Discontinuous Galerkin time-stepping and fast summation for fractional diffusion and wave equations

William McLean
Kassem Mustapha

International Symposium on Fractional PDEs, Newport, 3-5 June, 2013

Initial-boundary value problem

Fractional diffusion $(0<\nu<1)$ or wave $(1<\nu<2)$ equation

$$
\frac{\partial u}{\partial t}+\nabla \cdot \mathcal{Q}_{\nu}=f(x, t), \quad x \in \Omega \subseteq \mathbb{R}^{d}, \quad 0<t<T
$$

Generalized flux

$$
\mathcal{Q}_{\nu}(x, t)=-\partial_{t}^{1-\nu} K \nabla u, \quad K>0 .
$$

Classical diffusion (heat) equation in the limit as $\nu \rightarrow 1$, since $Q_{1}=-K \nabla u$.

Homogeneous Dirichlet or Neumann boundary condition, and initial condition

$$
u(x, 0)=u_{0}(x) \quad \text { for } x \in \Omega
$$

Riemann-Liouville fractional derivative or integral

If $0<\nu<1$, then

$$
\partial^{1-\nu} g(t)=\frac{\partial}{\partial t} \int_{0}^{t} \frac{(t-s)^{\nu-1}}{\Gamma(\nu)} g(s) d s
$$

If $1<\nu<2$, then

$$
\partial^{1-\nu} g(t)=\int_{0}^{t} \frac{(t-s)^{\nu-2}}{\Gamma(\nu-1)} g(s) d s
$$

Kernel is weakly singular in both cases.

Weak formulation

Energy space $\dot{H}^{1}=H_{0}^{1}(\Omega)$ or $H^{1}(\Omega)$.

First Green identity: if $v \in \dot{H}^{1}$ then

$$
\int_{\Omega}[-\nabla \cdot(K \nabla u)] v d x=\int_{\Omega} K \nabla u \cdot \nabla v d x-\int_{\partial \Omega} \frac{\partial u}{\partial \mathbf{n}} v
$$

Bilinear form

$$
A(u, v)=\int_{\Omega} K \nabla u \cdot \nabla v d x=\langle A u, v\rangle
$$

Weak solution $u:(0, T) \rightarrow \dot{H}^{1}$ satisfies

$$
\left\langle u^{\prime}(t), v\right\rangle+A\left(\partial_{t}^{1-\nu} u, v\right)=\langle f(t), v\rangle \quad \text { for all } v \in \dot{H}^{1}
$$

Stability of the continuous problem

Putting $v=u(t)$ and integrating,

$$
\begin{aligned}
& \int_{0}^{T}\left\langle u^{\prime}(t), u(t)\right\rangle d t+\int_{0}^{T} A\left(\partial^{1-\nu} u(t), u(t)\right) d t \\
&=\int_{0}^{T}\langle f(t), u(t)\rangle d t
\end{aligned}
$$

Can show via Laplace transforms that

$$
\int_{0}^{T} A\left(\partial^{1-\nu} u(t), u(t)\right) d t \geq 0
$$

and we easily deduce well-posedness:

$$
\|u(t)\| \leq\left\|u_{0}\right\|+2 \int_{0}^{t}\|f(s)\| d s, \quad 0 \leq t \leq T
$$

Discontinuous piecewise polynomial approximation

Grid points

$$
0=t_{0}<t_{1}<t_{2}<\cdots<t_{N}=T
$$

Subintervals

$$
I_{n}=\left(t_{n-1}, t_{n}\right), \quad k_{n}=t_{n}-t_{n-1}, \quad 1 \leq n \leq N
$$

Basis for polynomials of degree at most $L-1$,

$$
\chi_{1}, \quad \chi_{2}, \quad \ldots, \quad \chi_{L} .
$$

Basis function shifted to I_{n},

$$
\chi_{n \prime}(t)=\chi_{\prime}(\tau), \quad t=t_{n-1}+\tau k_{n}, \quad 0<\tau<1
$$

Seek approximate solution

$$
u(x, t) \approx U(x, t)=\sum_{l=1}^{L} U^{n \prime}(x) \chi_{n l}(t), \quad t \in I_{n}
$$

Discontinuous Galerkin in time (DG)

One-sided limits and jump at t_{n},

$$
U_{ \pm}^{n}=\lim _{t \rightarrow t_{n}^{ \pm}} U(t), \quad[U]^{n}=U_{+}^{n}-U_{-}^{n}
$$

Require

$$
\begin{aligned}
\left\langle U_{+}^{n-1}, X_{+}^{n-1}\right\rangle+\int_{I_{n}}\left[\left\langleU^{\prime}(t)\right.\right. & \left., X(t)\rangle+A\left(\partial^{1-\nu} U(t), X(t)\right)\right] d t \\
& =\left\langle U_{-}^{n-1}, X_{+}^{n-1}\right\rangle+\int_{I_{n}}\langle f(t), X(t)\rangle d t
\end{aligned}
$$

for every polynomial X of degree at most L with coefficients in \dot{H}^{1}.

Weakly enforce continuity at t_{n-1}.

Discontinuous Galerkin in time

- Eriksson, Johnson and Thomée, Modél. Math. Anal. Numér., 19:611-643, 1985.
- McLean, Thomée and Walhbin, J. Comput. Appl. Math., 69:49-69, 1996.
- Adolfsson , Enelund and Larsson, Comput. Methods Appl. Mech. Engrg., 192:5285-5304, 2003.
- Mustapha and McLean, Math. Comp., 78:1975-1995, 2009.
- Mustapha and McLean, SIAM J. Numer. Anal., 51: 491-515, 2013.

Simplest example: scalar problem, piecewise constants

Consider scalar-valued case $U:(0, T) \rightarrow \mathbb{R}$ (fractional ODE) with $L=1$ (piecewise-constants). Then $U(t)=U_{-}^{n}=U_{+}^{n-1}$ and $U^{\prime}(t)=0$ for $t \in I_{n}$, so for all $X_{-}^{n} \in \mathbb{R}$,

$$
\begin{aligned}
\left\langle U_{-}^{n}, X_{-}^{n}\right\rangle+\int_{I_{n}} A\left(\partial^{1-\nu} U(t),\right. & \left.X_{-}^{n}\right) d t \\
& =\left\langle U_{-}^{n-1}, X_{-}^{n}\right\rangle+\int_{I_{n}}\left\langle f(t), X_{-}^{n}\right\rangle d t .
\end{aligned}
$$

This is just the implicit Euler method,

$$
\frac{U_{-}^{n}-U_{-}^{n-1}}{k_{n}}+A \sum_{j=1}^{n} \beta_{n j} U_{-}^{j}=F^{n}
$$

with

$$
F^{n}=\frac{1}{k_{n}} \int_{I_{n}} f(t) d t=\text { average value of } f \text { on } I_{n}
$$

Piecewise linears for fractional wave equation

Take $\nu=3 / 2, T=6, A=1, u_{0}=1, f \equiv 0 . L=1, N=8$.

U_{-}^{n} converges faster than U_{+}^{n}
Compare

$$
E_{+}^{N}=\max _{0 \leq n \leq N-1}\left|U_{+}^{n}-u\left(t_{n}\right)\right|=O\left(k^{\rho_{+}}\right)
$$

and

$$
E_{-}^{N}=\max _{1 \leq n \leq N}\left|U_{-}^{n}-u\left(t_{n}\right)\right|=O\left(k^{\rho_{-}}\right)
$$

N	E_{-}	ρ_{-}	E_{+}	ρ_{+}
20	$0.83 \mathrm{E}-05$		$0.47 \mathrm{E}-02$	
40	$0.12 \mathrm{E}-05$	2.820	$0.17 \mathrm{E}-02$	1.482
80	$0.16 \mathrm{E}-06$	2.864	$0.59 \mathrm{E}-03$	1.493
160	$0.22 \mathrm{E}-07$	2.897	$0.21 \mathrm{E}-03$	1.498
320	$0.29 \mathrm{E}-08$	2.924	$0.74 \mathrm{E}-04$	1.499
640	$0.37 \mathrm{E}-09$	2.943	$0.26 \mathrm{E}-04$	1.500

Non-uniform time steps

Put

$$
t_{n}=(n / N)^{q} T, \quad q \geq 1
$$

With $q=1.5$ we observe $\rho_{-}=3$ (superconvergence) and $\rho_{+}=2$ (optimal).

N	E_{-}	ρ_{-}	E_{+}	ρ_{+}
20	$0.11 \mathrm{E}-04$		$0.16 \mathrm{E}-02$	
40	$0.15 \mathrm{E}-05$	2.877	$0.40 \mathrm{E}-03$	1.976
80	$0.20 \mathrm{E}-06$	2.921	$0.10 \mathrm{E}-03$	1.989
160	$0.26 \mathrm{E}-07$	2.947	$0.25 \mathrm{E}-04$	1.995
320	$0.33 \mathrm{E}-08$	2.963	$0.63 \mathrm{E}-05$	1.998
640	$0.42 \mathrm{E}-09$	2.973	$0.16 \mathrm{E}-05$	1.999

Spatial discretization

Conforming finite element space $S_{h} \subseteq \dot{H}^{1}$.
Spatially discrete solution $u_{h}:(0, T) \rightarrow S_{h}$ satisfies

$$
\left\langle u_{h}^{\prime}(t), v\right\rangle+A\left(\partial_{t}^{1-\nu} u_{h}, v\right)=\langle f(t), v\rangle \quad \text { for all } v \in S_{h},
$$

with $u_{h}(0)=u_{0 h} \approx u_{h}$ and $u_{0 h} \in S_{h}$.
Basis $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{M}$ for S_{h}, so that

$$
u(x, t) \approx u_{h}(x, t)=\sum_{m=1}^{M} U_{m}(t) \vartheta_{m}(x)
$$

E.g., for a nodal basis,

$$
\vartheta_{m}\left(x_{p}\right)=\delta_{m p} \quad \text { and } \quad U_{m}(t)=u_{h}\left(x_{m}, t\right)
$$

Method of lines

Mass matrix $\mathbf{M}=\left[M_{p m}\right]$ and stiffness matrix $\mathbf{S}=\left[S_{p m}\right]$ with entries

$$
M_{p m}=\left\langle\vartheta_{m}, \vartheta_{p}\right\rangle \quad \text { and } \quad S_{p m}=A\left(\vartheta_{m}, \vartheta_{p}\right)
$$

for $1 \leq p \leq M$ and $1 \leq m \leq M$.
System of (ordinary) integrodifferential equations

$$
\sum_{m=1}^{M} M_{p m} U_{m}^{\prime}(t)+S_{p m} \partial_{t}^{1-\nu} U_{m}(t)=\left\langle f(t), \vartheta_{p}\right\rangle, \quad 1 \leq p \leq M
$$

or equivalently,

$$
\mathbf{M} \mathbf{U}^{\prime}(t)+\mathbf{S} \partial_{t}^{1-\nu} \mathbf{U}(t)=\mathbf{F}(t)
$$

with $\mathbf{U}(0)=\mathbf{U}_{0 h}$.

Fully discrete solution

Seek $U_{h}:[0, T] \rightarrow S_{h}$ satisfying

$$
\begin{aligned}
\left\langle U_{+}^{n-1}, X_{+}^{n-1}\right\rangle+\int_{I_{n}}\left[\left\langleU^{\prime}(t)\right.\right. & \left., X(t)\rangle+A\left(\partial^{1-\nu} U(t), X(t)\right)\right] d t \\
& =\left\langle U_{-}^{n-1}, X_{+}^{n-1}\right\rangle+\int_{I_{n}}\langle f(t), X(t)\rangle d t
\end{aligned}
$$

for every polynomial X of degree at most L with coefficients in S_{h}, with $U_{h-}^{0}=u_{0 h}$. Writing

$$
U_{h}(x, t)=\sum_{m=1}^{M} \sum_{l=1}^{L} U_{m}^{n l} \chi_{n l}(t) \vartheta_{m}(x) \quad x \in \Omega, t \in I_{n}
$$

we obtain for $2 \leq n \leq N$ a linear system of the form
$\left(\mathbf{M} \otimes \boldsymbol{\alpha}+\mathbf{S} \otimes \boldsymbol{\beta}_{n n}\right) \mathbf{U}^{n}=\mathbf{F}^{n}+(\mathbf{M} \otimes \boldsymbol{\gamma}) \mathbf{U}^{n-1}-\sum_{j=1}^{n-1}\left(\mathbf{S} \otimes \boldsymbol{\beta}_{n j}\right) \mathbf{U}^{j}$.

Computational cost

At the nth time step, we must use $O(n L M)$ operations to compute the RHS, and (at least) $O(L M)$ operations to solve the $(L M) \times(L M)$ linear system.

For N times steps, the cost is thus $O\left(N^{2} L M\right)$ operations.

Also use $O($ NLM $)$ active memory locations.

For a classical diffusion equation, total cost is only $O($ NLM $)$ operations and $O(L M)$ active memory locations.

Conclusion: solving a fractional diffusion equation costs N times as much as solving a classical diffusion equation.

Fast time stepping algorithms

- Hackbusch and Nowak, Numer. Math. 54: 463-491, 1989.
- Ford and Simpson, Numer. Algorithms 26:333-346, 2001.
- Diethelm and Freed, Comput. Math. Appl. 51: 51-72, 2006.
- Schädle, López-Fernández and Lubich, SIAM J. Sci. Comput. 28:421-438, 2006
- Deng, J. Comput. Appl. Math. 206: 174-188, 2007.
- Li, SIAM J. Sci. Comput. 31: 4696-4714, 2010.

Degenerate kernel

For simplicity, restrict to scalar $(M=1)$ problem with piecewise-constants $(L=1)$ in time.
Need a fast way to evaluate

$$
\int_{I_{n}} \int_{0}^{t_{n-1}} \beta(t, s) U(s) d s d t=\sum_{j=1}^{n-1} \beta_{n j} U_{-}^{j}
$$

Easy if β of the form

$$
\beta(t, s)=\sum_{r=1}^{R} \phi_{r}(t) \psi_{r}(s)
$$

because

$$
\beta_{n j}=\int_{I_{n}} \int_{I_{j}} \beta(t, s) d s d t=\sum_{r=1}^{R} \phi_{r n} \psi_{r j}
$$

where

$$
\phi_{r n}=\int_{I_{n}} \phi_{r}(t) d t, \quad \psi_{r j}=\int_{I_{j}} \psi_{r}(s) d s
$$

Degenerate kernel

Compute the sum as

$$
\sum_{j=1}^{n-1} \beta_{n j} U_{-}^{j}=\sum_{j=1}^{n-1} \sum_{r=1}^{R} \phi_{r n} \psi_{r j} U_{-}^{j}=\sum_{r=1}^{R} \phi_{r n} \Psi_{r}^{n-1}(U)
$$

where

$$
\Psi_{r}^{n-1}(U)=\sum_{j=1}^{n-1} \psi_{r j} U_{-}^{j}=\psi_{r, n-1} U_{-}^{n-1}+\Psi_{r}^{n-2}(U)
$$

At nth time step, overwrite $\Psi_{r}^{n-2}(U)$ with $\Psi_{r}^{n-1}(U)$, and compute sum using $O(R)$ operations.

Reduce total cost from $O\left(N^{2}\right)$ operations and $O(N)$ storage to $O(R N)$ operations and $O(R)$ storage.

Weakly singular kernel

But fractional wave equation has the kernel

$$
\beta(t, s)=\frac{(t-s)^{\nu-2}}{\Gamma(\nu-1)}, \quad 1<\nu<2
$$

Key idea: if $t \in I_{n}$ and $s \in I_{j}$ are well-separated, then we can approximate $\beta(t, s)$ by a degenerate kernel.

Leads to a variant of the panel clustering algorithm for boundary element methods (Hackbusch and Nowak, 1989).

Well-separated intervals

Suppose

$$
0 \leq a<s \leq b<c \leq t \leq d \leq T \quad \text { and } \quad \frac{b-a}{c-b} \leq \eta \leq 1
$$

Change of variable

$$
s=\frac{1}{2}[(1-\sigma) a+(1+\sigma) b]
$$

takes $\sigma \in[-1,1]$ to $s \in[a, b]$.

Tchebyshev interpolation

Denote the Tchebyshev points for $[a, b]$ by

$$
s_{r}^{a, b}=\frac{1}{2}\left[\left(1-\sigma_{r}\right) a+\left(1+\sigma_{r}\right) b\right], \quad \sigma_{r}=\cos \frac{\left(r+\frac{1}{2}\right) \pi}{R+1}
$$

for $0 \leq r \leq R$. For $s \in[a, b]$ and $t \in[c, d]$,

$$
\beta(t, s) \approx \beta^{a, b}(t, s)=\sum_{r=0}^{R} \phi_{r}^{a, b}(t) \psi_{r}^{a, b}(s)
$$

where

$$
\phi_{r}^{a, b}(t)=\frac{2}{R+1} \sum_{q=0}^{R} \beta\left(t, s_{q}^{a, b}\right) T_{r}\left(\sigma_{r}\right), \quad \psi_{r}^{a, b}(s)=T_{r}(\sigma) .
$$

Tchebyshev interpolation

Local degenerate kernel satisfies

$$
\beta\left(t, s_{r}^{a, b}\right)=\beta^{a, b}\left(t, s_{r}^{a, b}\right), \quad 0 \leq r \leq R,
$$

and standard error estimate for Tchebyshev interpolation of analytic functions gives

$$
\left|\beta^{a, b}(t, s)-\beta(t, s)\right|=O\left(\rho^{-R}\right)
$$

for

$$
s \in I_{j} \subseteq[a, b] \quad \text { and } \quad t \in I_{n} \subseteq[c, d]
$$

with $\rho>1$ satisfying $\rho+\rho^{-1}<4 \eta^{-1}-2$.

Accuracy in practice

Cluster tree

A cluster is a set $\mathcal{C}=\left\{I_{j}, I_{j+1}, \ldots, I_{n}\right\}(1 \leq j \leq n \leq N)$ of consecutive subintervals.

Admissible cover

Given I_{n} and $\eta \in(0,1]$, a simple recursive procedure constructs a unique minimal admissible cover for $\left[t_{0}, t_{n-1}\right]$.

CPU times for piecewise constants, 2D problem

Fractional diffusion equation $(\nu=1 / 2), N=16000$ times steps, $\Omega=(0,1) \times(0,1)$, bilinear finite elements with $M=6241$ degrees of freedom, Taylor expansions of kernel.

	Slow	Fast		
r	-	4	5	6
Error	$0.129 \mathrm{E}-03$	$0.789 \mathrm{E}-03$	$0.129 \mathrm{E}-03$	$0.129 \mathrm{E}-03$
Setup	49.0 s	0.64 s	0.66 s	0.70 s
RHS	916.2 s	16.76 s	20.48 s	23.09 s
Solver	7.7 s	7.17 s	6.87 s	7.13 s
Total	972.9 s	24.57 s	28.02 s	30.91 s

