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Initial-boundary value problem

Fractional diffusion (0 < ν < 1) or wave (1 < ν < 2) equation

∂u

∂t
+∇ · Qν = f (x , t), x ∈ Ω ⊆ Rd , 0 < t < T .

Generalized flux

Qν(x , t) = −∂1−ν
t K∇u, K > 0.

Classical diffusion (heat) equation in the limit as ν → 1, since
Q1 = −K∇u.

Homogeneous Dirichlet or Neumann boundary condition, and
initial condition

u(x , 0) = u0(x) for x ∈ Ω.



Riemann–Liouville fractional derivative or integral

If 0 < ν < 1, then

∂1−νg(t) =
∂

∂t

∫ t

0

(t − s)ν−1

Γ(ν)
g(s) ds.

If 1 < ν < 2, then

∂1−νg(t) =

∫ t

0

(t − s)ν−2

Γ(ν − 1)
g(s) ds.

Kernel is weakly singular in both cases.



Weak formulation

Energy space Ḣ1 = H1
0 (Ω) or H1(Ω).

First Green identity: if v ∈ Ḣ1 then∫
Ω

[
−∇ · (K∇u)]v dx =

∫
Ω

K∇u · ∇v dx −
�

����
∫
∂Ω

∂u

∂n
v .

Bilinear form

A(u, v) =

∫
Ω

K∇u · ∇v dx = 〈Au, v〉.

Weak solution u : (0,T )→ Ḣ1 satisfies

〈u′(t), v〉+ A(∂1−ν
t u, v) = 〈f (t), v〉 for all v ∈ Ḣ1.



Stability of the continuous problem

Putting v = u(t) and integrating,∫ T

0
〈u′(t), u(t)〉 dt +

∫ T

0
A(∂1−νu(t), u(t)) dt

=

∫ T

0
〈f (t), u(t)〉 dt.

Can show via Laplace transforms that∫ T

0
A(∂1−νu(t), u(t)) dt ≥ 0,

and we easily deduce well-posedness:

‖u(t)‖ ≤ ‖u0‖+ 2

∫ t

0
‖f (s)‖ ds, 0 ≤ t ≤ T .



Discontinuous piecewise polynomial approximation
Grid points

0 = t0 < t1 < t2 < · · · < tN = T .

Subintervals

In = (tn−1, tn), kn = tn − tn−1, 1 ≤ n ≤ N.

Basis for polynomials of degree at most L− 1,

χ1, χ2, . . . , χL.

Basis function shifted to In,

χnl(t) = χl(τ), t = tn−1 + τkn, 0 < τ < 1.

Seek approximate solution

u(x , t) ≈ U(x , t) =
L∑

l=1

Unl(x)χnl(t), t ∈ In.



Discontinuous Galerkin in time (DG)

One-sided limits and jump at tn,

Un
± = lim

t→t±n

U(t), [U]n = Un
+ − Un

−.

Require

〈Un−1
+ ,X n−1

+ 〉+

∫
In

[
〈U ′(t),X (t)〉+ A

(
∂1−νU(t),X (t)

)]
dt

= 〈Un−1
− ,X n−1

+ 〉+

∫
In

〈f (t),X (t)〉 dt

for every polynomial X of degree at most L with coefficients in Ḣ1.

Weakly enforce continuity at tn−1.
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Simplest example: scalar problem, piecewise constants

Consider scalar-valued case U : (0,T )→ R (fractional ODE)
with L = 1 (piecewise-constants). Then U(t) = Un

− = Un−1
+ and

U ′(t) = 0 for t ∈ In, so for all X n
− ∈ R,

〈Un
−,X

n
−〉+

∫
In

A
(
∂1−νU(t),X n

−
)

dt

= 〈Un−1
− ,X n

−〉+

∫
In

〈f (t),X n
−〉 dt.

This is just the implicit Euler method,

Un
− − Un−1

−
kn

+ A
n∑

j=1

βnjU
j
− = F n,

with

F n =
1

kn

∫
In

f (t) dt = average value of f on In.



Piecewise linears for fractional wave equation

Take ν = 3/2, T = 6, A = 1, u0 = 1, f ≡ 0. L = 1, N = 8.



Un
− converges faster than Un

+

Compare
EN

+ = max
0≤n≤N−1

|Un
+ − u(tn)| = O(kρ+)

and
EN
− = max

1≤n≤N
|Un
− − u(tn)| = O(kρ−)

N E− ρ− E+ ρ+

20 0.83E-05 0.47E-02

40 0.12E-05 2.820 0.17E-02 1.482

80 0.16E-06 2.864 0.59E-03 1.493

160 0.22E-07 2.897 0.21E-03 1.498

320 0.29E-08 2.924 0.74E-04 1.499

640 0.37E-09 2.943 0.26E-04 1.500



Non-uniform time steps

Put
tn = (n/N)qT , q ≥ 1.

With q = 1.5 we observe ρ− = 3 (superconvergence) and ρ+ = 2
(optimal).

N E− ρ− E+ ρ+

20 0.11E-04 0.16E-02

40 0.15E-05 2.877 0.40E-03 1.976

80 0.20E-06 2.921 0.10E-03 1.989

160 0.26E-07 2.947 0.25E-04 1.995

320 0.33E-08 2.963 0.63E-05 1.998

640 0.42E-09 2.973 0.16E-05 1.999



Spatial discretization

Conforming finite element space Sh ⊆ Ḣ1.

Spatially discrete solution uh : (0,T )→ Sh satisfies

〈u′h(t), v〉+ A(∂1−ν
t uh, v) = 〈f (t), v〉 for all v ∈ Sh,

with uh(0) = u0h ≈ uh and u0h ∈ Sh.

Basis ϑ1, ϑ2, . . . , ϑM for Sh, so that

u(x , t) ≈ uh(x , t) =
M∑

m=1

Um(t)ϑm(x).

E.g., for a nodal basis,

ϑm(xp) = δmp and Um(t) = uh(xm, t).



Method of lines

Mass matrix M = [Mpm] and stiffness matrix S = [Spm] with
entries

Mpm = 〈ϑm, ϑp〉 and Spm = A(ϑm, ϑp)

for 1 ≤ p ≤ M and 1 ≤ m ≤ M.

System of (ordinary) integrodifferential equations

M∑
m=1

MpmU ′m(t) + Spm∂
1−ν
t Um(t) = 〈f (t), ϑp〉, 1 ≤ p ≤ M,

or equivalently,

MU′(t) + S∂1−ν
t U(t) = F(t),

with U(0) = U0h.



Fully discrete solution
Seek Uh : [0,T ]→ Sh satisfying

〈Un−1
+ ,X n−1

+ 〉+

∫
In

[
〈U ′(t),X (t)〉+ A

(
∂1−νU(t),X (t)

)]
dt

= 〈Un−1
− ,X n−1

+ 〉+

∫
In

〈f (t),X (t)〉 dt

for every polynomial X of degree at most L with coefficients in Sh,
with U0

h− = u0h. Writing

Uh(x , t) =
M∑

m=1

L∑
l=1

Unl
mχnl(t)ϑm(x) x ∈ Ω, t ∈ In,

we obtain for 2 ≤ n ≤ N a linear system of the form

(
M⊗α + S⊗ βnn

)
Un = Fn + (M⊗ γ)Un−1 −

n−1∑
j=1

(S⊗ βnj)U
j .



Computational cost

At the nth time step, we must use O(nLM) operations to compute
the RHS , and (at least) O(LM) operations to solve the
(LM)× (LM) linear system.

For N times steps, the cost is thus O(N2LM) operations.

Also use O(NLM) active memory locations.

For a classical diffusion equation, total cost is only
O(NLM) operations and O(LM) active memory locations.

Conclusion: solving a fractional diffusion equation costs N times as
much as solving a classical diffusion equation.



Fast time stepping algorithms
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28:421–438, 2006
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I Li, SIAM J. Sci. Comput. 31: 4696–4714, 2010.



Degenerate kernel
For simplicity, restrict to scalar (M = 1) problem with
piecewise-constants (L = 1) in time.
Need a fast way to evaluate∫

In

∫ tn−1

0
β(t, s)U(s) ds dt =

n−1∑
j=1

βnjU
j
−.

Easy if β of the form

β(t, s) =
R∑

r=1

φr (t)ψr (s)

because

βnj =

∫
In

∫
Ij

β(t, s) ds dt =
R∑

r=1

φrnψrj ,

where

φrn =

∫
In

φr (t) dt, ψrj =

∫
Ij

ψr (s) ds.



Degenerate kernel

Compute the sum as

n−1∑
j=1

βnjU
j
− =

n−1∑
j=1

R∑
r=1

φrnψrjU
j
− =

R∑
r=1

φrnΨn−1
r (U)

where

Ψn−1
r (U) =

n−1∑
j=1

ψrjU
j
− = ψr ,n−1Un−1

− + Ψn−2
r (U),

At nth time step, overwrite Ψn−2
r (U) with Ψn−1

r (U), and compute
sum using O(R) operations.

Reduce total cost from O(N2) operations and O(N) storage to
O(RN) operations and O(R) storage.



Weakly singular kernel

But fractional wave equation has the kernel

β(t, s) =
(t − s)ν−2

Γ(ν − 1)
, 1 < ν < 2.

Key idea: if t ∈ In and s ∈ Ij are well-separated, then we can
approximate β(t, s) by a degenerate kernel.

Leads to a variant of the panel clustering algorithm for boundary
element methods (Hackbusch and Nowak, 1989).



Well-separated intervals

Suppose

0 ≤ a < s ≤ b < c ≤ t ≤ d ≤ T and
b − a

c − b
≤ η ≤ 1.

Change of variable

s = 1
2

[
(1− σ)a + (1 + σ)b

]
takes σ ∈ [−1, 1] to s ∈ [a, b].



Tchebyshev interpolation

Denote the Tchebyshev points for [a, b] by

sa,br = 1
2

[
(1− σr )a + (1 + σr )b

]
, σr = cos

(r + 1
2 )π

R + 1
,

for 0 ≤ r ≤ R. For s ∈ [a, b] and t ∈ [c, d ],

β(t, s) ≈ βa,b(t, s) =

R∑′

r=0

φa,br (t)ψa,b
r (s)

where

φa,br (t) =
2

R + 1

R∑
q=0

β(t, sa,bq )Tr (σr ), ψa,b
r (s) = Tr (σ).



Tchebyshev interpolation

Local degenerate kernel satisfies

β(t, sa,br ) = βa,b(t, sa,br ), 0 ≤ r ≤ R,

and standard error estimate for Tchebyshev interpolation of
analytic functions gives∣∣βa,b(t, s)− β(t, s)

∣∣ = O(ρ−R)

for
s ∈ Ij ⊆ [a, b] and t ∈ In ⊆ [c , d ],

with ρ > 1 satisfying ρ+ ρ−1 < 4η−1 − 2.



Accuracy in practice



Cluster tree
A cluster is a set C = {Ij , Ij+1, . . . , In} (1 ≤ j ≤ n ≤ N) of
consecutive subintervals.



Admissible cover
Given In and η ∈ (0, 1], a simple recursive procedure constructs a
unique minimal admissible cover for [t0, tn−1].



CPU times for piecewise constants, 2D problem

Fractional diffusion equation (ν = 1/2), N = 16000 times steps,
Ω = (0, 1)× (0, 1), bilinear finite elements with M = 6241 degrees
of freedom, Taylor expansions of kernel.

.

Slow Fast

r — 4 5 6
Error 0.129E-03 0.789E-03 0.129E-03 0.129E-03
Setup 49.0 s 0.64 s 0.66 s 0.70 s
RHS 916.2 s 16.76 s 20.48 s 23.09 s

Solver 7.7 s 7.17 s 6.87 s 7.13 s
Total 972.9 s 24.57 s 28.02 s 30.91 s
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