solution to Eq.(31) with the noise set to zero is obtained elsewhere
[?] by inverse Laplace transforming Eq.(28). The solution is the MLF, as we
said,

φ (t) = φ (0)Eμ−1
³
− [λt]μ−1

´
(37)

The autocorrelation function for the single individual, the solution to the frac-
tional differential equation Eq.(36), is therefore also given by the MLF

C(t) = Eμ−1
³
− [λt]μ−1

´
. (38)

From the series form of the MLF it is evident that for μ = 2 the autocor-
relation function would be an exponential. Consequently the influence of the
network on the behavior of the individual in this case would be essentially that
of uncorrelated random noise and therefore would not qualitatively change from
the Poisson nature of an isolated individual. However this is not the case for
other values of the inverse power-law index. The dynamic behavior of the net-
work results in a stretched exponential autocorrelation for the dynamics of the
individual

lim
t→0

C(t) = 1− (λt)
μ−1

Γ (μ)
≈ exp

Ã
− [λt]

μ−1

Γ (μ)

!
. (39)
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Note that the early time behavior of the MLF is the indicated stretched expo-
nential.
The ten individual elements used in the evaluation of the single autocorre-

lation functions were selected at random from a DMM network calculation on
a two-dimensional lattice of size 100 × 100 with nearest neighbor interactions.
It is clear from the autocorrelation functions depicted in Figure 4 that in the
subcritical regime the data are not indicative of exponential decay. For the
subcritical case of K = 1.50 the stretched exponential function in Eq.(39) gives
a remarkably good fit to the autocorrelation of the time series data. The MLF
index is seen to fall in the interval 1.43 ≤ μ ≤ 1.55, the rate of decay of the
stretched exponential is in the range 3.4 × 10−3 ≤ λ ≤ 4.8 × 10−3, and the
quality of fits all lie in the interval 0.97 ≤ r2 ≤ 0.99. The fitting of the analytic
autocorrelation function at early time to the numerically generates curves using
the DMM is certainly very good in the subcritical domain.

Figure 4: Ten realizations of the single element autocorrelation function, each
selected randomly from the elements on a two-dimensional lattice, under DMM
dynamics withN = 100×100, g0 = 0.01 andK = 1.50 are plotted with thin gray
lines. Thick dashed lines denote the fit with a stretched exponential function.
The fits to the most upper and lower single element autocorrelation functions
are shown.
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4.2 Supercritical Solutions

In the supercritical region of the control parameter the single elements used in
the evaluation of the autocorrelation function were selected at random from the
same DMM network calculations as those above. The calculations were done
on a 100× 100 two-dimensional lattice with nearest neighbor interactions. It is
evident from the autocorrelation functions depicted in Figure 5 that there exists
a wide spread in either the kind of distributions that characterize the network
dynamics in this region or there is an equally wide spread in the parameter
values required to fit the data. Let us consider the last alternative first.
We temporarily assume that the network dynamics in the supercritical region

is similar to that in the subcritical region. We mean by this that the stretched
exponential can be used to describe the autocorrelation function in both domains
and therefore each of the data curves in Figure 5 can be fit using Eq.(39) albeit
with a wide distribution of rates and exponents. The quality of the fit is r2 ≥
0.84 for each of the curves in Figure 5, which is remarkably good given the
vertical spread in the distal values of the autocorrelation function curves. In
many fits to social data the r2 would be sufficient to draw a positive conclusion.
However here we investigate the influence of the noise produced by the network
dynamics.
We assume that the random fluctuations ε (t) in the FLE have Gaussian

statistics and are exponentially correlated with the initial condition such that

E [φ (0) ε (t)] = 2E
h
φ (0)2

i
De−γt. (40)

In addition we insert the identity

dEμ−1
³
− (λt)μ−1

´
dt

= −λμ−1tμ−2Eμ−1,μ−1
³
− (λt)μ−1

´
into Eq.(33) to obtain for the autocorrelation function

C(t) = Eμ−1
³
− (λt)μ−1

´
− D

λμ−1

tZ
0

dEμ−1
³
− [λ (t− t0)]μ−1

´
dt0

e−γt
0
dt0, (41)

Integrating Eq.(41) by parts and using the method of steepest decent on the
remaining integral yields for the early time solution

lim
t→0

C(t) =
Dj

λμ−1
+

µ
1− D

λμ−1
e−γt

¶
exp

"
−(λt)

μ−1

Γ (μ)

#

− γD

λμ−1
eF (t

∗)e−γterf

∙q
2 |F 00 (t∗)|t

¸
(42)
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Figure 5: The autocorrelation functions (thin gray lines) are calculated for each
of 100 time series obtained from a DMM calculation on a two-dimension lattice
for a control parameter greater than the critical value K = 1.9 > Kc. There are
ten time series for each of ten individuals chosen at random from the network.
Thick dashed lines denote the fit with Eq.(44). The most upper and lower single
node autocorrelation function has been fitted.

and the new functions are

F (t∗) =

"µ
γ

λ (μ− 1)

¶μ−1
Γ (μ)

# 1
μ−2

; F 00(t∗) = (2− μ)

∙
γΓ (μ)

λμ−1 (μ− 1)

¸ 1
2−μ

.

(43)
We approximate the early time solution to be

lim
t→0

C(t) ≈ D

λμ−1
+

µ
1− D

λμ−1
e−γt

¶
exp

"
−(λt)

μ−1

Γ (μ)

#
(44)

where the last term in Eq.(42) has been dropped. We subsequently use the
fitted parameter values to calculate the size of the neglected term, which is
determined to be orders of magnitude smaller than the terms retained and
therefore its neglect is justified.
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Equation (44) is used to fit all ten curves in Figure 5 using the exponent
μ = 1.5 and dissipation rate λ = 0.02. The quality of the fit to all the curves
on the graph for the empirical strength of the fluctuations D and the decay
rate of the fluctuations γ for the individuals depicted in Figure ?? fall in the
range 0.96 ≤ r2 ≤ 0.99. For weakly decaying fluctuations the individual au-
tocorrelation is high as is the strength of the fluctuations; this is the region
of exponentially truncated stretched exponential autocorrelation. For rapidly
decaying fluctuations the individual autocorrelation decays as a stretched expo-
nential. The fitting of the approximate analytic solution to the autocorrelation
function to the numerically generated curves using the DMM is certainly very
good in the supercritical domain.

4.3 Critical Solutions

As the critical point is approached from the subcritical region the autocorre-
lation function changes as would be expected due to the formation of clusters
as the network undergoes a phase transition. The plunging stretched exponen-
tial that was observed in the subcritical region as seen in Figure 4 is replaced
with a more gently decreasing correlation. Figure 6 depicts another ten ran-
domly selected single element trajectories from DMM calculations on the two-
dimensional lattice. In this case the control parameter has the critical value
1.70 and the autocorrelation function is calculated from the single particle tra-
jectories. It is evident by comparing these data with the data curves in Figure 4
that the autocorrelation does not decrease as quickly in time and there is more
variability among the ten slopes at late time.
The question is whether the MLF solution to the FLE can be used to fit these

data as well as it did the subcritical data or whether we require an additional
mechanism such as the fluctuations in the supercritical region. We find that at
early times the stretched exponential approximation to the MLF fits the data
very well as shown in Figure 6. At late times correlated fluctuations generated
by the remainder of the network must be included.
The data curves in Figure 6 are extremely well fit using the stretched ex-

ponential function at early times, however, the inverse power law at late times
using the same MLF is not a good fit. The fits by separate asymptotic solutions
to the data in the critical region are excellent each with r2 > 0.99. However
there is a problem and that is the low value of the inverse power-law index,
it is 1.22 rather than the 1.5 found in the numerical calculation of the sur-
vival probability for the network and used in the subordination process. This
change of inverse power-law index suggests that the dynamic equation for the
autocorrelation function is given by Eq.(30) but the noise is no longer given
by exponentially decaying fluctuations. The strength of the fluctuations at the
critical points are assumed to decay as an inverse power law:

E [φ (0) ε (t)] = E
h
φ (0)2

i
D

µ
T

T + t

¶ν
(45)
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Figure 6: Ten realizations of the single element autocorrelation function selected
randomly from the two-dimensional lattice with N = 100× 100, g0 = 0.01 and
K = 1.70 ≈ Kc. Thick dashed lines denote the fit with an inverse power law
function. The most upper and lower single node autocorrelation function has
been fitted.. The data are fit to a stretched exponential at early time (dashed
light gray line) with λ0 ≈ 0.01 and to an IPL at late times (dashed dark gray
line) with index μ− 1 ≈ 0.22. The quality of fit r2 ≥ 0.99 for all ten curves in
both regions.

so that the Laplace transform of the autocorrelation function is

bC (s) = 1

s+ λμ−1s2−μ
+

D

s+ λμ−1s2−μ
Γ (1− ν)T

(sT )

£
esT −EsT

1−ν
¤
. (46)

The time asymptotic autocorrelation function is obtained by considering the
s→ 0 limit and noting 1 > 2− μ as well as ν − 1 < 0,

lim
s→0

bC (s) =
1

s+ λμ−1s2−μ

h
1 + Γ (1− ν)D (sT )

ν−1
i

≈ Γ (1− ν)DT ν−1

λμ−1
sμ+ν−3
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and consequently yields the inverse power law with a modified index

lim
t→∞

C(t) =
Γ (1− ν)D

Γ (4− μ− ν) (λT )
μ−1

µ
Tj
t

¶μ+ν−2
. (47)

From the fits to the curves in Figure 6 we determine that the average fluctuation
relaxation rate to be ν ≈ 0.72 with a quality of fit r2 ≥ 0.99 for each of the
ten curves considered.The relaxation properties of the fluctuations are therefore
seen to dominate the autocorrelation of the individual elements of the network
at late times and the analytic fit in the two time regimes are uniformly excellent.

5 Conclusion
The numerical solution of the DMM on a 100 × 100 lattice with elements at
each of the nodes and with nearest neighbor interactions gives rise to an inverse
power-law survival probability for the global variable introduced in Section 2.
Using the notion of a subordination time, that being the time experienced by
an individual, with the influence of the network entering into the individual’s
dynamics through the distribution of critical events, the dynamics of an in-
dividual is determined by a fractional master equation. The explicit form of
the FLE depends on whether the network dynamics is in the subcritical, crit-
ical or supercritical domains. Only in the subcritical domain is the solution
to the FLE, that being the MLF, sufficient to describe the dynamic response
of an individual to the other 9,999 dynamic elements of the network. In the
supercritical and critical domains the FLE is modified to include a correlated
stochastic driver. In the supercritical domain the relaxation of the fluctuations
is exponential and solution to the stochastic FLE fits the individual autocor-
relation calculated data remarkably well. In the critical domain the relaxation
of the fluctuations is modeled by an inverse power law and the solution to the
stochastic FLE again fits the individual autocorrelation data surprisingly well.
The lesson to be learned from this combination of computation and analy-

sis presented herein is that complex networks of finite size whose dynamics are
members of the Ising universality class described by the DMM have an analytic
not just a numerical description. Instead of confining the dynamic description
to that of the macroscopic variable, that being the global or average state of
the network, one can also investigate how individual members of the network
respond to the influence of the network as a whole. If we consider the fluctua-
tions in the global dynamics to be microscopic, and the potential of the global
variable to be macroscopic, then the real time dynamic description of the in-
dividuals is mesoscopic. In general the mesoscopic dynamics have a fractional
stochastic differential representation.

18



6 Acknowledgement
The authors warmly thank the Army Research Office for financial support of
this research.

References
[1] S, Bianco, E. Geneston, P. Grigolini and M. Ignaccolo, "Renewal aging as

emerging property of phase synchronization", Physica A 387, 1387 (2008).

[2] M. Turalska, M. Lukovic, B.J. West, and P. Grigolini, "Complexity and
synchronization", Phys. Rev. E 80, 021110(2009)

[3] B.J. West and P. Grigolini, Complex Webs, Cambridge University Press,
UK (2011).

[4] B.J. West and M. Turalska, "Network of Echoes", to appear in Chaos,
Solitons & Fractals (2013).

[5] C.A. Ellwood, “The Theory of Imitation in Social Psychology”, Am. J.
Sociol. 6, 721-741 (1901).

[6] J.M. Baldwin,Mental Development in the Child and the Race (1895); Social
and Ethical Interpretations in Mental Development (1897).

[7] M.G. Tarde, Les Lois de l’Imitation (1890); La Logique sociale (1895); Les
Lois socials (1898).

[8] M. Turalska, B.J. West, P. Grigolini, "Temporal complexity of the order
paramerer at the phase transition", Phys. Rev. E 83, 061142 (2011).

[9] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press,
NY (2001).

[10] P. Grigolini, A. Rocco and B.J. West, "Fractional calculus as a macroscopic
manifestation of randomness", Phys. Rev. E 59, 2603 (1999).

[11] W. Feller, An Introduction to Probability Theory and Its Applications, John
Wiley, NY (1966).

[12] A. Svenkeson, M.T. Beig, M. Turalska, B.J. West and P. Grigolini, "Frac-
tional Ecology: Decorrelation versus Friction", under review

19


