
Basic Problem
Algorithmic Solution Strategies

Parallelization

Numerical Fractional Calculus Using Methods
Based on Non-Uniform Step Sizes

Kai Diethelm

Gesellschaft für
numerische Simulation mbH

Braunschweig
AG Numerik

Institut Computational Mathematics
Technische Universität Braunschweig

International Symposium on Fractional PDEs
June 3–5, 2013

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Cooperation partners

Neville J. Ford (University of Chester, UK)
Alan D. Freed (Saginaw Valley State University)

(Grant No. 01IH11006C)

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Table of Contents

1 Basic Problem

2 Algorithmic Solution Strategies

3 Parallelization

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Mathematical Fundamentals

Problem: Find a numerical solution to the fractional order IVP

Dα
∗0y(t) = f (t , y(t))

y (k)(0) = y (k)
0 (k = 0, 1, . . . , dαe − 1)

for
t ∈ [0, T ]

where

Dα
∗0 = Caputo differential operator of order α.

In this talk: 0 < α ≤ 1
(generalization to α > 1 usually no problem)

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Classical Approach

Use uniform mesh
tj = j · h

where
h =

T
N

with some suitably chosen parameter N ∈ N,
discretize the fractional operators,
solve the resulting discrete problem

(Oldham & Spanier 1974, Lubich 1983ff., . . . )

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Disadvantage

Fractional differential operators are not local:

Dα
∗0y(t) =

1
Γ(n − α)

∫ t

0
(t − s)n−α−1Dny(s)ds

where n = dαe
Treatment of process history increases computational
complexity
Standard solution approach has O(N2) operation count
Integer-order equations: operation count is only O(N)

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Example: Adams-Bashforth-Moulton Method

Method of P(EC)mE type (Di., Ford & Freed 1999ff.), m = d1/αe

Case 1: Smooth solution

D0.4
∗0 y(t) = −y(t) + t2 − t

+
2t1.6

Γ(2.6)
− t0.6

Γ(1.6)

y(0) = 0
exact solution:
y(t) = t2 − t

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Example: Adams-Bashforth-Moulton Method

Method of P(EC)mE type (Di., Ford & Freed 1999ff.), m = d1/αe

Case 1: Smooth solution

D0.4
∗0 y(t) = −y(t) + t2 − t

+
2t1.6

Γ(2.6)
− t0.6

Γ(1.6)

y(0) = 0
exact solution:
y(t) = t2 − t

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Example: Adams-Bashforth-Moulton Method

Method of P(EC)mE type (Di., Ford & Freed 1999ff.), m = d1/αe

Case 1: Smooth solution

D0.4
∗0 y(t) = −y(t) + t2 − t

+
2t1.6

Γ(2.6)
− t0.6

Γ(1.6)

y(0) = 0
exact solution:
y(t) = t2 − t

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Example: Adams-Bashforth-Moulton Method

Method of P(EC)mE type (Di., Ford & Freed 1999ff.), m = d1/αe

Case 1: Smooth solution

D0.4
∗0 y(t) = −y(t) + t2 − t

+
2t1.6

Γ(2.6)
− t0.6

Γ(1.6)

y(0) = 0
exact solution:
y(t) = t2 − t

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Example: Adams-Bashforth-Moulton Method

Method of P(EC)mE type (Di., Ford & Freed 1999ff.), m = d1/αe

Case 2: Equation with smooth fractional derivative of solution

D0.4
∗0 y(t) = −(y(t))3/2

+
40320
Γ(8.6)

t7.6− 3
Γ(5.2)

Γ(4.8)
t3.8

+
9
4
Γ(1.4)+

(
3
2

t0.2−t4
)3

y(0) = 0
exact solution:
y(t) = t8 − 3t4.2 +

9
4

t0.4

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Example: Adams-Bashforth-Moulton Method

Method of P(EC)mE type (Di., Ford & Freed 1999ff.), m = d1/αe

Case 2: Equation with smooth fractional derivative of solution

D0.4
∗0 y(t) = −(y(t))3/2

+
40320
Γ(8.6)

t7.6− 3
Γ(5.2)

Γ(4.8)
t3.8

+
9
4
Γ(1.4)+

(
3
2

t0.2−t4
)3

y(0) = 0
exact solution:
y(t) = t8 − 3t4.2 +

9
4

t0.4

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Example: Adams-Bashforth-Moulton Method

Method of P(EC)mE type (Di., Ford & Freed 1999ff.), m = d1/αe

Case 3: Smooth right-hand side (nonsmooth solution)

D0.4
∗0 y(t) = −2y(t)

y(0) = 1

exact solution:

y(t) = E0.4(−2x0.4)

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Example: Adams-Bashforth-Moulton Method

Method of P(EC)mE type (Di., Ford & Freed 1999ff.), m = d1/αe

Case 3: Smooth right-hand side (nonsmooth solution)

D0.4
∗0 y(t) = −2y(t)

y(0) = 1

exact solution:

y(t) = E0.4(−2x0.4)

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Table of Contents

1 Basic Problem

2 Algorithmic Solution Strategies

3 Parallelization

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

High Order Methods

(Lubich 1983 ff.)

Basic idea:
Construct algorithm such that

Error = O(N−p), p large

⇒ High accuracy can be obtained with small N
⇒ O(N2) computational cost becomes acceptable

Main tool: Set of starting weights added to numerical method.

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

High Order Methods

Important observation (Di., Ford, Ford, Weilbeer 2006):
1 Starting weights are given as solutions to linear system of

equations
2 Coefficient matrix is of generalized Vandermonde form
3 Depending on α, system may be mildly (α = 0.5) or very

strongly (α = 0.4999) ill conditioned
4 Effective computation of starting weights is potentially

subject to high inaccuracies
5 Numerical results are very good in theory but possibly very

poor in practice

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

High Order Methods

Example: Fractional form of BDF5

Dα
∗0y(t) = −2y(t) + 0.2 sin t , y(0) = 1

α = 1/2

α = 0.4999

Conclusion: Methods works for some, but not all, α

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

High Order Methods

Example: Fractional form of BDF5

Dα
∗0y(t) = −2y(t) + 0.2 sin t , y(0) = 1

α = 1/2

α = 0.4999

Conclusion: Methods works for some, but not all, α

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

High Order Methods

Example: Fractional form of BDF5

Dα
∗0y(t) = −2y(t) + 0.2 sin t , y(0) = 1

α = 1/2 α = 0.4999

Conclusion: Methods works for some, but not all, α

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

High Order Methods

Example: Fractional form of BDF5

Dα
∗0y(t) = −2y(t) + 0.2 sin t , y(0) = 1

α = 1/2 α = 0.4999

Conclusion: Methods works for some, but not all, α

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

High Order Methods

Example: Fractional form of BDF5

Dα
∗0y(t) = −2y(t) + 0.2 sin t , y(0) = 1

α = 1/2 α = 0.4999

Conclusion: Methods works for some, but not all, α

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Fixed Memory

(Podlubny 1999)

Rewrite given IVP in Volterra form,

y(t) =

dαe−1∑
k=0

y (k)(0)
tk

k !
+

1
Γ(α)

∫ t

0
(t − s)α−1f (s, y(s))ds,

introduce parameter τ > 0 (fixed memory length),

replace Volterra equation for t > τ by

y(t) =

dαe−1∑
k=0

y (k)(0)
tk

k !
+

1
Γ(α)

∫ t

t−τ
(t − s)α−1f (s, y(s))ds.

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Fixed Memory

Solve modified equation (with fixed memory) via numerical
scheme with O(N−p) error bound:

Computational complexity is reduced to O(N) for
sufficiently small τ
(Podlubny 1999)
Solution of original equation can be approximated with
O(N−p) accuracy only if τ ≈ T
(Ford & Simpson 2001)

Approach can only yield either low computational cost
or satisfactory accuracy, but not both.

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Graded Meshes

(Brunner 1985; Pedas, Tamme, Vainikko, . . . )

Basic idea:

Improve ratio error
run time

by reducing the error
without changing the run time and
without changing the underlying approximation operator
thus avoiding problems introduced via high order operators

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Graded Meshes

Fundamental approach:

Reason for low convergence order:
Poor smoothness properties of solution near the origin
Remedy: Adapt structure of mesh to behaviour of solution
Precise form:

Graded mesh tj =

(
j
N

)(m/α)

T , j = 0, 1, . . . , N

Finer node spacing where required

Example: uniform mesh, graded mesh (m = 2, α = 0.8)

0 T

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Graded Meshes

Example: Smooth solution (case 1 above)

Expected improvements achieved if N is not too large
Performance deteriorates as N is increased further
Same behaviour for other examples
Reason: Computation of quadrature weights becomes
numerically unstable (significant cancellation of digits)

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Graded Meshes

Possible improvement:
Subdivide interval as [0, T ] = [0, T̃ ] ∪ [T̃ , T ]

Use graded mesh as above with cN subintervals on [0, T̃ ],
where c � 1
Use uniform mesh with (1− c)N subintervals on [T̃ , T ]

⇒ Problem occurs only for much larger values of N

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Automatic Stepsize Control

General idea:
Mesh not defined a priori
Start with certain step size
Find approximation and estimate its error
If error estimate too large then reject step
and retry with smaller step size
If error estimate very small then increase step size
(reduction of computational cost)
Otherwise continue working with present step size

⇒ Fine mesh used only where required by properties of
solution

Open question:
Reliable and computationally cheap estimation of error?

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

A General Observation

Two types of meshes exist in numerical scheme:
Find approximate solution on primary mesh {t0, t1, . . . , tN}
For each j , discretize the integral∫ tj

0
(tj − s)α−1f (s, y(s))ds

in Volterra form of IVP on secondary mesh {τj,µ : 0 ≤ µ ≤ Nj}
Overall complexity =

∑N
j=1 Nj

Traditional methods require that both meshes coincide:

Nj = j and τj,µ = tµ (µ = 0, 1, 2, . . . , Nj)

⇒ complexity =
∑N

j=1 j ≈ 1
2

N2

Potential improvement: use {τj,µ} with much smaller Nj
without increasing order of associated error

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory I

Kernel of integral operator at grid point tj is (tj − s)α−1

away from tj :
kernel is small

⇓
less accurate but
cheap approximation
of integrand suffices

⇓
coarse secondary
mesh in this region

near tj :
kernel is large

⇓
precise approximation
of integrand
necessary

⇓
fine secondary mesh
in this region

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory I

Kernel of integral operator at grid point tj is (tj − s)α−1

away from tj :
kernel is small

⇓
less accurate but
cheap approximation
of integrand suffices

⇓
coarse secondary
mesh in this region

near tj :
kernel is large

⇓
precise approximation
of integrand
necessary

⇓
fine secondary mesh
in this region

�

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory I

Kernel of integral operator at grid point tj is (tj − s)α−1

away from tj :
kernel is small

⇓
less accurate but
cheap approximation
of integrand suffices

⇓
coarse secondary
mesh in this region

near tj :
kernel is large

⇓
precise approximation
of integrand
necessary

⇓
fine secondary mesh
in this region

�
@

@
@

@
@

@
@R

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory I

Given step size h of primary mesh,
select “characteristic time” M > 0 (should be M = kh, k ∈ N)
and w ∈ {2, 3, 4, . . .} (scaling parameter)
for each primary mesh point tj

find smallest integer m such that tj < wm+1M
decompose

[0, tj ] = [0, tj − wmM] ∪ [tj − wmM, tj − wm−1M]
∪ · · · ∪ [tj − w1M, tj − w0M] ∪ [tj −M, tj ]

define secondary mesh on each subinterval, starting from right:
step size h on first and second subintervals,
step size wh on third subinterval,
step size w2h on fourth subinterval, . . . ,
step size wm−1h on penultimate subinterval,
suitable combination of above step sizes on last subinterval

(Ford & Simpson 2001)
Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory I

Consequence: Nj = O(ln j)

Example: tj = 21, h = 1/10, w = 2 and M = 1

0

5 13 17 19 20

21

h̃ = 0.2 (once)
h̃ = 0.8 (6 ×) h̃ = 0.8 h̃ = 0.4 h̃=0.2 h̃=0.1

Total number of nodes for uniform mesh: 211

Total number of nodes for logarithmic mesh: 58

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory I

Consequence: Nj = O(ln j)

Example: tj = 21, h = 1/10, w = 2 and M = 1

0 5 13 17 19 20 21

h̃ = 0.2 (once)
h̃ = 0.8 (6 ×) h̃ = 0.8 h̃ = 0.4 h̃=0.2 h̃=0.1

Total number of nodes for uniform mesh: 211

Total number of nodes for logarithmic mesh: 58

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory I

Consequence: Nj = O(ln j)

Example: tj = 21, h = 1/10, w = 2 and M = 1

0 5 13 17 19 20 21

h̃ = 0.2 (once)
h̃ = 0.8 (6 ×) h̃ = 0.8 h̃ = 0.4 h̃=0.2

h̃=0.1

Total number of nodes for uniform mesh: 211

Total number of nodes for logarithmic mesh: 58

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory I

Consequence: Nj = O(ln j)

Example: tj = 21, h = 1/10, w = 2 and M = 1

0 5 13 17 19 20 21

h̃ = 0.2 (once)
h̃ = 0.8 (6 ×) h̃ = 0.8 h̃ = 0.4

h̃=0.2 h̃=0.1

Total number of nodes for uniform mesh: 211

Total number of nodes for logarithmic mesh: 58

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory I

Consequence: Nj = O(ln j)

Example: tj = 21, h = 1/10, w = 2 and M = 1

0 5 13 17 19 20 21

h̃ = 0.2 (once)
h̃ = 0.8 (6 ×) h̃ = 0.8

h̃ = 0.4 h̃=0.2 h̃=0.1

Total number of nodes for uniform mesh: 211

Total number of nodes for logarithmic mesh: 58

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory I

Consequence: Nj = O(ln j)

Example: tj = 21, h = 1/10, w = 2 and M = 1

0 5 13 17 19 20 21

h̃ = 0.2 (once)
h̃ = 0.8 (6 ×)

h̃ = 0.8 h̃ = 0.4 h̃=0.2 h̃=0.1

Total number of nodes for uniform mesh: 211

Total number of nodes for logarithmic mesh: 58

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory I

Consequence: Nj = O(ln j)

Example: tj = 21, h = 1/10, w = 2 and M = 1

0 5 13 17 19 20 21

h̃ = 0.2 (once)
h̃ = 0.8 (6 ×) h̃ = 0.8 h̃ = 0.4 h̃=0.2 h̃=0.1

Total number of nodes for uniform mesh: 211
Total number of nodes for logarithmic mesh: 58

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory I

Overall error bound:
Traditional approach (full secondary mesh):

chp with some p > 0,

Ford-Simpson logarithmic secondary mesh:

c
(

T
Mw

h
)p

= c′hp with same p

⇒ unchanged order of magnitude of error
but significantly reduced computational cost

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory I

Example: Smooth solution (case 1 above)

Similar results for other examples

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory II

Modification of Ford/Simpson idea (Di. & Freed 2006):
Given step size h of primary mesh,

select “characteristic time” M = kh with fixed k ∈ {4, 5, . . .}
and w ∈ {2, 3, 4, . . .} (scaling parameter)
for each primary mesh point tj

find smallest integer m such that tj < wm+1M
decompose

[0, tj ] ⊂ [tj − wm+1M, tj − wmM] ∪ [tj − wmM, tj − wm−1M]
∪ · · · ∪ [tj − w2M, tj − wM] ∪ [tj − wM, tj ]

and set integrand := 0 to the left of 0
define secondary mesh on each subinterval, starting from right:

step size h on first subinterval,
step size wh on second subinterval, . . . ,
step size wm−1h on penultimate subinterval,
step size wmh on modified last subinterval

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Logarithmic Memory II

Properties:

Nj = O(ln j)
Very efficient memory management possible
Closely related to panel clustering (McLean 2012)

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Shishkin Meshes

Equations with singular perturbations

Example:

−εDα
∗0y(t)− b(t)Dβ

∗0y(t) + c(t)y(t) = f (t)
y(0) = y(1) = 0

(0 < β ≤ 1 < α ≤ 2; inf
0≤t≤1

b(t) > 0, c(t) ≥ 0)

⇒ Solution exhibits boundary layer

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Shishkin Meshes

Classical case (β = 1, α = 2):

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Shishkin Meshes

Classical case (β = 1, α = 2):

Use Shishkin mesh with N subintervals (ε � N−1), i.e.
introduce transition parameter σ ∈ (0, 1)
(depending on N and ε; typically σ = 2(inft b(t))−1ε ln N)
use N/2 equally large subintervals on (0, σ),
use N/2 equally large subintervals on (σ, 1),
apply (upwind) finite difference formula with this mesh.

(Roos, Stynes & Tobiska 2008; Linß 2010)

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Shishkin Meshes

Example: ε = 10−2, N = 20, b(t) ≡ 1 ⇒ σ = 0.06

0 σ 1

⇒ Fine (computationally expensive) mesh is used only where
necessary.

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Shishkin Meshes

Example: Initial value problem

−10−4D1.8
∗0 y(t)− D1

∗0y(t) = −1, y(0) = 0, y ′(0) = 9199.08

Solution with uniform mesh:

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Shishkin Meshes

Example: Initial value problem

−10−4D1.8
∗0 y(t)− D1

∗0y(t) = −1, y(0) = 0, y ′(0) = 9199.08

Solution with uniform mesh:

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Shishkin Meshes

Example: Initial value problem

−10−4D1.8
∗0 y(t)− D1

∗0y(t) = −1, y(0) = 0, y ′(0) = 9199.08

Solution with uniform mesh:

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Shishkin Meshes

Open questions in fractional case (α < 2 or β < 1):

Width of boundary layer
Influence of changes of sign of coefficients
(broken symmetry properties)
Influence of memory on boundary layer
(dependence of boundary layer on α, β)
Suitable choices for mesh
(in particular: value of mesh transition parameter)

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Table of Contents

1 Basic Problem

2 Algorithmic Solution Strategies

3 Parallelization

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Shared Memory Approach (OpenMP)

Basic idea for hardware platform with P cores:
Divide set of nodes into blocks of P successive nodes each
Handle blocks in parallel (one core per node of block):

Each node of block needs to take history into account
(all previous nodes)
Split up history into nodes from earlier blocks and
earlier nodes of current block
Compute first part of history in parallel for all nodes of
current block
(no interaction required; ideal scalability;
main part of work except for the first few blocks)
Compute remainder of history sequentially
(each node needs to wait for results of predecessors;
small part of work only)

(Di. 2011)
Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Shared Memory Approach (OpenMP)

Graphical representation of strategy:

H
HHj

current block
of nodes

-

6

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q

���

q q qq qq ?q q q q

time

hi
st

or
y

history from
earlier blocks
⇒ parallel

history from
current block
⇒ sequential

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Shared Memory Approach (OpenMP)

Performance analysis using Score-P measurement system
(www.score-p.org)

Profiling shows
very good load balancing,
very small sequential part

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Shared Memory Approach (OpenMP)

Performance analysis using Score-P measurement system
(www.score-p.org)

Tracing shows
rather poor efficiency (much waiting time) only in very early
part of simulation (left)
very high efficiency (almost no waiting time) in later parts
of simulation (right)

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Shared Memory Approach (OpenMP)

Observed performance:

Very good strong (left) and weak (right) scaling
Can be used for full memory or logarithmic memory
Can be used for uniform or non-uniform primary meshes
Same behaviour for corresponding approach on distributed
memory systems (using MPI)

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem
Algorithmic Solution Strategies

Parallelization

Thank you for your attention!

diethelm@gns-mbh.com

k.diethelm@tu-braunschweig.de

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes


	Basic Problem
	Algorithmic Solution Strategies
	Parallelization

