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STATISTICAL FOUNDATION OF DIFFUSIVE TRANSPORT:
THE BROWNIAN RANDOM WALK

Brownian motion!

random walk!
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If the moments  ! are finite !
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LEVY FLIGHTS AND THE BREAKDOWN OF DIFFUSIONRevisiting the foundation of the diffusion equation:
 the Brownian random walk
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Localization assumption
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x 2 =D =Diffusion

 

x =V = Advection

The existence of Levy flights invalidates the localization
assumption.



NONDIFFUSIVE TRANSPORT AND COHERENT STRUCTURES

Chaotic transport by Rossby waves in zonal shear flows.
Problem identical to E×B transport by drift waves in zonal flows 1

ANOMALOUS TRANSPORT:
AN EXAMPLE FROM FLUID MECHANICS

Super-diffusive transport in flows with coherent structuresExample 1: Texas rotating fluid experiments

! r2 ~ t "

Super-diffusive
scaling

Vortices induce 
particle trapping

Zonal flows induce
particle “flights”

Model

Experiment

D. del-Castillo-Negrete, Phys. Fluids 10, 576 (1998)Solomon et al, Phys. Rev. Lett.  71,  3975 (1993)

x

P

 

! =1.65±0.15

Experiment

Model

! = 1.57

Non-Gaussian PDF

Signatures of anomalous transport: anomalous scaling of moments,
�δr2� ∼ tγ , γ �= 1, and non-Gaussian (heavy tails) PDFs.

1DCN: Chaotic transport in zonal flows in analogous fluid and plasma
systems. Phys. of Plasmas, 7, (5), 1702-1711, (2000).



UNDERLYING MECHANISM OF NONDIFFUSIVE TRANSPORT

Levy flights induce by zonal flows and and long waiting times
induced by trapping by Rossby (Drift) waves.

t
flight
event

trapping
  event

x
eddies induce 
particle trapping

Zonal flows induce
particle “flights”

PDF of trapping events
PDF of light events

Coherent structures (e.g., zonal flows and eddies)
play a key role in non-diffusive transport

Algebraic 
decay

Algebraic 
decay

The algebraic decay 
of the trapping and flight
pdf’s gives rise to 
self-similar,
scale-free transport

D. del-Castillo-Negrete, Phys. Fluids 10, 576 (1998)

Levy flights: P(δx) ∼ δx−(1+α), 〈δx2〉 → ∞ for α < 2.



STATISTICAL FOUNDATIONS OF NONDIFFUSIVE MODELS
The Continuous Time Random Walk (CTRW) model

Consider an ensemble of particles that at times t1, t2, . . . ti . . .
experience a displacement x1, x2, . . . xi . . ..
τi = ti − ti−1 and xi are assumed independent, identically
distributed random variables

!

The continuous time random walk

= jump!
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Contribution from particles 

that have not moved during (0,t) 

Contribution from particles located at x’

and jumping to x during (0,t)

[Montroll-Weiss-1965]

Master equation

del-Castillo-Negrete

ψ(τ) =waiting time probability density function (pdf).
η(x) =jump size pdf.

P[τ1 < wait < τ2] =

∫ τ2

τ1

ψ(τ)dτ P[x1 < jump < x2] =

∫ x2

x1

η(x)dx

Let φ(x , t) be the probability of finding a particle at x at time t if
it was at x = 0 at time t = 0.



THE MONTROLL-WEISS CTRW MASTER EQUATION

I Probability that a particle has not moved during the time t

Ψ(t) =

∫ ∞
t

ψ(τ)dτ

I Probability of geting to x from any point x ′ during the time
interval (0, t)∫ t

0
ψ(t − t ′)

∫ ∞
−∞

η(x − x ′)φ(x ′, t ′)dt ′dx ′

I The probability of finding a particle at x at time t if it was at
x = 0 at time t = 0 is given by the master equation

φ(x , t) = δ(x)Ψ(t) +

∫ t

0
ψ(t− t ′)

∫ ∞
−∞

η(x−x ′)φ(x ′, t ′)dt ′dx ′

[Montroll-Weiss, 1969]



THE MONTROLL-WEISS CTRW MASTER EQUATION

Defining

Ω̃(s) =
sψ̃

1− ψ̃
, H̃(s) =

1

Ω̃

where L[ψ](s) = ψ̃(s) =
∫∞

0 e−tsψ(t)dt denotes the Laplace
transform, the Master equation can be rewritten as

∂φ

∂t
=

∫ t

0
dt ′Ω(t − t ′)

∫ ∞
−∞

[
η(x − x ′)φ(x ′, t)− η(x ′ − x)φ(x , t)

]
where Ω(τ) is the memory function. We can also write it as,∫ t

0
dt ′H(t−t ′)∂φ

∂t ′
=

∫ ∞
−∞

dx ′
[
η(x − x ′)φ(x ′, t)− η(x ′ − x)φ(x , t)

]
The first term on the right hand side gives the accounts for
transitions for x ′ to x and the second term accounts for
contributions of transitions from x to x ′.



SOLUTION IN FOURIER-LAPLACE SPACE
AND FLUID LIMIT

I Let f̂ (k) and f̃ (s) denote the Fourier and Laplace transforms.

I Application of the convolution theorem allow to transform the
integral master equation into the algebraic equation

ˆ̃φ(k , s) =
1− ψ̃
s

1

1− ψ̃(s) η̂(k)

which explicitly determines φ(x , τ) given ψ(τ) and η(x).

I To simplify the highly nontrivial Fourier-Laplace inversion, and
to focus on the time asymptotic, t � 1, long wavelength
limit, we will consider

s → 0 , k → 0 ,



RECOVERING THE STANDARD DIFFUSION MODEL

I In the absence of memory

∂t φ̂ =
φ̂

τ
[η̂ − 1] .

I In the long-wavelength limit, approximate

∂t φ̂ ≈
φ̂

τ

[
η̂(0) + η̂′(0)k +

η̂′′(0)

2
k2 + . . .− 1

]
.

I Assuming the moments of η exist (key assumption!)

〈xn〉 = (−i)nη̂(n)(0) ,

I and using the identity

F [∂nxP] = (ik)n P̂ ,

the inversion of the Fourier transform gives the diffusion
equation

∂tφ = χ∂2
xφ



FRACTIONAL IN SPACE MODEL OF
SUPER-DIFFUSIVE TRANSPORT

I What happens if the moments of the jumps pdf does not
exist? What is the macroscopic, effective transport equation
in this case?

I Going back to the master equation without memory

∂φ

∂t
=

∫ ∞
−∞

[
η(x − x ′)φ(x ′, t)− η(x ′ − x)φ(x , t)

]
dx ′

I In Fourier space
∂φ̂

∂t
= [η̂(k)− 1] φ̂

I To incorporate long jumps, we assume a Lévy process

η(x) ∼ 1

|x |1+α
, for x →∞

in Fourier space, η̂(k) ∼ 1− χ|k |α , for |k | → 0
I For 1 < α < 2 this implies the divergence of moments

〈xn〉 =∞ for n ≥ 2



FRACTIONAL IN SPACE MODEL OF
SUPER-DIFFUSIVE TRANSPORT

I Therefore, in the long wave-length limit

∂φ̂

∂t
= −χ|k |αφ̂

I Introducing the symmetric fractional spatial derivative:

Dα
|x |φ = F−1

[
−|k |αφ̂

]
=

cos−1(πα/2)

Γ(2− α)

∂2

∂x2

∫ ∞
−∞

φ(y , t)

|x − y |α−1
dy ,

for 1 < α < 2.

I We arrive to the following nonlocal in space model of
superdiffusive-diffusive transport

∂φ

∂t
= χ∗Dα

|x |φ



ASYMMETRIC SPACE-TIME FRACTIONL GENERAL MODEL

In flux conserving form

∂tφ = −∂x [ql + qr ] + S ,

where ql and qr are the left and right nonlocal fluxes

ql = −lχl 0D
β−1
t aD

α−1
x φ , qr = rχr 0D

β−1
t xD

α−1
b φ ,

where l and r determine the asymmetry of the nonlocal spatial
operators

aD
α−1
x φ =

1

Γ(2− α)

∂

∂x

∫ x

a

φ(y , t)

(x − y)α−1
dy ,

xD
α−1
b φ =

−1

Γ(2− α)

∂

∂x

∫ b

x

φ(y , t)

(y − x)α−1
dy ,

and the nonlocal temporal operator is

c
0D

β
t φ =

1

Γ(1− β)

∫ t

0

∂τφ(x , τ)

(t − τ)β
dτ .

for 1 < α < 2, 0 < β < 1.



GREEN’S FUNCTION

I Solution of the initial value problem

c
0D

β
t φ = χ [l −∞Dα

x + r xD
α
∞] φ , φ(x , t = 0) = φ0(x)

φ(x , t) =

∫ ∞
−∞

φ0(x ′)G (x − x ′, t)dx ′ ,

I In Fourier-Laplace space, the Green’s function is given by

ˆ̃G =
sβ−1

sβ − Λ(k)
, Λ = χ [l(−ik)α + r(ik)α] , α 6= 1

I Introducing the Mittag-Leffler function

Eβ(z) =
∞∑
n=0

zn

Γ(βn + 1)
, L

[
Eβ(c tβ)

]
=

sβ−1

sβ − c
,

I The solution can be written in terms of the self-similar
variable η = x(χ1/βt)−β/α as

G (x , t) = t−β/α K (η) , K (η) =
1

2π

∫ ∞
−∞

e−iηk Eβ [Λ(k)] dk .



RELATION TO LEVY DISTRIBUTIONS

I Without memory (β = 1) i.e., only spatial fractional diffusion

G (x , t) = t−1/α L(η)

where L(η) is the α-stable Lévy distribution

L̂(k) = eΛ(k) , Λ = χ [l(−ik)α + r(ik)α] , α 6= 1

MATHEMATICAL ASPECTS: Green’s functions

Super-diffusion without memory:probabilistic interpretation

Gaussian
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" = 2

# =1

$ = 0

L

Some examples

Levy
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" =1.5

# =1
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L
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" =1.5

# =1

$ = 0.5

L
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! 

" =1.5

# =1

$ = 0.35

L
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D. del-Castillo-Negrete



SELF-SIMILARITY AND SCALING

I The scaling Λ(µk) = µαΛ(k) implies the self-similar evolution

G (x , µt) = µ−β/α G (µ−β/αx , t) ,

I From here it follows that the moments of G scale as

〈xq〉 = C tqβ/α , C =

∫
|η|q K (η)dη .

2β/α


> 1 super-diffusive scaling
= 1 diffusive scaling
< 1 sub-diffusive scaling

I Asymptotic scaling

G (x , t0) ∼ x−(1+α) , x �
(
χ

1/β
f t0

)β/α
G (x0, t) ∼


tβ for t �

(
χ−1
f xα0

)1/β

t−β for t �
(
χ−1
f xα0

)1/β
.



FRACTIONAL MODEL OF CHAOTIC TRANSPORT IN
QUASIGEOSTROPHIC FLOWS

Fractional diffusion model

Model
Comparison with asymmetric neutral

fractional diffusion equation

! 

" = #=0.9

! 

" =1

(strongly asymmetric regime)

D. dCN, Phys. Fluids 10, 576 (1998).

K. Gustafson, D. dCN, W. Dorland Phys. Of Plasmas 15, 102309 (2008).

Fractional model (in space and time) reproduces quantitatively the
PDF and scaling of moments in the strongly asymmetric regime



FRACTIONAL MODEL OF TURBULENT TRANSPORT IN
MAGNETIZED PLASMAS

Test particle transport in electrostatic plasma turbulenceTest particle turbulent transport in plasmas!
ExB flow velocity eddies!
induce particle trapping!

Tracer orbits!

Trapped !
orbit!

“Levy”!
  flight!

“Avalanche like” phenomena induce flights that lead to !
spatial non-locality!

Particle trapping and !
flights leads to super-!
diffusive scaling!

! 

" rn ~ t 2n / 3

Non-Gaussian (Levy) distribution!

D. del-Castillo-Negrete, B. Carreras and V. Lynch, Phys. Plasmas 11, 3854 (2004); Phys. Rev. Lett. 94, 
065003 (2005) !



FRACTIONAL MODEL MODEL OF TURBULENT TRANSPORT
IN MAGNETIZED PLASMAS

Test particle transport in the electrostatic plasma turbulenceApplication of non-local model to turbulent transport!

Turbulence!
simulation! Fractional 

model!

~ x! (1+" )

Levy distribution at fixed time!

Turbulence !

~ t!

model!

Pdf at fixed point in space!

~ t !"

x2 ~ t 2! /" ~ t4 / 3

D. del-Castillo-Negrete, B. Carreras and V. Lynch, Phys. Plasmas 11, 3854 (2004); Phys. Rev. Lett. 94, 
065003 (2005) !

! 

"t
#P = $ "x q

! 

q = "D#x
$"1P ! = 3/ 4

! =1/ 2

Fractional model reproduces quantitatively the PDF and scaling of
moments



The need for tempered Levy processes

•As discussed before, there is experimental and numerical evidence of

Levy flights in transport problems.

•The use of fractional diffusion to model these phenomena has proved

to be very valuable.

•However, it is plausible that the finite-size domains and decorrelation

effects (among other effects) might have an impact on the Levy flights.

•Also, the divergence of the second moment of Levy pdfs can be

physically questionable.

•These issues have motivated the introduction of tempered Levy

processes [e.g. Mantegna&Stanley, 1994; Kopone, 1995; Cartea&dCN, 2007,

Rosinski, 2007].

•Here we construct models that describe macroscopic transport

driven by general Levy process and exponentially tempered processes in

particular.



The importance of intermediate asymptotics

•Going back to the Continuous Time Random Walk (CTRW) model

!
n

!
n

! "( ) = waiting time pdf! "( ) = jump size pdf

•However, the convergence rate is extremely slow, and in applications pure Gaussian
behavior might never be observed but neither pure !-stable Levy!

! 

" ~e#$
2
/ 2% 2

& $ 2 finite& Gaussian&'
t
P = ('

x

2
P

! 

" ~# $ 1+%( ) & # 2 infinite&% $ stable Levy&'tP=('|x|

%
P

What happens when 

! 

" ~#
$ 1+%( )

e
$"#
?

•What is needed is a model that describes the interplay between long-jumps,

truncation effects, and non-Markovian effects in the intermediate asymptotic regime.

•Since       is finite, we expect the dynamics to converge asymptotically to Gaussian.

! 

" 2



CTRW FOR GENERAL LEVY PROCESSES

Going back to the Montroll-Weiss master equation for the CTRW

P = δ(x)

∫ ∞
t

ψ(t ′)dt ′+

∫ t

0
ψ
(
t − t ′

) [∫ ∞
−∞

η
(
x − x ′

)
P(x ′, t ′)dx ′

]
dt ′

In the time-asymptotic limit, assuming ψ ∼ t−β−1, and in the
long-wavelenght (fluid) limit

η̂(k) = eΛ(k) ≈ 1 + Λ(k) + . . .

we get
c
0D

β
t P̂(k, t) = Λ(k)P̂(k , t) ,

where c
0D

β
t is the regularized (in the Caputo sense) fractional

derivative in time.



GENERAL LEVY PROCESSES

I Λ is given by the Lévy-Khintchine representation

Λ = ln η̂ = aik − 1

2
σ2k2 +

∫ ∞
−∞

[
e ikx − 1− iku(x)

]
w(x)dx ,

where w(x) is the Lévy density.
I Substituting into the dynamic equation and taking the inverse

Fourier transform yields

c
0D

β
t P = −a∂xP +

1

2
σ2∂2

xP+

+

∫ ∞
−∞

[P(x − y , t)− P(x , t) + u(y)∂xP]w(y)dy .

I This is the macroscopic transport equation describing the
continuum, fluid limit of a CTRW with a general jump
distribution function η characterized by a general Lévy density
w(y).

[Cartea and del-Castillo-Negrete, PRE, 76 041105 (2007)]



α-STABLE LEVY PROCESSES

In the α-stable case the density is

wLS(x) =


c (1+θ)

2 |x |−(1+α) for x < 0,

c (1−θ)
2 x−(1+α) for x > 0,

(1)

Substituting and integrating

ΛLS = iak − 1

2
σ2k2 −


c |k |α {1 + iθsign(k) tan(απ/2)} α 6= 1,

c |k |
{

1 + 2iθ
π sign(k) ln |k|

}
α = 1 ,

(2)

where sign(k) = |k|/k .



α-STABLE LEVY PROCESSES

From
c
0D

β
t P̂(k , t) = ΛLS P̂ ,

inverting the Fourier transform we recover the fractional diffusion
equation

c
0D

β
t P(x , t) = −a∂xP +

1

2
σ2∂2

xP + c [l −∞Dα
x + r xD

α
∞] P ,

where the weighting factors are defined as

l = − (1− θ)

2 cos(απ/2)
, r = − (1 + θ)

2 cos(απ/2)
.

and

F [−∞Dα
x f ] = (−ik)α f̂ , F [xD

α
∞f ] = (ik)α f̂ ,



TEMPERED LEVY PROCESSES

I In the exponentially tempered case, the density is

wET (x) =


c (1+θ)

2 |x |−(1+α) e−λ|x | for x < 0,

c (1−θ)
2 x−(1+α)e−λx for x > 0,

0 < α ≤ 2, c > 0, −1 ≤ θ ≤ 1 and λ ≥ 0.

I The corresponding characteristic exponent is

ΛET = − c

2 cos(απ/2)
×

×
{

(1 + θ)(λ+ ik)α + (1− θ)(λ− ik)α − 2λα,
(1 + θ)(λ+ ik)α + (1− θ)(λ− ik)α − 2λα − 2ikαθλα−1

for 0 < α < 1 and 1 < α ≤ 2 respectively.



TEMPERED FRACTIONAL DIFFUSION

I From the fluid limit of the CTRW master equation,

c
0D

β
t P̂(k, t) = ΛET P̂ ,

inverting the Fourier transform we obtain the tempered
fractional diffusion equation

c
0D

β
t P(x , t) = c∂α,λx P .

I Where we have defined the tempered fractional diffusion
operator

∂α,λx P = cDα,λx P − V ∂xP − νP .
I And we have defined the tempered fractional derivative

Dα,λx = le−λx −∞Dα
x eλx + reλx xD

α
∞ e−λx .

[Cartea and del-Castillo-Negrete, PRE, 76 041105 (2007)]



TEMPERED DIFFUSION OPERATOR

∂α,λx P = cDα,λx P − V ∂xP − νP

I Fourier transform of the tempered fractional derivative

F
[
Dα,λx P

]
= [l (λ− ik)α + r (λ+ ik)α ] P̂

I For 0 < α < 1, V = 0, but for for 1 < α < 2 there is a
tempered induced drift in the asymmetric case

V = − cαθλα−1

|cos (απ/2)|
I The constant ν is defined as

ν = − cλα

cos (απ/2)
,

although this term looks as a “damping” it actually guarantees
the conservation of the probability, i.e., ΛET (k = 0, λ) = 0.



TEMPERED FRACTIONAL DIFFUSION

I Green’s function

G =
1

2π

∫ ∞
−∞

e−ikxEβ

[
tβΛ(k;λ)

]
dk

I Probability conservation∫ ∞
−∞

G dx = Ĝ (k = 0, t) = Eβ

[
tβΛ(0;λ)

]
= Eβ(0) = 1 .

I Truncation breaks the self-similarity

G (x , µt;λ) = µ−β/αG
(
µ−β/αx , t;µβ/αλ

)
.

I Truncation guarantees finite moments.
First moment 〈x〉(t) = 0 for 1 < α < 2 and

〈x〉(t) =
V

Γ(β + 1)
tβ , 0 < α < 1 ,

where V = −χαθ
|cos(απ/2)|λ1−α is the drift velocity defined before.



TEMPERED FRACTIONAL DIFFUSION

I Second moment:

〈
[x − 〈x〉]2

〉
(t)


C 2
βV

2 t2β + 2χ∗
Γ(β+1) t

β 0 < α < 1

2χ∗
Γ(β+1) t

β , 1 < α < 2 ,

, (3)

where Cβ = 2/Γ(2β + 1)− 1/ [Γ (β + 1)]2, and

χ∗ =
χα |α− 1|

2 |cos (απ/2)|λ2−α .

I Note that, as expected,

lim
λ→0

χ∗ =∞

[Cartea and del-Castillo-Negrete, PRE, 76 041105 (2007)]



GREEN’S FUNCTION OF SYMMETRIC TEMPERED
FRACTIONAL DIFFUSION θ = σ = 0 and 1 < α < 2

G (x , t) =
1

π

∫ ∞
0

cos(kx)Eβ

[
tβΛET (k)

]
dk .

η = λx , τ = t/tc , tc = c−1/βλ−α/β .
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GREEN’S FUNCTION OF ASYMMETRIC TEMPERED
FRACTIONAL DIFFUSION

G =
1

2π

∫ ∞
−∞

e−ikx+χt[(λ−ik)α−λα] dk , G ∼ χte−χλαt e
−λx

x1+α
.

α = 1.5, β = 1, θ = −1.



TEMPERED INDUCED ANOMALOUS SCALING TRANSITION

I Short time scaling

G (x , µt;λ) = µ−β/αG
(
µ−β/αx , t;µβ/αλ

)
.

G (0, t;λ) = t−β/αG (0, 1; tβ/αλ)

G (0, t � 1;λ) ∼ t−β/α

I Long time scaling

G (x , t) =
1

2π

∫ ∞
−∞

e−ikxEβ

[
tβΛ(k ;λ)

]
dk

G (0, t) =
1

2π

∫ ∞
0

Eβ

[
tβΛET

]
dk

∼
∫ ∞

0
Eβ

[
−χtβk2

]
dk =

1√
χtβ

∫ ∞
0

Eβ
(
−u2

)
du ,

G (0, t � 1;λ) ∼ t−β/2 .



ULTRA SLOW CONVERGENCE TO SUB-DIFFUSIVE SCALING

10 5 100 10510 2

10 1

100

101

102

103

104

A /  t

(
/

) G
(0

,t)

t /

t /2

Sub diffusive
decay

Super diffusive
decay

I Short times, λ = 0 scaling: G (0, t;λ) ∼ t−β/α

I Large times, tempered scaling limt→∞ G (0, t;λ) ∼ t−β/2

I For 2β/α > 1 super-diffusion → sub-diffusion transition with
cross-over time

τc ∼ c−1/βλ−α/β

[Cartea and del-Castillo-Negrete, PRE, 76 041105 (2007)]



TEMPERED INDUCED TRANSITION OF TAILS’S DECAY

I Short time (a) algebraic decay G (η, t � tc) ∼ |η|−(1+α) ,
I Cross-over time (c) exponential decay G (x , t ≈ tc) ∼ e−aη ,
I Long time (d) stretched Gaussian decay

G (x , t � tc) ∼ ηa1 exp (−ηa2)]

[Cartea and del-Castillo-Negrete, PRE, 76 041105 (2007)]



LARGE TRUNCATION EXPANSION

I Fourier transform of tempered fractional derivative operator

D̂α,λx P = λα
[
l

(
1− ik

λ

)α
+ r

(
1 +

ik

λ

)α]
P̂ ,

I Using the expansion (1− z)α =
∑∞

j=0 w
(α)
j z j , |z | < 1 ,

we have

D̂α,λx P = λα
∞∑
j=0

w
(α)
j

(
ik

λ

)j [
l + (−1)j r

]
P̂ ,

I λ-Expansion of tempered fractional difusion

∂̂α,λx P = −V∗
χ
H(1− α)∂̂xP−

− λα

cos (απ/2)

∞∑
j=1

w
(α)
2j

(
ik

λ

)2j [
1−

(
2j − α
2j + 1

)
ikθ

λ

]
P̂

[Kullberg and D. del-Castillo-Negrete, J. Phys. A: Math. Theor.
45 255101 (2012).]



LARGE TRUNCATION EXPANSION

I The expansion converges in general only for |k | < λ. To invert
the Fourier transform we introduce the low-pass filter operator

f (x) = F−1 {H (λ− |k|)F [f ]} .
I Applying the low-pass filter to the operator, ∂α,λx P, we get

∂α,λx P = −V∗
χ
H(1− α)

∂P

∂x
− 1

λ2−α cos (απ/2)

∞∑
j=1

w
(α)
2j

λ2(j−1)

∂2j

∂x2j

[
1 +

(
2j − α
2j + 1

)
θ

λ

∂

∂x

]
P ,

convergence is guaranteed because P̂(k) = 0 for |k| > λ.
I Equation for coarse grained PDF at scales larger than 1/λ

∂P

∂t
+ V∗H(1− α)

∂P

∂x
=

χ∗
∂2P

∂x2
+ χ∗

(2− α) θ

3λ

∂3P

∂x3
+ χ∗

(3− α) (2− α)

12λ2

∂4P

∂x4
+ . . . ,



FRONT PROPAGATION IN REACTION-DIFFUSION SYSTEMS

I One of the simplest reaction-diffusion systems is the
extensively studied Fisher-Kolmogorov model

∂tφ = χ∂2
xφ+ γφ (1− φ)

I The nontrivial dynamics of this type of systems arises from
the competition between the reaction kinetics and diffusion.

I Front speed c = 2
√
γχ



FRONT PROPAGATION IN THE PRESENCE OF LEVY FLIGHTS

As a simple model to explore the role of super-diffusive transport
in reaction-diffusion systems we consider asymmetric fractional
Fisher-Kolmogorov equation

∂tφ = χ−∞Dα
x φ+ γφ (1− φ)

−∞Dα
x φ =

1

Γ(n − α)
∂nx

∫ x

a

φ(u)

(x − u)α−n+1
du .

[del-Castillo-Negrete, Carreras, and Lynch, PRL, 91 018302
(2003)]
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Leading(edge(calcula,on((for(algebraic(decaying,(

accelerated(fronts((
At(large(x,#

∂t φ = D ∂x
α φ + γ φ

φ(x, 0) =
1 x < 0
e−λx x > 0
$ 
% 
& 

φ (x, t) = e γ t Pα (η) dη
z

∞

∫ + e− λ x+ γ t eλ (Dt )
1/ α η Pα (η) dη

−∞

z

∫

φ <<1 implies

z = x D t( )−1/α

φ = eγ t ψ x,t( ) ∂tψ = D ∂ x
α ψ

ψ (x,t) = Pα (η)ψ 0
−∞

x

∫ x − D t( )1 /αη[ ] dη

using P ~ ηα +1 for large η

t fixed z→ ∞ φ ~ x−α

x fixed t→ ∞ φ ~ eγ t V ~ eγ t /α

algebraic(tail(

exponen,al((
accelera,on(

[del-Castillo-Negrete, Carreras, and Lynch, PRL, 91 018302
(2003)]
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TEMPERING EFFECTS IN SUPER-DIFFUSIVE FRONT
ACCELERATION

I To study the role of truncation in fronts we propose the
exponentially truncated fractional Fisher-Kolmogorov equation

∂tφ = −V ∂xφ+ cDα,λx φ− µφ+ γφ (1− φ)

I Here we will focus attention in the left asymmetric truncated
fractional case without drift

∂tφ = χ
[
e−λx −∞Dα

x

(
eλxφ

)
− λαφ

]
+ γφ (1− φ)

I Without truncation Lévy flights lead to algebraic tails and
exponential front acceleration.

I What is the role of role of tempering on these phenomena?
[del-Castillo-Negrete, PRE 79, 031120 (2009)]



FRONT REGIMENS: NUMERICAL RESULTS

(a) Asymptotic algebraic regime for λ = 0; (b) Intermediate asymptotic

algebraic regime for λ 6= 0; (c) Truncated regime for 0 < λ < ν; (d)

Over-truncated regime for λ > ν.

[del-Castillo-Negrete, PRE 79, 031120 (2009)]



ANOMALOUS TRANSPORT AND FRONT PROPAGATION
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LEADING EDGE APPROXIMATION

I At the leading edge of the front φ� 1, and therefore

∂tφ = χe−λx −∞Dα
x

(
eλxφ

)
+ (γ − χλα)φ

I Substituting φ = e−λx+(γ−χλα)tψ(x , t) the equation reduces
to the asymmetric fractional diffusion equation with general
solution

ψ(x , t) =

∫ ∞
−∞

Ĝλ=0(η)ψ0

[
x − (χt)1/α η

]
dη

I For an initial condition of the form φ(x , t = 0) = A for x < 0
and φ(x , t = 0) = e−νx

ψ = e−(ν−λ)x

∫ x/τ

−∞
e(ν−λ)τηĜλ=0dη + Aeλx

∫ ∞
x/τ

Ĝλ=0e
−λτηdη



LEADING EDGE APPROXIMATION

I In terms of φ the solution can be written as

φ = e−νx+(γ−χλα)t I1 + Ae(γ−χλα)tI2 ,

I Where

I1 =

∫ x/τ

−∞
e(ν−λ)τηĜλ=0(η)dη

I2 =

∫ ∞
x/τ

Ĝλ=0(η)e−λτηdη .

I The analysis is based on the asymptotic behavior of I1 and I2

for x/τ →∞ where

τ = (χt)1/α



LAGRANGIAN FRONT SPACE-TIME PATH, xL(t),

I Intermediate asymptotic Levy tempered front path

λxL(t) + (γ − χλα) t + ln t − (α + 1) ln xL(t) = M

I Gaussian, diffusive front speed (green dotted lines)

c =
γ

ν
+ νχ



LAGRANGIAN FRONT SPEED vL(t) = dxL/dt

I Intermediate asymptotic Levy tempered front speed (red
dashed lines)

vL(t) =
γ − χλα + 1

t

λ+ α+1
xL(t)

I Terminal velocity (black lines) v∗ = γ−λαχ
λ

[del-Castillo-Negrete, PRE 79, 031120 (2009)]



LAGRANGIAN FRONT SPEED vL(t) = dxL/dt

Blue: Diffusive front speed c = γ
ν + νχd

Red: Terminal speed v∗ = γ−λαχ
λ

Green: Fractional speed vL(t) ≈ vL0e
γ(t−t0)/α

Magenta: Tempered speed vL(t) = dxL
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FOKKER-PLANCK EQUATION WITH RATCHET POTENTIAL

∂tP = ∂x [P∂xV ] + χ∂2
xP .

Periodic potential, V (x) = V (x + L),

V = V0

{
1− cos [πx/a1] if 0 ≤ x < a1

1 + cos [π(x − a1)/a2] if a1 ≤ x < L ,

with broken symmetry parameter A = (a1 − a2)/L
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As it is well-known, in this case, even when the potential is
asymmetric, a net current cannot appear unless a non-equilibrium
perturbation is added.



LEVY RATCHETS IN THE FRACTIONAL FOKKER-PLANCK
EQUATION

I In [del-Castillo-Negrete, Gonchar, Chechkin, arXiv:0710.0883
(2007), Physica A (2008)] a minimal model of ratchet
transport driven by Levy noise was presented.

I Numerical integrations of the Fractional Fokker Planck
equation

∂tP = ∂x [P∂xV ] + χ [l−∞Dα
x + rxD

α
∞]P

showed that even in the absence of an external tilting force or
a bias in the noise, the Levy flights drive the system out of the
thermodynamic equilibrium and generate a current in the
presence of an asymmetric potential.



LEVY RATCHETS IN THE FRACTIONAL FOKKER-PLANCK
EQUATION

Time evolution of of PDF Current as function of
asymmetry and α

8

Fig.8. Asymmetric, ratchet-type potential, and evolution of PDF according to the fractional Fokker-Planck equation.

The dashed line denotes the initial condition P(x,0) consisting of a narrow Gaussian localized at the potential minimum

in the middle of the computational domain.  The solid line denotes the PDF at t=4, P(x,t=4). The asymmetric potential

V(x) (shown with magnitude rescaled for visualization purposes) and the spatial nonlocality of the fractional diffusion

operator lead to a symmetry breaking of the PDF that results in a net current, J, in the direction of the steeper side of

V(x).

6698 D. del-Castillo-Negrete et al. / Physica A 387 (2008) 6693–6704

Fig. 4. Left: Dependence of current on potential asymmetry. Main figure: dots connected with smooth curves depict steady current obtained with the
Langevin approach as a function of asymmetry A for different Lévy indexes, from top to bottom on the left: α = 1.5, 1.75 and 1.90; β = 0, χ = 0.5. The
results of the FFP approach are shown by crosses for α = 1.5 and circles for α = 1.9. In the inset the results of the Langevin simulations are shown. The
central solid line, which is in fact, the superposition of the two curves crossing the origin depicts the current as a function of force F for the Gaussian case
and two values of asymmetry parameter A = ±0.2. The top curve above the horizontal axis and bottom curve below demonstrate the currents versus F
for the Lévy index α = 1.5 and the asymmetries A = −0.2 and +0.2, respectively. Right: Current versus the Lévy index α for two different asymmetry
parameters: β = ±0.5 for the upper and lower curves, respectively; A = 0, and χ = 0.1643. This figure demonstrates the switch of the current direction
by the asymmetry parameter β .

direction of the steeper slope of the potential. The observed dependence of the current for F different from zero is expected,
since F enhances the current in the positive (negative) direction for F > 0 (F < 0).

Fig. 5 illustrates the dependence of the steady state current on the Lévy index α for different values of potential
asymmetry andnoise intensities. In the top panels (a) and (b) the values ofχ are kept constant. It is of interest to consider two
different cases: the noise intensity is large, that is it is of the order of the amplitude of the potential (but still smaller than the
amplitude; otherwise the particle is not influenced by the potential), and small intensity, in comparisonwith the amplitude.
In the figure, χ = 0.5 in panel (a) and χ = 0.05 in panel (b). One can see that the curves demonstrate monotonic behavior
at large intensities, but non-monotonic behavior at small intensities, showing a maximum at some intermediate values of
α depending on the particular value of the asymmetry parameter A. Another parameter commonly used to characterize the
intensity of LFs is the scale factor σ , where χ = σα [26,27]. The bottom panels (c) and (d) in Fig. 5 show the steady current
versus the Lévy index for large σ = 0.707 and small σ = 0.0707, respectively. The dependence is monotonic with respect
to the Lévy index and potential asymmetry. However, the shape changes from convex for large σ to concave for small σ .

Another interesting property is demonstrated in Fig. 6. Here, the steady state current versus scale factor σ and noise
intensity χ is shown in the left and right panels, respectively, for different values of α and potential asymmetry A. It is seen
that the current is a linear function at small values of the scale factor.With the scale factor (or noise intensity) increasing, the
current demonstrates non-monotonic behavior, see Fig. 7. The current reaches its maximum around σ ∼ 1 and decreases
for σ > 1. Such a non-monotonic behavior can be easily explained. Indeed, the ratchet effect is most strongly exhibited
when the noise intensity is of the order of the potential height, which is equal to 1 in our case. At noise intensity much
larger than the potential height the Lévy particle behaves as if ‘‘almost free’’, which means that the mean displacement of
the particle driven by symmetric Lévy noise tends to zero.

4. Numerical results: Fractional Fokker–Planck model

In this sectionwepresent the results from thedirect numerical integration of the fractional Fokker–Planck equation in Eq. (7)
with the asymmetric potential in Eq. (9). We used a finite difference numerical method based on the Grunwald–Letnikov
discretization of the regularized fractional operators in Eqs. (3) and (4). Details of the method can be found in Ref. [46].
The integration domain, x ∈ (−10, 10), expanded 20 periods of the potential for which L = 1. In all the calculations we
assumed χ = 0.5, and a normalized Gaussian initial condition of the form P(x, 0) =

�
1/σ

√
2π

�
exp

�
−0.5 (x − µ)2 /σ 2

�

withµ = 0.5, σ = 0.01.WeusedDirichlet boundary conditionswith P(−10, t) = P(10, t) = 0. These boundary conditions
are consistent with the dynamics in an unbounded domain provided the PDF is negligibly small near the boundaries so that
the total probability is conserved.

As a first step we benchmarked the Fokker–Planck solver with the Langevin solver. As shown in Figs. 3 and 4, very good
agreement was found between the two models on the dependence of the current on F and A. One of the advantages of the

[del-Castillo-Negrete, Gonchar, Chechkin, arXiv:0710.0883 (2007),
Physica A (2008)]

What is the role of truncation in this phenomena?



TEMPERED FOKKER-PLANCK EQUATION FOR QUADRATIC
POTENTIAL V (x) = Ax2

∂tP = ∂x [P∂xV ] + χ
[
le−λx −∞Dα

x eλx + reλx xD
α
∞ e−λx − ν

]
P ,
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TEMPERED FOKKER-PLANCK EQUATION FOR RATCHET
POTENTIAL
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TIME DEPENDENT SOLUTION AND RATCHET CURRENT
α = 1.5
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[Kullberg and D. del-Castillo-Negrete, J. Phys. A: Math. Theor. 45

255101 (2012).]



CONCLUSIONS

I We review fractional diffusion in the context of the CTRW
model and discussed applications in fluids and plasmas.
[dCN, Carreras, and Lynch, PRL, 94 065003 (2005)]

I Following Ref.[Cartea and dCN, PRE, 76 041105 (2007)] we
discussed the CTRW for general stochastic processes and for
Levy tempered processes in particular.

I The continuum limit of the CTRW for Levy tempered
processes leads to the tempered fractional diffusion equation
introduced in Ref.[Cartea and dCN, PRE, 76 041105 (2007)].

I The non-Markovian, tempered fractional diffusion model
exhibits ultra-slow convergence to sub-diffusive transport and
the pdf exhibits a transition from algebraic decaying to
stretched exponential



CONCLUSIONS

I Fronts in the fractional Fisher-Kolmogorov equation exhibit
exponential acceleration [dCN, Carreras, and Lynch, PRL, 91

018302 (2003)].

I With truncation, this phenomenology prevails in an
intermediate asymptotic regime. Outside this regime, the
front’s velocity exhibits an algebraically slow convergence to a
terminal velocity [dCN, PRE 79, 031120 (2009)].

I Following Ref.[dCN, Gonchar, Chechkin, arXiv:0710.0883 (2007),

Physica A (2008)] we discussed a minimal model for Levy
ratchets.

I In the limit λ→∞ the steady state solution of the tempered
Fractional Fokker-Planck equation approaches the Boltzmann
distribution and the ratchet current vanishes. However, for
finite λ, the steady state is non-Boltzmannian and a ratchet
current persists. [Kullberg and D. del-Castillo-Negrete, J. Phys. A:

Math. Theor. 45 255101 (2012).].


