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Fractional differential equations are an important and useful tool in many areas of science and engineering
[1, 2, 3, 4, 5]. In a heterogeneous environment, the coefficients of the diffusion equation will naturally vary in space.
Pearson diffusions form a tractable class of variable coefficient diffusion models with polynomial coefficients. The
process X1(t) is called a Pearson diffusion if it solves the stochastic differential equation
dX1(t) = µ(X1(t))dt +σ(X1(t))dW (t) with µ(x) = a0 +a1x and D(x) = σ2(x)

2 = d0 +d1x+d2x2.

These processes include the Ornstein-Uhlenback process and the Cox-Ingersoll-Ross (CIR) process, which
are used in finance. Their steady state distributions belong to the class of Pearson distrbutions. In a fractional
Pearson diffusion, the time variable is replaced by an inverse α-stable subordinator independent of the process X1
[6]. The resulting stochastic process is non-Markovian, but its density pα(x, t) of the one dimensional distribution
of Xα(t) is governed by the fractional Pearson diffusion equation, obtained by replacing the first time derivative in
the Pearson diffusion equation with a Caputo fractional derivative of the same order 0 < α < 1 [7]:
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The purpose of this paper is study the correlation structure of fractional Pearson diffusions in steady state [8]. We
show that if X1(t) is a Pearson diffusion in steady state, so that its correlation function is given by corr[X1(s),X1(t)]=
exp(−θ |t − s|), θ > 0, t,s > 0, then the correlation function of the corresponding fractional Pearson diffusion
Xα(t) = X1(Et), where Et is the standard inverse α-stable subordinator independent of X1, is given by
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for t ≥ s > 0, where Eα(z) is the Mittag-Leffler function.

It follows from the expression for the correlation function that fractional Pearson diffusions exhibit long-range
dependence in the following sense: if s > 0 is fixed and t → ∞, then the correlation of Xα(t) and Xα(s) falls off
like a power law t−α , with exponent equal to the order of the fractional derivative in time.
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