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Overview 

• Modelling spatial heterogeneity in  cardiac electrophysiology 

and  the bidomain equation. 

 

• Coping with tissue heterogeneities – non-local models. 

 

• Validation  against experimental and clinical data. 

 

• Discussion on modelling: homogneisation, phenomenological 

models, intuitive versus non-intuitive  models, what do we 

mean by validation? 

 



Coping with spatial heterogeneity 

when modelling the 

electrophysiology of the heart 
  



Structural heterogeneity of cardiac tissue 

  Ground substance:  23% 

  Blood vessels:   60% 

  Connective tissue:  7% 

  Collagen:    4% 

  Empty space:  6% 1. Frank J, Langer G. J Cell Biol 1974;60:586-901. 

Figures:  (Left) Rutherford SL et al. Circ Res 2012;111:301-11                               

(Right) Plank G et al. Phyl Trans R Soc A 2009;367:2257-92 

Composition of the extracellular space1: 



Inter-subject anatomical variability in  Purkinje system 
Bordas et al. IEEE EMBC, 2010 

 Hypertrophic cardiomyopathy: myocyte disarray and fibrosis 

Inherited Cardiomyopathies, New England  

J. of Medicine, H.Watkins et al., 2011 

 



Multiscale Mechanisms 

from ion channels to ECG 
Propagation model 
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Spatial heterogeneity and 

fractional models 

  



Mathematical modelling of cardiac tissue 
 

  The traditional way of modelling wavefront propagation in the heart is to represent     

the tissue as a continuum with spaced averaged properties: 

 

Figures:  (Left) O'Hara T et al. PLoS Comput Biol 2011;7:e1002061                      

(Right) Cherry EM, Fenton FH. J Theor Biol 2011;285:164-76 

: ODE system describing cell 

dynamics    (electrophysiology) 



Fractional diffusion as a tool to describe heterogeneous media 

 

  Many systems characterised by structural heterogeneity, where transport is              

facilitated within a certain scale, exhibit heavy-tailed experimental distributions    

(filtration of solutes in porous soils, diffusion of colloids in polymers, MRI, ...). 

 

 

  Many authors have shown the equivalence between                

heavy-tailed motions and transport equations that use             

fractional-order (non-integer) derivatives.  

  These models can be rigorously derived from an ensemble     

of particles undergoing stochastic Levy walks, with more      

heavy-tailed probabilistic distributions as the fractional             

order separates from the integer (standard) derivative.   

 

Benson DA et al. Water Resour Res 2000;36:1403-12 



Fractional monodomain equation 
 

  A fractional monodomain equation can be considered by replacing the current      

flux through the membrane to the heterogeneous extracellular domain by its          

fractional counterpart: 

  where       is the Riemann-Liouville fractional gradient: 

  Alternatively, in the isotropic setting we can rewrite by considering the use of 

Riesz potential theory: 

 
 

  Q: Can we recover important phenomena of cardiac tissue by considering this            

fractional diffusion formulation of wavefront propagation?!? 

 



Biophysical justification of fractional diffusion: Potential Theory 

 Fractional diffusion model of excitable tissue: 

 

 

 Only coupling is modified  let’s analyse solutions of:                   (N=3 dimensions) 

 

50 μm 10 μm 

 

 Homogeneous tissue,                     : 

 
 

 Tissue inhomogeneities1: 

 

 

Figure: Spach MS et al. Circ Res 1998;93:1144-64. 1. Plonsey R. & Barr R. “Bioelectricity: A quantitative approach”, Springer, 2007. 



Biophysical justification of fractional diffusion: Potential Theory 

 Riesz potential of the fractional Laplacian: 

50 μm 10 μm 

Figure: Spach MS et al. Circ Res 1998;93:1144-64. 

 Therefore, the potential associated to the fractional Laplacian is: 

 α = 2 (                                            ) : 

 
 homogeneous tissue  

 α = 1 (                                            ) : 

 
 tissue inhomogeneities 



Numerics and getting the 

boundary conditions right in 

fractional models 
  



Fisher Equation 

Exponential spread of the interface is 

clearly seen, see Engler 2010. 

Standard steady speed travelling 

wave 



Using the Generalised Master Equation (GME) we can derive a space-fractional 

equation involving the Riesz-Feller operator for the probability density function of 

an ensemble of particles undergoing a Levy walk CTRW. 

 

By introducing reflecting boundaries, a jump from x1 to x2 both in the finite 

domain [0; L], may be obtained in an infinite number of ways via repeated 

bounces from the walls x = 0 and x = L. 

Reflecting Boundary Conditions 







Validation of a fractional 

monodomain model 

  



Neonatal rat cell cultures (“the heart in a dish”) 

• N.Badie &N. Bursac, Novel Micropatterned Cardiac Cell Cultures with Realistic 

Ventricular Microstructure, Biophysical J. Vol. 96 May 2009 3873–3885. 

 

•Systematic studies of cardiac structure-

function relationships is hindered by the 

intrinsic complexity and variability of in vivo 

and ex vivo model systems.  

•The authors develop a reproducible cell 

culture system that can replicate the realistic 

microstructure of native cardiac tissues  using 

cell micropatterned cardiac cultures with 

realistic tissue boundaries and natural cell 

orientation, random cell orientation, and 

standard isotropic monolayers. 

• They aligned cultured cardiomyocytes at 

micro- and macroscopic spatial scales to 

follow local directions of cardiac fibres in 

murine ventricular cross sections, as 

measured by high-resolution diffusion tensor 

magnetic resonance imaging. 

 



Neonatal rat cell cultures (“the heart in a dish”) 

Fractional diffusion models of electrical propagation in cardiac tissue: nonlocal 

electrotonic effects modulate cellular repolarization, submitted to Nature Comms, 

2013, A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez, K. Burrage. 



The inverse AT-APD relationship 
 

  A compelling mechanism of the intact             

heart is the shortening of APD along            

the activation path (a.k.a. the inverse           

Activation time (AT)-APD relationship). 

  It has been reported in multiple studies      

and different species (including in-vivo         

human, in-vivo dog, or isolated rabbit and       

guinea pig hearts). 

  Furthermore, it is considered a natural           

cardioprotective mechanism of the             

intact heart, since it contributes to                  

reduce total dispersion of repolarization. 

  In fact, AT-APD relationships have been        

shown to be less steep in diseased hearts1. 

 Experimental data: 

Hanson B et al. Circ Arrythmia Electrophysiol 2009;2:162-70 

1. Cowan JC et al. Br Heart J 1998;60:424-433. 



The inverse AT-APD relationship: electrotonic effects 

Shortening of APD during 

propagation.  

1D cable  solid 2cm, dash 4. 

Standard diffusion has 

moderate dispersion 

regardless of cell type. 

Change in APD increasingly 

large for decreasing alpha. 



A: Experimental data from multiple sites from healthy human endocardium. Linear regression 

lines are shown for APD versus DI at each test coupling interval, exhibiting a progressive 

flattening of slope as the coupling interval shortens.  

B: Global DI-APD dependence in a simulated cable of human cardiac tissue of 4 cm length 

(alpha=2). Dispersion between early and late APD restitution curves small, but regression lines 

manifest a rapid inversion of slopes at short coupling intervals.  

C, D: Global DI-APD dependence for fractional diffusion models (alpha=1.75 and 1.5). The 

separation between early and late APD restitution curves increases for decreasing fractional 

order, also recovering the progressive flattening of regression lines. 

Tissue dispersion of APD restitution 
 

Experimental data: 

Hanson B et al. Circ Arrythmia  

Electrophysiol 2009;2:162-70 

 



Discussion 

  



•Two principal hypotheses employed by standard theories of diffusion are that the 

continuum hypothesis uses local averaged values and the Fickian law for the flux is 

defined in terms of the gradient of the quantity involved. 

 

•The averaged quantity fluctuates as the averaging volume becomes smaller and 

homogenisation can fail in heterogeneous settings.  But bidomain theory has been 

very successful since 1975. 

 

•The non-homogeneities of the medium alter the laws of Markov diffusion - heavier 

tail than the Gaussian density, resulting in long-range dependence.  

This is related to Levy flights – but what are they biophysically? 

 

• Should we just view fractional models as phenomenological? 

 

• However, Riesz potential is a generalisation of standard potential theory based on 

the inverse of a fractional Laplacian. 

 

• Inhomogeneities lead to generation of secondary dipoles. We can modify standard 

monopole theory for electrical propagation and use the idea of fractional conductance 

– first proposed in semi-conductor theory. 

 

 

 

Issues with fractional models and application to the heart 
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Philosophical musings 
• What do we want from a model? 

– What are the questions?  What data do we have? 

• Should we add increasing complexity just because we can?  

• Should a model be intuitive? 

• The roles and use of phenomenological models versus biophysically 

detailed models at the Cell level or Tissue level.  

• How do we validate a fractional model? Diffusion Tensor MRI.  Need a 

fractional Bloch-Torrey model to build a model and fit data. 

• What level of complexity should a fractional bidomain model have? Is 

this a mechanism for APD dispersion? 

• Can we use fractional  bidomain models for patient specific  heart data? 

 
• A. Carusi, K. Burrage, B. Rodriguez (2012): Bridging Experiments, Models and Simulations: An 

Integrative Approach to Validation in Computational Cardiac Electrophysiology, Am. J. Physiology. 

• Phenomenological modeling of cell to cell-to-cell and beat-to-beat variability in isolated guinea pig  

ventricular myocytes, J. Walmsley, G. Mirams, M. Bahoshy, C. Bollensdorff, B. Rodriguez and K. 

Burrage, 2010 . 

• A practical implementation of an implicit  FEM scheme for equations with fractional diffusion. K. 

Burrage, N. Hale and D. Kay, SISC, 34, 2145-2172, 2012. 
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