Numerical Fractional Calculus Using Methods Based on Non-Uniform Step Sizes

Kai Diethelm

Gesellschaft für numerische Simulation mbH Braunschweig

AG Numerik Institut Computational Mathematics Technische Universität Braunschweig

International Symposium on Fractional PDEs June 3–5, 2013

Cooperation partners

- Neville J. Ford (University of Chester, UK)
- Alan D. Freed (Saginaw Valley State University)

SPONSORED BY THE

Federal Ministry of Education and Research

(Grant No. 01IH11006C)

Table of Contents

2 Algorithmic Solution Strategies

3 Parallelization

Mathematical Fundamentals

Problem: Find a numerical solution to the fractional order IVP

$$D_{*0}^{\alpha} y(t) = f(t, y(t))$$

$$y^{(k)}(0) = y_0^{(k)} \quad (k = 0, 1, \dots, \lceil \alpha \rceil - 1)$$

for

$$t \in [0, T]$$

where

 D_{*0}^{α} = Caputo differential operator of order α .

In this talk: $0 < \alpha \le 1$ (generalization to $\alpha > 1$ usually no problem)

Classical Approach

Use uniform mesh

$$t_j = j \cdot h$$

where

$$h = \frac{T}{N}$$

with some suitably chosen parameter $N \in \mathbb{N}$,

- discretize the fractional operators,
- solve the resulting discrete problem

(Oldham & Spanier 1974, Lubich 1983ff., ...)

Disadvantage

• Fractional differential operators are not local:

$$D^{\alpha}_{*0}y(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t (t-s)^{n-\alpha-1} D^n y(s) ds$$

where $n = \lceil \alpha \rceil$

- Treatment of process history increases computational complexity
- Standard solution approach has $O(N^2)$ operation count
- Integer-order equations: operation count is only O(N)

Example: Adams-Bashforth-Moulton Method

Method of P(EC)^{*m*}E type (Di., Ford & Freed 1999ff.), $m = \lceil 1/\alpha \rceil$

Case 1: Smooth solution

$$D_{*0}^{0.4}y(t) = -y(t) + t^{2} - t$$

+ $\frac{2t^{1.6}}{\Gamma(2.6)} - \frac{t^{0.6}}{\Gamma(1.6)}$
 $y(0) = 0$
exact solution:
 $y(t) = t^{2} - t$

Example: Adams-Bashforth-Moulton Method

Method of P(EC)^{*m*}E type (Di., Ford & Freed 1999ff.), $m = \lceil 1/\alpha \rceil$

Case 1: Smooth solution

$$D_{*0}^{0.4}y(t) = -y(t) + t^{2} - t$$

$$+ \frac{2t^{1.6}}{\Gamma(2.6)} - \frac{t^{0.6}}{\Gamma(1.6)}$$

$$y(0) = 0$$
exact solution:
$$y(t) = t^{2} - t$$
9.E-03
9.E-03
2.E-03
9.E-04
9.E-04
9.E-06
9.E-06
9.E-06
9.E-06
9.E-06
9.E-06
9.E-08
9.E-

run time

[s]

Example: Adams-Bashforth-Moulton Method

Method of P(EC)^{*m*}E type (Di., Ford & Freed 1999ff.), $m = \lceil 1/\alpha \rceil$

Case 1: Smooth solution

$$D_{*0}^{0.4}y(t) = -y(t) + t^{2} - t + \frac{2t^{1.6}}{\Gamma(2.6)} - \frac{t^{0.6}}{\Gamma(1.6)}$$

$$y(0) = 0$$

exact solution:

$$y(t) = t^{2} - t$$

Example: Adams-Bashforth-Moulton Method

Method of P(EC)^{*m*}E type (Di., Ford & Freed 1999ff.), $m = \lceil 1/\alpha \rceil$

Case 1: Smooth solution

$$D_{*0}^{0.4}y(t) = -y(t) + t^{2} - t$$

+ $\frac{2t^{1.6}}{\Gamma(2.6)} - \frac{t^{0.6}}{\Gamma(1.6)}$
 $y(0) = 0$
exact solution:
 $y(t) = t^{2} - t$

Example: Adams-Bashforth-Moulton Method

Method of P(EC)^{*m*}E type (Di., Ford & Freed 1999ff.), $m = \lceil 1/\alpha \rceil$

Case 2: Equation with smooth fractional derivative of solution

Example: Adams-Bashforth-Moulton Method

Method of P(EC)^{*m*}E type (Di., Ford & Freed 1999ff.), $m = \lceil 1/\alpha \rceil$

Case 2: Equation with smooth fractional derivative of solution

Example: Adams-Bashforth-Moulton Method

Method of P(EC)^{*m*}E type (Di., Ford & Freed 1999ff.), $m = \lceil 1/\alpha \rceil$

Case 3: Smooth right-hand side (nonsmooth solution)

$$D_{*0}^{0.4}y(t) = -2y(t)$$

y(0) = 1

exact solution:

$$y(t) = E_{0.4}(-2x^{0.4})$$

Example: Adams-Bashforth-Moulton Method

Method of P(EC)^{*m*}E type (Di., Ford & Freed 1999ff.), $m = \lceil 1/\alpha \rceil$

Case 3: Smooth right-hand side (nonsmooth solution)

$$D_{*0}^{0.4}y(t) = -2y(t)$$

y(0) = 1

exact solution:

$$y(t) = E_{0.4}(-2x^{0.4})$$

Table of Contents

3 Parallelization

High Order Methods

(Lubich 1983 ff.)

Basic idea:

Construct algorithm such that

$$Error = O(N^{-p}), \qquad p \text{ large}$$

 \Rightarrow High accuracy can be obtained with small N

 $\Rightarrow O(N^2)$ computational cost becomes acceptable

Main tool: Set of *starting weights* added to numerical method.

High Order Methods

Important observation (Di., Ford, Ford, Weilbeer 2006):

- Starting weights are given as solutions to linear system of equations
- ② Coefficient matrix is of generalized Vandermonde form
- Depending on α, system may be mildly (α = 0.5) or very strongly (α = 0.4999) ill conditioned
- Effective computation of starting weights is potentially subject to high inaccuracies
- Numerical results are very good in theory but possibly very poor in practice

High Order Methods

$$D^{lpha}_{*0} y(t) = -2y(t) + 0.2 \sin t, \qquad y(0) = 1$$

 $lpha = 1/2$

High Order Methods

$$D^{\alpha}_{*0}y(t) = -2y(t) + 0.2\sin t, \qquad y(0) = 1$$

 $\alpha = 1/2$

0.4999

High Order Methods

$$D^{lpha}_{*0}y(t) = -2y(t) + 0.2\sin t, \qquad y(0) = 1$$

 $lpha = 1/2 \qquad \qquad \alpha =$

High Order Methods

$$D^{lpha}_{*0}y(t) = -2y(t) + 0.2\sin t, \qquad y(0) = 1$$

 $lpha = 1/2 \qquad \qquad lpha = 0.4999$

High Order Methods

Example: Fractional form of BDF5

$$D^{lpha}_{*0}y(t) = -2y(t) + 0.2\sin t, \qquad y(0) = 1$$

 $lpha = 1/2 \qquad \qquad lpha = 0.4999$

Conclusion: Methods works for some, but not all, α

Fixed Memory

(Podlubny 1999)

Rewrite given IVP in Volterra form,

$$y(t) = \sum_{k=0}^{\lceil \alpha \rceil - 1} y^{(k)}(0) \frac{t^k}{k!} + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha - 1} f(s, y(s)) ds,$$

introduce parameter $\tau > 0$ (fixed memory length),

replace Volterra equation for $t > \tau$ by

$$y(t) = \sum_{k=0}^{\lceil \alpha \rceil - 1} y^{(k)}(0) \frac{t^k}{k!} + \frac{1}{\Gamma(\alpha)} \int_{t-\tau}^t (t-s)^{\alpha-1} f(s, y(s)) ds.$$

Fixed Memory

Solve modified equation (with fixed memory) via numerical scheme with $O(N^{-p})$ error bound:

- Computational complexity is reduced to O(N) for sufficiently small τ (Podlubny 1999)
- Solution of original equation can be approximated with O(N^{-p}) accuracy only if τ ≈ T (Ford & Simpson 2001)

Approach can only yield either low computational cost or satisfactory accuracy, but not both.

Graded Meshes

(Brunner 1985; Pedas, Tamme, Vainikko, ...)

Basic idea:

Improve ratio error run time

- by reducing the error
- without changing the run time and
- without changing the underlying approximation operator
- thus avoiding problems introduced via high order operators

Graded Meshes

Fundamental approach:

- Reason for low convergence order:
 Poor smoothness properties of solution near the origin
- Remedy: Adapt structure of mesh to behaviour of solution
- Precise form:

Graded mesh
$$t_j = \left(\frac{j}{N}\right)^{(m/\alpha)} T, \quad j = 0, 1, \dots, N$$

• Finer node spacing where required

Example: uniform mesh, graded mesh (m = 2, $\alpha = 0.8$)

Graded Meshes

Example: Smooth solution (case 1 above)

- Expected improvements achieved if N is not too large
- Performance deteriorates as N is increased further
- Same behaviour for other examples
- Reason: Computation of quadrature weights becomes numerically unstable (significant cancellation of digits)

Graded Meshes

Possible improvement:

- Subdivide interval as $[0, T] = [0, \tilde{T}] \cup [\tilde{T}, T]$
- Use graded mesh as above with *cN* subintervals on [0, *T*], where *c* ≪ 1
- Use uniform mesh with (1 c)N subintervals on $[\tilde{T}, T]$
- \Rightarrow Problem occurs only for much larger values of N

Kai Diethelm

Numerical Fractional Calculus with Non-Uniform Meshes

Automatic Stepsize Control

General idea:

- Mesh not defined a priori
- Start with certain step size
- Find approximation and estimate its error
- If error estimate too large then reject step and retry with smaller step size
- If error estimate very small then increase step size (reduction of computational cost)
- Otherwise continue working with present step size
- ⇒ Fine mesh used only where required by properties of solution

Open question:

Reliable and computationally cheap estimation of error?

A General Observation

- Two types of meshes exist in numerical scheme:
 - Find approximate solution on primary mesh $\{t_0, t_1, \ldots, t_N\}$
 - For each *j*, discretize the integral

$$\int_0^{t_j} (t_j-s)^{lpha-1} f(s,y(s)) ds$$

in Volterra form of IVP on secondary mesh $\{\tau_{i,\mu}: 0 \le \mu \le N_i\}$

- Overall complexity = $\sum_{j=1}^{N} N_j$
- Traditional methods require that both meshes coincide:

$$N_j = j$$
 and $\tau_{j,\mu} = t_\mu$ $(\mu = 0, 1, 2, \dots, N_j)$

 \Rightarrow complexity $= \sum_{j=1}^{N} j \approx \frac{1}{2} N^2$

Potential improvement: use {τ_{j,μ}} with much smaller N_j without increasing order of associated error

Logarithmic Memory I

Kernel of integral operator at grid point t_j is $(t_j - s)^{\alpha-1}$

Logarithmic Memory I

Kernel of integral operator at grid point t_j is $(t_j - s)^{\alpha-1}$

Logarithmic Memory I

Kernel of integral operator at grid point t_j is $(t_j - s)^{\alpha-1}$

Logarithmic Memory I

Given step size h of primary mesh,

- select "characteristic time" M > 0 (should be $M = kh, k \in \mathbb{N}$) and $w \in \{2, 3, 4, ...\}$ (scaling parameter)
- for each primary mesh point t_j
 - find smallest integer *m* such that $t_i < w^{m+1}M$
 - decompose
 [0, *t_i*] = [

$$D, t_j] = \begin{bmatrix} 0, t_j - w^m M \end{bmatrix} \cup \begin{bmatrix} t_j - w^m M, t_j - w^{m-1}M \end{bmatrix}$$
$$\cup \cdots \cup \begin{bmatrix} t_j - w^1 M, t_j - w^0 M \end{bmatrix} \cup \begin{bmatrix} t_j - M, t_j \end{bmatrix}$$

 define secondary mesh on each subinterval, starting from right: step size h on first and second subintervals, step size wh on third subinterval,

step size $w^{2}h$ on fourth subinterval, ...,

step size w^{-1} on fourth subinterval, ...,

step size $w^{m-1}h$ on penultimate subinterval,

suitable combination of above step sizes on last subinterval

(Ford & Simpson 2001)

Logarithmic Memory I

Consequence: $N_j = O(\ln j)$

Example: $t_i = 21$, h = 1/10, w = 2 and M = 1

Logarithmic Memory I

Consequence: $N_j = O(\ln j)$

Example: $t_i = 21$, h = 1/10, w = 2 and M = 1

Logarithmic Memory I

Consequence: $N_j = O(\ln j)$

Example: $t_i = 21$, h = 1/10, w = 2 and M = 1

Logarithmic Memory I

Consequence: $N_j = O(\ln j)$

Example: $t_i = 21$, h = 1/10, w = 2 and M = 1

Logarithmic Memory I

Consequence: $N_j = O(\ln j)$

Example: $t_i = 21$, h = 1/10, w = 2 and M = 1

Logarithmic Memory I

Consequence: $N_j = O(\ln j)$

Example: $t_j = 21$, h = 1/10, w = 2 and M = 1

Logarithmic Memory I

Consequence: $N_j = O(\ln j)$

Example: $t_i = 21$, h = 1/10, w = 2 and M = 1

• Total number of nodes for uniform mesh: 211

Total number of nodes for logarithmic mesh: 58

Logarithmic Memory I

Overall error bound:

• Traditional approach (full secondary mesh):

 ch^{p} with some p > 0,

• Ford-Simpson logarithmic secondary mesh:

$$c\left(\frac{T}{Mw}h\right)^{p}=c'h^{p}$$
 with same p

⇒ unchanged order of magnitude of error but significantly reduced computational cost

Logarithmic Memory I

Example: Smooth solution (case 1 above)

Similar results for other examples

Logarithmic Memory II

Modification of Ford/Simpson idea (Di. & Freed 2006): Given step size h of primary mesh,

- select "characteristic time" *M* = *kh* with fixed *k* ∈ {4,5,...} and *w* ∈ {2,3,4,...} (scaling parameter)
- for each primary mesh point t_j
 - find smallest integer *m* such that $t_j < w^{m+1}M$
 - decompose

 $\begin{bmatrix} 0, t_j \end{bmatrix} \subset \begin{bmatrix} t_j - w^{m+1}M, t_j - w^mM \end{bmatrix} \cup \begin{bmatrix} t_j - w^mM, t_j - w^{m-1}M \end{bmatrix} \\ \cup \cdots \cup \begin{bmatrix} t_j - w^2M, t_j - wM \end{bmatrix} \cup \begin{bmatrix} t_j - wM, t_j \end{bmatrix}$

and set integrand := 0 to the left of 0

 define secondary mesh on each subinterval, starting from right: step size h on first subinterval, step size wh on second subinterval, ..., step size w^{m-1}h on penultimate subinterval, step size w^mh on modified last subinterval

Logarithmic Memory II

Properties:

- $N_j = O(\ln j)$
- Very efficient memory management possible
- Closely related to panel clustering (McLean 2012)

Shishkin Meshes

Equations with singular perturbations

Example:

$$-\epsilon D^{\alpha}_{*0} y(t) - b(t) D^{\beta}_{*0} y(t) + c(t) y(t) = f(t)$$

 $y(0) = y(1) = 0$
 $(0 < \beta \le 1 < \alpha \le 2; \quad \inf_{0 \le t \le 1} b(t) > 0, \quad c(t) \ge 0)$

\Rightarrow Solution exhibits boundary layer

Shishkin Meshes

Classical case ($\beta = 1, \alpha = 2$):

Shishkin Meshes

Classical case ($\beta = 1, \alpha = 2$):

Use Shishkin mesh with *N* subintervals ($\epsilon \ll N^{-1}$), i.e.

- introduce transition parameter σ ∈ (0, 1) (depending on N and ε; typically σ = 2(inf_t b(t))⁻¹ ε ln N)
- use N/2 equally large subintervals on $(0, \sigma)$,
- use N/2 equally large subintervals on $(\sigma, 1)$,
- apply (upwind) finite difference formula with this mesh.

(Roos, Stynes & Tobiska 2008; Linß 2010)

Shishkin Meshes

Example: $\epsilon = 10^{-2}$, N = 20, $b(t) \equiv 1 \Rightarrow \sigma = 0.06$

 $\Rightarrow\,$ Fine (computationally expensive) mesh is used only where necessary.

Shishkin Meshes

Example: Initial value problem

$$-10^{-4}D_{*0}^{1.8}y(t) - D_{*0}^{1}y(t) = -1, \quad y(0) = 0, y'(0) = 9199.08$$

Solution with uniform mesh:

Shishkin Meshes

Example: Initial value problem

$$-10^{-4}D_{*0}^{1.8}y(t) - D_{*0}^{1}y(t) = -1, \quad y(0) = 0, y'(0) = 9199.08$$

Solution with uniform mesh:

Shishkin Meshes

Example: Initial value problem

$$-10^{-4}D_{*0}^{1.8}y(t) - D_{*0}^{1}y(t) = -1, \quad y(0) = 0, y'(0) = 9199.08$$

Solution with uniform mesh:

Shishkin Meshes

Open questions in fractional case (α < 2 or β < 1):

- Width of boundary layer
- Influence of changes of sign of coefficients (broken symmetry properties)
- Influence of memory on boundary layer (dependence of boundary layer on α, β)
- Suitable choices for mesh (in particular: value of mesh transition parameter)

Table of Contents

2 Algorithmic Solution Strategies

Shared Memory Approach (OpenMP)

Basic idea for hardware platform with P cores:

- Divide set of nodes into blocks of *P* successive nodes each
- Handle blocks in parallel (one core per node of block):
 - Each node of block needs to take history into account (all previous nodes)
 - Split up history into nodes from earlier blocks and earlier nodes of current block
 - Compute first part of history in parallel for all nodes of current block (no interaction required; ideal scalability; main part of work except for the first few blocks)
 - Compute remainder of history sequentially (each node needs to wait for results of predecessors; small part of work only)

(Di. 2011)

Shared Memory Approach (OpenMP)

Graphical representation of strategy:

Shared Memory Approach (OpenMP)

Performance analysis using Score-P measurement system (www.score-p.org)

Profiling shows

- very good load balancing,
- very small sequential part

Shared Memory Approach (OpenMP)

Performance analysis using Score-P measurement system (www.score-p.org)

Tracing shows

- rather poor efficiency (much waiting time) only in very early part of simulation (left)
- very high efficiency (almost no waiting time) in later parts of simulation (right)

Shared Memory Approach (OpenMP)

Observed performance:

- Very good strong (left) and weak (right) scaling
- Can be used for full memory or logarithmic memory
- Can be used for uniform or non-uniform primary meshes
- Same behaviour for corresponding approach on distributed memory systems (using MPI)

gns

Basic Problem Algorithmic Solution Strategies Parallelization

Thank you for your attention!

diethelm@gns-mbh.com k.diethelm@tu-braunschweig.de

