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Overview

Modelling spatial heterogeneity in cardiac electrophysiology
and the bidomain equation.

Coping with tissue heterogeneities — non-local models.
Validation against experimental and clinical data.

Discussion on modelling: homogneisation, phenomenological
models, intuitive versus non-intuitive models, what do we
mean by validation?



Coping with spatial heterogeneity
when modelling the
electrophysiology of the heart




Structural heterogeneity of cardiac tissue

Composition of the extracellular space?:

s Ground substance: 23%

= Blood vessels: 60%

s Connective tissue: 7%

m Collagen: 4%

= Empty space: 6% 1. Frank J, Langer G. J Cell Biol 1974;60:586-901.

Figures: (Left) Rutherford SL et al. Circ Res 2012;111:301-11
(Right) Plank G et al. Phyl Trans R Soc A 2009;367:2257-92



Inter-subject anatomical variablility in Purkinje system
Bordas et al. IEEE EMBC, 2010
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Multiscale Mechanisms
from 1on channels to ECG
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Spatial heterogeneity and
fractional models




Mathematical modelling of cardiac tissue

@ The traditional way of modelling wavefront propagation in the heart is to represent
the tissue as a continuum with spaced averaged properties:
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Figures: (Left) O'Hara T et al. PLoS Comput Biol 2011;7:e1002061
(Right) Cherry EM, Fenton FH. J Theor Biol 2011;285:164-76



Fractional diffusion as a tool to describe heterogeneous media

o Many systems characterised by structural heterogeneity, where transport is
facilitated within a certain scale, exhibit heavy-tailed experimental distributions
(filtration of solutes in porous soils, diffusion of colloids in polymers, MRI, ...).
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» Many authors have shown the equivalence between
heavy-tailed motions and transport equations that use
fractional-order (non-integer) derivatives.

» These models can be rigorously derived from an ensemble
of particles undergoing stochastic Levy walks, with more
heavy-tailed probabilistic distributions as the fractional

order separates from the integer (standard) derivative.




Fractional monodomain equation

» A fractional monodomain equation can be considered by replacing the current
flux through the membrane to the heterogeneous extracellular domain by its
fractional counterpart:

1
OtV = —DV’ (=VVp) — =—1 0<B<1,

OTH 10119
where V7 is the Riemann-Liouville fractional gradient:
o° 1 o [ u(s,y,z)
Bz U Y, 2) = m1—max/ @—s)ds

o Alternatively, in the isotropic setting we can rewrite by considering the use of
Riesz potential theory:

1
Cm
» Q: Can we recover important phenomena of cardiac tissue by considering this
fractional diffusion formulation of wavefront propagation?!?

Vi = —Da(—A) Vi — —Tion, 1<a <2



Biophysical justification of fractional diffusion: Potential Theory

s Fractional diffusion model of excitable tissue:

C-;l Iiona 9 OV = _Da(_A)a/2Vm — —1I l<a<?2

» Only coupling is modified = let's analyse solutions of: —A¢ = ! (N=3 dimensions)
g

Vi = —DV (=Y Vi) —

» Homogeneous tissue, I = Ipd(r):

O (1) = b

dwor

> o(r) ~ 1/r

» Tissue inhomogeneities?:
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1. Plonsey R. & Barr R. “Bioelectricity: A quantitative approach”, Springer, 2007. Figure: Spach MS et al. Circ Res 1998;93:1144-64.



Biophysical justification of fractional diffusion: Potential Theory

» Riesz potential of the fractional Laplacian:

(—A)O‘/ng _ Ca/ ¢(T‘) — @(r’) o o ~N/2 90 F(%)

e Jr = rFe

» Therefore, the potential associated to the fractional Laplacian is:

or) = (-8 = o [ L ar

Ca

gy ||r =7

sa=2(N =3 and f = [yd(r)/o,):

¢(r) ~ 1/r > homogeneous tissue

sa=1(N =3 and f = Ié(r)/o,):

P(r) ~ 1/’1"2 —> tissue inhomogeneities <

50 pum 10 um
Figure: Spach MS et al. Circ Res 1998;93:1144-64.



Numerics and getting the
boundary conditions right in
fractional models




Fisher Equation

Standard steady speed travelling
wave
ou “ . N
— + v(—A) % = u(l — u) in €, |
ot
Ju

— =10 m 0, NS
on ? ’ s

u(z,0) = uo(z) Va in Q.

Exponential spread of the interface is
clearly seen, see Engler 2010.




Reflecting Boundary Conditions

Using the Generalised Master Equation (GME) we can derive a space-fractional
equation involving the Riesz-Feller operator for the probability density function of
an ensemble of particles undergoing a Levy walk CTRW.

By introducing reflecting boundaries, a jump from x1 to x2 both in the finite
domain [O; L], may be obtained in an infinite number of ways via repeated
bounces from the walls x =0 and x = L.

i =
. . —
1, L 1. 3l aah T [ ) Bty
(a] Infinite domeain (b1 Semi-infinite domain () Bounded domain

Fia. 2.1. Transitions of an ensemble of particles based on a-stable symmetric Lévy walks on
infinite, semi—infinite and bounded domaina.

REFLECTIONS FROM A BOUNDARY: REFLECTING BOUNDARY
CONDITIONS FOR SPACE-FRACTIONAL PARTIAL
DIFFERENTIAL EQUATIONS ON BOUNDED DOMAINS

DAVID KAY* IAN TURNER} NICOLE CUSIMANOfAND KEVIN BURRAGES



Let kmax be the number of teeth of the sawtooth function considered in
the approximation and jna = 2Nkqy, then at each node of the spatial
mesh we obtain the following discretization:

g Z n( N+l ) _ "
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[a) B =09 (b} 8 = 0.05

Fia. 3.1, Total mass is not oomserved with standerd Neumann boundary conditions (pink),
but with the correct reflecting boundary conditions, mass 12 increasingly conzerved a2 the number of
reflective blocks merease. Here 8 = 0.0 and 8 = 0.05, the mitial condition is P[0, ) = é{z — 0.05)
and the number of blocks 42 1, 10, 100 (green).



(a) o =20 (b) @ = 1.75 {c] =15
(d) @ =1.25 (8] @ = 1.5 with standard

MNeumann BCs

Fic. 4.1. Simulations with the new reflecting boundary conditions at both r = 0 and ¢ =
1, imdtial condition ugir) = Fsin(mrr), (a)-{d). Figure (e) shows the behaviour under standard
Neumann boundary conditions



Validation of a fractional
monodomain model

OV = —Da(—A)¥ W, — —(Fign — Ttim), 1< < 2,
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Neonatal rat cell cultures (“the heart in a dish”)

« N.Badie &N. Bursac, Novel Micropatterned Cardiac Cell Cultures with Realistic
Ventricular Microstructure, Biophysical J. Vol. 96 May 2009 3873-3885.

*Systematic studies of cardiac structure-
function relationships is hindered by the
intrinsic complexity and variability of in vivo
and ex vivo model systems.

*The authors develop a reproducible cell
culture system that can replicate the realistic
microstructure of native cardiac tissues using
cell micropatterned cardiac cultures with
realistic tissue boundaries and natural cell
orientation, random cell orientation, and
standard isotropic monolayers.

* They aligned cultured cardiomyocytes at
micro- and macroscopic spatial scales to
follow local directions of cardiac fibres in
murine  ventricular cross sections, as
measured by high-resolution diffusion tensor
magnetic resonance imaging.

FIGURE 3 Fomation of realigtic cardiac microstructure in AS cultures. (A-C) Plated cells were found to attach (A), spread and align along the underlying
fibronectin lines (B), and by day 6 (C) form confluent cardiac fibers. (D) Composite image of the entire micropatterned slice culmre. (E) Close-up of four
adjaoent pixels delineated by dashed lines, along with the underlying fibronectin pattern (green, inser). Note abrupt changes in cardiac fiber directions in neigh-
boring pixels without loss of cell confluence.



Neonatal rat cell cultures (“the heart in a dish”)

Experimental Standard Diffusion (oo =2) Fractional Diffusion (o =1.5) Fractional Diffusion (o = 1.5)
(Badie & Bursac, 2009) (Kim et al., 2010) (Kim et al., 2010) (Modified model)
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Fractional diffusion models of electrical propagation in cardiac tissue: nonlocal
electrotonic effects modulate cellular repolarization, submitted to Nature Commes,
2013, A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez, K. Burrage.



The Iinverse AT-APD relationship

» A compelling mechanism of the intact

heart is the shortening of APD along A

the activation path (a.k.a. the inverse .

Activation time (AT)-APD relationship). Sl INNC U 2':’”‘2:9;0'80
» It has been reported in multiple studies .

and different species (including in-vivo _ 180

human, in-vivo dog, or isolated rabbit and <

guinea pig hearts). 7or

» Furthermore, it is considered a natural eor

cardioprotective mechanism of the 150 -

intact heart, since it contributes to e
reduce total dispersion of repolarization. Activation Time

o In fact, AT-APD relationships have been
shown to be less steep in diseased hearts?.

Experimental data:
Hanson B et al. Circ Arrythmia Electrophysiol 2009;2:162-70
1. Cowan JC et al. Br Heart J 1998;60:424-433.



The inverse AT-APD relationship: electrotonic effects

AAPD (ms) O AAPD (ms) »

AAPD (ms) M

Om
,!: .
[ ‘..-: uy
20F " -"a
Ll L 1
L L : ..‘
40} g
I . --‘-
3 .a
0057020 30 20 50
Activation Time (ms)
0" : " .. "
20F et .
40} R
[ i .
60 10 20 30
Activation Time (ms)
b .
. .
B |
10} e o~ "
20} -
0 10 20 30

Activation Time (ms)

AAPD (ms) O

AAPD (ms) 00

10}
20}
30}
a0}

AAPD (ms) T

Activation Time (ms)
0

0 10 20 30 40 50 60

0 15 30 45 60

75
Activation Time (ms)
o 10 20 30

Activation Time (ms)

Shortening of APD during
propagation.

1D cable solid 2cm, dash 4.
Standard diffusion has
moderate dispersion
regardless of cell type.
Change in APD increasingly
large for decreasing alpha.



Tissue dispersion of APD restitution

A 240 [ Early activating sites B [ Early activating sites )
= . - \ - "'\: : E -
- R Y 280r- 5:3"
Experimental data: 2 200+ f,—r:: L Ry E | e \
Hanson B et al. Circ Arrythmia a L ff:z,;i_fg AT T TN a 240} WM Late activating sites
Electrophysiol 2009;2:162-70 < 160+ f-‘:ﬁg‘i{{h - Late activating sites < i j?,"’
- l’,‘. ; = I~
kS Invivo data 200 Simulation (v = 2)
20y~ "Fog 200 300 0 100 200 300
Diastolic Interval (ms) Diastolic Interval (ms)
C i D B _\( )
2801 1‘}“:—\*‘3' 280f K&’\'}vd*
N 1 N o
E T A:\,,"V E [ X&
o 240F- o 240} (\,
e} o a ot r\,‘:’;\
< L ! =y B '
200t 4/ simulation (o = 1.75) 200f “" Simulation (u = 1.5)
0 100 200 300 0 100 200 300
Diastolic Interval (ms) Diastolic Interval (ms)

A: Experimental data from multiple sites from healthy human endocardium. Linear regression
lines are shown for APD versus DI at each test coupling interval, exhibiting a progressive
flattening of slope as the coupling interval shortens.

B: Global DI-APD dependence in a simulated cable of human cardiac tissue of 4 cm length
(alpha=2). Dispersion between early and late APD restitution curves small, but regression lines
manifest a rapid inversion of slopes at short coupling intervals.

C, D: Global DI-APD dependence for fractional diffusion models (alpha=1.75 and 1.5). The
separation between early and late APD restitution curves increases for decreasing fractional
order, also recovering the progressive flattening of regression lines.



Discussion




Issues with fractional models and application to the heart

*Two principal hypotheses employed by standard theories of diffusion are that the
continuum hypothesis uses local averaged values and the Fickian law for the flux is
defined in terms of the gradient of the quantity involved.

*The averaged quantity fluctuates as the averaging volume becomes smaller and
homogenisation can fail in heterogeneous settings. But bidomain theory has been
very successful since 1975.

*The non-homogeneities of the medium alter the laws of Markov diffusion - heavier
tail than the Gaussian density, resulting in long-range dependence.
This is related to Levy flights — but what are they biophysically?

» Should we just view fractional models as phenomenological?

* However, Riesz potential is a generalisation of standard potential theory based on
the inverse of a fractional Laplacian.

* Inhomogeneities lead to generation of secondary dipoles. We can modify standard
monopole theory for electrical propagation and use the idea of fractional conductance
— first proposed in semi-conductor theory.

1(r) =(r“"/4ar*)(1, /o)



Philosophical musings

What do we want from a model?

— What are the questions? What data do we have?
Should we add increasing complexity just because we can?
Should a model be intuitive?

The roles and use of phenomenological models versus biophysically
detailed models at the Cell level or Tissue level.

How do we validate a fractional model? Diffusion Tensor MRI. Need a
fractional Bloch-Torrey model to build a model and fit data.

What level of complexity should a fractional bidomain model have? Is
this a mechanism for APD dispersion?

Can we use fractional bidomain models for patient specific heart data?

A. Carusi, K. Burrage, B. Rodriguez (2012): Bridging Experiments, Models and Simulations: An
Integrative Approach to Validation in Computational Cardiac Electrophysiology, Am. J. Physiology.

Phenomenological modeling of cell to cell-to-cell and beat-to-beat variability in isolated guinea pig
ventricular myocytes, J. Walmsley, G. Mirams, M. Bahoshy, C. Bollensdorff, B. Rodriguez and K.
Burrage, 2010 .

A practical implementation of an implicit FEM scheme for equations with fractional diffusion. K.
Burrage, N. Hale and D. Kay, SISC, 34, 2145-2172, 2012.
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