Correlation structure of fractional Pearson diffusions
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Fractional differential equations are an important and useful tool in many areas of science and engineering
[1,2,3,4,5]. Inaheterogeneous environment, the coefficients of the diffusion equation will naturally vary in space.
Pearson diffusions form a tractable class of variable coefficient diffusion models with polynomial coefficients. The
process X (¢) is called a Pearson diffusion if it solves the stochastic differential equation

o(x)

dX,(t) = (X, (t))dt + o(X,(t))dW (t) with pi(x) = ap +arx and D(x) = 5~ = do+dyx+ dox”.

These processes include the Ornstein-Uhlenback process and the Cox-Ingersoll-Ross (CIR) process, which
are used in finance. Their steady state distributions belong to the class of Pearson distrbutions. In a fractional
Pearson diffusion, the time variable is replaced by an inverse q-stable subordinator independent of the process X
[6]. The resulting stochastic process is non-Markovian, but its density pe/(x,#) of the one dimensional distribution
of X(t) is governed by the fractional Pearson diffusion equation, obtained by replacing the first time derivative in
the Pearson diffusion equation with a Caputo fractional derivative of the same order 0 < o < 1 [7]:
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;‘T = o (LX) pa(x,1)] + 392 [6%(x)pa(x,1))] -
The purpose of this paper is study the correlation structure of fractional Pearson diffusions in steady state [8]. We
show that if X; (7) is a Pearson diffusion in steady state, so that its correlation function is given by corr[X; (s),X; (r)] =
exp(—0|t —s|), 6 > 0, t,s > 0, then the correlation function of the corresponding fractional Pearson diffusion
Xo(t) = X1 (E;), where E, is the standard inverse a-stable subordinator independent of Xj, is given by

Oar® /S/f Eq(—0t%(1—2)%)
I(14+a) Jo 7l-e
forz > s> 0, where E(z) is the Mittag-Leffler function.

corr[Xy (1), Xe (5)] = Eq(—01%) + dz (1)

It follows from the expression for the correlation function that fractional Pearson diffusions exhibit long-range
dependence in the following sense: if s > 0 is fixed and r — oo, then the correlation of Xy (¢) and X (s) falls off
like a power law 7~ %, with exponent equal to the order of the fractional derivative in time.
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