Fast numerical methods and mathematical analysis for space-fractional PDEs

Hong Wang

Department of Mathematics
University of South Carolina hwang@math.sc.edu

International Symposium on Fractional PDEs:
Theory, Numerics and Applications
Salve Regina University

Fickian and anomalous diffusion processes

- Diffusion processes
- describe the spreading of particles due to their random movements
- are ubiquitous in nature, natural and social sciences, and engineering
- Since it was proposed in 1855, the classical diffusion equation
- has been widely used in different disciplines
- has generated satisfactory results in various applications
- However, certain diffusion processes cannot be described by the Fickian diffusion equation. They exhibit anomalous diffusion behavior
- Photocopiers and laser printers played an important role in the study
- In groundwater contaminant transport, remediation
- is often not as effective as predicted by the classical diffusion equation
- may take decades or centuries longer than previously thought
- Increasingly more diffusion processes have been found to be non-Fickian (Metzler \& Klafter, Phys. Rep., 339:1-77, 2000)
- signaling of biological cells, anomalous electrodiffusion in nerve cells
- foraging behavior of animals, electrochemistry, physics, finance
- fluid and continuum mechanics, viscoelastic and viscoplastic flow

One-dimensional transient space-fractional diffusion equation

$$
\begin{gather*}
\frac{\partial u}{\partial t}-d_{+}(x, t) \frac{\partial^{\alpha} u}{\partial_{+} x^{\alpha}}-d_{-}(x, t) \frac{\partial^{\alpha} u}{\partial_{-} x^{\alpha}}=f, \quad x \in\left(x_{l}, x_{r}\right), t \in(0, T] \tag{1}\\
u\left(x_{l}, t\right)=u\left(x_{r}, t\right)=0, t \in[0, T], \quad u(x, 0)=u_{0}(x), x \in\left[x_{l}, x_{r}\right]
\end{gather*}
$$

- $1<\alpha<2$ is the order of the anomalous diffusion
- d_{+}and d_{-}are the left- and right-sided diffusivity coefficients
- The left- and right-sided fractional derivatives are defined by

$$
\begin{align*}
& \frac{\partial^{\alpha} u(x, t)}{\partial_{+} x^{\alpha}}:=\lim _{h \rightarrow 0^{+}} \frac{1}{h^{\alpha}} \sum_{k=0}^{\left\lfloor\left(x-x_{l}\right) / h\right\rfloor} g_{k}^{(\alpha)} u(x-k h, t), \tag{2}\\
& \frac{\partial^{\alpha} u(x, t)}{\partial_{-} x^{\alpha}}:=\lim _{h \rightarrow 0^{+}} \frac{1}{h^{\alpha}} \sum_{k=0}^{\left\lfloor\left(x_{r}-x\right) / h\right\rfloor} g_{k}^{(\alpha)} u(x+k h, t)
\end{align*}
$$

- $g_{k}^{(\alpha)}:=(-1)^{k}\binom{\alpha}{k}$ with $\binom{\alpha}{k}$ being the fractional binomial coefficients.

Fractional finite difference method

- The fully implicit finite difference method with a direct truncation of the series in (2) is unconditionally unstable (Meerschaert \& Tadjeran, J. Comput. Appl. Math., 2004)!
- They utilized a shifted Grünwald approximation to derive an unconditionally stable finite difference method

$$
\begin{equation*}
\frac{u_{i}^{m}-u_{i}^{m-1}}{\Delta t}-\frac{d_{i}^{+, m}}{h^{\alpha}} \sum_{k=0}^{i+1} g_{k}^{(\alpha)} u_{i-k+1}^{m}-\frac{d_{i}^{-, m}}{h^{\alpha}} \sum_{k=0}^{N-i+1} g_{k}^{(\alpha)} u_{i+k-1}^{m}=f_{i}^{m} \tag{3}
\end{equation*}
$$

- The finite difference method can be written in the matrix form

$$
\begin{equation*}
\left(I+\Delta t A^{m}\right) u^{m}=u^{m-1}+\Delta t f^{m} \tag{4}
\end{equation*}
$$

- A^{m} is a full (or dense) diagonally dominant M-matrix.
- The scheme is only of first-order accuracy in space and time!

Computational and memory cost of fractional numerical methods

- The stiffness matrix A^{m} is a dense or full matrix, traditionally
- The scheme was inverted in $O\left(N^{3}\right)$ of operations per time step
- The scheme was stored in $O\left(N^{2}\right)$ of memory
- Each time the mesh size and time step are refined by half
- The total number of unknowns increases 2 times for 1D problems
- The computational work increases $2^{3} \times 2=16$ times
- The memory increases by 4 times.
- The total number of unknowns increases 4 times for 2D problems
- The computational work increases $4^{3} \times 2=128$ times
- The memory increases by 16 times.
- The total number of unknowns increases 8 times for 3D problems
- The computational work increases $8^{3} \times 2=1024$ times
- The memory increases by 64 times.
- The significantly increased computational and memory cost of the numerical methods calls for the development of fast and faithful numerical methods with efficient memory storage.

A fast two-step operator-splitting finite difference method (W., K. Wang, \& Sircar, J. Comput. Phys., 2010)

- The development of a fast methods replies on the stiffness matrix

$$
A^{m}=\left[a_{i, j}^{m} / h^{\alpha}\right]_{i, j=1}^{N}
$$

$$
a_{i, j}^{m}= \begin{cases}-\left(d_{i}^{+, m}+d_{i}^{-, m}\right) g_{1}^{(\alpha)}>0, & j=i, \tag{5}\\ -\left(d_{i}^{+, m} g_{2}^{(\alpha)}+d_{-i}^{m+1} g_{0}^{(\alpha)}\right)<0, & j=i-1, \\ -\left(d_{i}^{+, m} g_{0}^{(\alpha)}+d_{i}^{-, m} g_{2}^{(\alpha)}\right)<0, & j=i+1, \\ -d_{i}^{+, m} g_{i-j+1}^{(\alpha)}<0, & j<i-1, \\ -d_{i}^{-, m} g_{j-i+1}^{(\alpha)}<0, & j>i+1\end{cases}
$$

(1) A^{m} is a full matrix
(2) A^{m} has a special structure
(3) The information A^{m} is sparse $(\approx 3 N)$.

- We utilize the following properties of $g_{k}^{(\alpha)}:=(-1)^{k}\binom{\alpha}{k}$ to conclude

$$
\begin{align*}
& g_{1}^{(\alpha)}=-\alpha<0, \quad 1=g_{0}^{(\alpha)}>g_{2}^{(\alpha)}>g_{3}^{(\alpha)}>\cdots>0, \\
& \sum_{k=0}^{\infty} g_{k}^{(\alpha)}=0, \quad \sum_{k=0}^{m} g_{k}^{(\alpha)}<0 \quad(m \geq 1), \tag{6}\\
& g_{k}^{(\alpha)}=\frac{\Gamma(k-\alpha)}{\Gamma(-\alpha) \Gamma(k+1)}=\frac{1}{\Gamma(-\alpha) k^{\alpha+1}}\left(1+O\left(\frac{1}{k}\right)\right)
\end{align*}
$$

- $a_{i, i \pm k} / a_{i, i}$ decay at a rate of $1 / k^{\alpha+1}$ as $k \rightarrow \infty$.

$$
\begin{align*}
a_{i, i}^{m} & -\sum_{j=1, j \neq i}^{N}\left|a_{i, j}^{m}\right| \\
& =-\left(d_{+, i}^{m}+d_{-, i}^{m}\right) g_{1}^{(\alpha)}-d_{i,+}^{m} \sum_{k=0, k \neq 1}^{i} g_{k}^{(\alpha)}-d_{-, i}^{m} \sum_{k=0, k \neq 1}^{N-i} g_{k}^{(\alpha)} \tag{7}\\
& >-\left(r_{+, i}^{m+1}+r_{-, i}^{m+1}\right) g_{1}^{(\alpha)}-\left(r_{i,+}^{m+1}+r_{-, i}^{m+1}\right) \sum_{k=0, k \neq 1}^{\infty} g_{k}^{(\alpha)}=0
\end{align*}
$$

- A^{m} is a strictly diagonally dominant M -matrix, so the scheme is monotone.

Based on the properties of the stiffness matrix A^{m} of the difference method

$$
\left(I+\Delta t A^{m}\right) u^{m}=u^{m-1}+\Delta t f^{m}
$$

- Split the stiffness matrix A^{m} as $A^{m}=A_{k}^{m}+A_{o}^{m}$ with the properties
- A_{k}^{m} contains the $2 k+1$ diagonals of A^{m} and is zero elsewhere
- A_{k}^{m} approximates A^{m} asymptotically as $N \rightarrow \infty$
- $A_{o}^{m} v$ can be computed efficiently for any vector v
- Derivation of a fast operator-splitting finite difference method
- Substitute the decomposition $A^{m}=A_{k}^{m}+A_{o}^{m}$ into (4).
- Move $A_{o}^{m} u^{m}$ to the right-hand side and approximate the u^{m} by a linear extrapolation of u^{m-2} and u^{m-1}.

$$
\begin{align*}
\left(I+\Delta t A_{k}^{m}\right) u^{m} & =\left(I-2 \Delta t A_{o}^{m}\right) u^{m-1}+\Delta t A_{o}^{m} u^{m-2}+\Delta t f^{m}, m \geq 1 \\
\left(I+\Delta t A_{k}^{1}\right) u^{1} & =\left(I-\Delta t A_{o}^{1}\right) u^{0}+\Delta t f^{1} \tag{8}
\end{align*}
$$

Lemma

Scheme (5) with $k=\log N$ has the approximation property

$$
\begin{equation*}
\frac{\left\|A_{o}^{m}\right\|_{\infty}}{\left\|A^{m}\right\|_{\infty}}=\frac{\left\|A^{m}-A_{k}^{m}\right\|_{\infty}}{\left\|A^{m}\right\|_{\infty}}=O\left(\log ^{-\alpha} N\right) \rightarrow 0 \quad \text { as } N \rightarrow \infty \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& \left\|A_{o}^{m}\right\|_{\infty}=h^{-\alpha} \max _{i=1, \ldots, N}\left(d_{i}^{-, m}+d_{i}^{+, m}\right) \sum_{l>k=\log N} g_{l+1}^{(\alpha)} \\
& \quad=h^{-\alpha} \max _{i=1, \ldots, N}\left(d_{i}^{-, m}+d_{i}^{+, m}\right) \sum_{l>k} \frac{1}{\Gamma(-\alpha) k^{\alpha+1}}\left(1+O\left(\frac{1}{k}\right)\right) \tag{10}\\
& \quad=h^{-\alpha} \max _{i=1, \ldots, N}\left(d_{i}^{-, m}+d_{i}^{+, m}\right) O\left(\frac{1}{k^{\alpha}}\right)
\end{align*}
$$

$$
\left\|A^{m}\right\|_{\infty}>\alpha h^{-\alpha} \max _{i=1, \ldots, N}\left(d_{i}^{-, m}+d_{i}^{+, m}\right)
$$

The ratio of the two preceding estimates gives the desired result.

Lemma

The stiffness matrix A^{m} can be stored in $3 N+2$ of memory.
A^{m} can be decomposed as

$$
\begin{equation*}
A^{m}=h^{-\alpha}\left(\operatorname{diag}\left(d_{i}^{+, m}\right)_{i=1}^{N} A_{L}^{\alpha, N}+\operatorname{diag}\left(d_{i}^{-, m}\right)_{i=1}^{N} A_{R}^{\alpha, N}\right) \tag{11}
\end{equation*}
$$

with $A_{L}^{\alpha, N}$ being defined below and $A_{R}^{\alpha, N}=\left(A_{L}^{\alpha, N}\right)^{T}$

$$
A_{L}^{\alpha, N}:=-\left[\begin{array}{cccccc}
g_{1}^{(\alpha)} & g_{0}^{(\alpha)} & 0 & \ldots & 0 & 0 \\
g_{2}^{(\alpha)} & g_{1}^{(\alpha)} & g_{0}^{(\alpha)} & \ddots & \ddots & 0 \\
\vdots & g_{2}^{(\alpha)} & g_{1}^{(\alpha)} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
g_{N-1}^{(\alpha)} & \ddots & \ddots & \ddots & g_{1}^{(\alpha)} & g_{0}^{(\alpha)} \\
g_{N}^{(\alpha)} & g_{N-1}^{(\alpha)} & \ldots & \ldots & g_{2}^{(\alpha)} & g_{1}^{(\alpha)}
\end{array}\right]
$$

- $h,\left(d_{i}^{+, m}\right)_{i=1}^{N},\left(d_{i}^{-, m}\right)_{i=1}^{N}$, and $A_{L}^{\alpha, N}$ contain $3 N+2$ parameters.

Lemma

$A^{m} v$ can be evaluated in $O(N \log N)$ operations for any vector v.
The matrix $A_{L}^{\alpha, N}$ is embedded into a $2 N \times 2 N$ circulant matrix $C_{2 N, L}$

$$
\begin{align*}
C_{2 N, L}:= & {\left[\begin{array}{cc}
A_{L}^{\alpha, N} & C_{L}^{\alpha, N} \\
C_{L}^{\alpha, N} & A_{L}^{\alpha, N}
\end{array}\right], } \\
C_{L}^{\alpha, N}:=- & u_{2 N}=\left[\begin{array}{c}
v \\
0
\end{array}\right], \tag{12}\\
& {\left[\begin{array}{cccccc}
0 & g_{N}^{(\alpha)} & \ldots & \ldots & g_{3}^{(\alpha)} & g_{2}^{(\alpha)} \\
0 & 0 & g_{N}^{(\alpha)} & \ldots & \ddots & g_{3}^{(\alpha)} \\
0 & 0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \ddots & 0 & g_{N}^{(\alpha)} \\
g_{0}^{(\alpha)} & 0 & \ldots & 0 & 0 & 0
\end{array}\right] . }
\end{align*}
$$

- We can similarly define another $2 N \times 2 N$ circulant matrix $C_{2 N, R}$
- A circulant matrix $C_{2 N}$ can be decomposed as

$$
\begin{equation*}
C_{2 N}=F_{2 N}^{-1} \operatorname{diag}\left(F_{2 N} c_{2 N}\right) F_{2 N} \tag{13}
\end{equation*}
$$

where $F_{2 N}$ is the $2 N \times 2 N$ discrete Fourier transform matrix and $c_{2 N}$ is the first column vector of $C_{2 N}$.

- $F_{2 N} u_{2 N}$ can be carried out in $O(N \log N)$ operations via FFT.
- $C_{2 N} u_{2 N}$ can be evaluated in $O(N \log N)$ operations.
- $A_{L}^{\alpha, N} u$ and $A_{R}^{\alpha, N} u$ can be evaluated in $O(N \log N)$ operations.
- $A^{m} u$ can be evaluated in $O(N \log N)$ operations.
- The right-hand side of the finite difference method (5) can be evaluated in $O(N \log N)$ operations!

Theorem

The fast finite difference method (5) can be inverted in $O\left(N \log ^{2} N\right)$ of operations per time step using $O(N \log N)$ of memory.

- Remarks on the fast finite difference method
- It is not lossy, since no compression is involved.
- Stability and convergence of the method yet to be proved
- A fast conjugate gradient iterative solver can be used to solve the original (single-step) finite difference method, which has proved stability and convergence.
- Development of other fast methods
- A fast Crank-Nicolson scheme of similar computational and storage cost (Basu \& W., Int'I J. Numer. Anal. Modeling, 2012). Crank-Nicolson scheme with a Richardson extrapolation in space was originally developed by Tadjeran et al. to recover second-order accuracy in space and time (J. Comput. Phys., 2006).
- A Eulerian-Lagrangian method for space-fractional advection-diffusion equation (K. Wang \& W., Adv. Water Resources, 2011)
- Finite and finite volume methods (W. \& Du, J. Comput. Phys., 2013).

Multidimensional transient space-fractional diffusion equations

$$
\begin{gathered}
\frac{\partial u(x, y, t)}{\partial t}-d_{+}(x, y, t) \frac{\partial^{\alpha} u(x, y, t)}{\partial_{+} x^{\alpha}}-d_{-}(x, y, t) \frac{\partial^{\alpha} u(x, y, t)}{\partial_{-} x^{\alpha}} \\
-e_{+}(x, y, t) \frac{\partial^{\beta} u(x, y, t)}{\partial_{+} y^{\beta}}-e_{-}(x, y, t) \frac{\partial^{\beta} u(x, y, t)}{\partial_{-} y^{\beta}}=f(x, y, t), \\
(x, y) \in \Omega, \quad 0<t \leq T, \\
u(x, y, t)=u_{D}(x, y, t), \quad(x, y) \in \partial \Omega, \quad t \in[0, T] \\
u(x, y, 0)=u_{o}(x, y), \quad(x, y) \in \bar{\Omega} .
\end{gathered}
$$

Here $\Omega:=\left(x_{l}, x_{r}\right) \times\left(y_{l}, y_{r}\right)$ is a rectangular domain. $1<\alpha, \beta<2$.

A two-dimensional finite difference method and its ADI scheme (Meerschaert et al., J. Comput. Phys., 2006)

$$
\begin{gather*}
\frac{u_{i, j}^{m}-u_{i, j}^{m-1}}{\Delta t}-\frac{d_{i, j}^{+, m}}{h_{1}^{\alpha}} \sum_{k=0}^{i+1} g_{k}^{(\alpha)} u_{i-k+1, j}^{m}-\frac{d_{i, j}^{-, m}}{h_{1}^{\alpha}} \sum_{k=0}^{N_{1}-i+2} g_{k}^{(\alpha)} u_{i+k-1, j}^{m} \\
-\frac{e_{i, j}^{+, m}}{h_{2}^{\beta}} \sum_{l=0}^{j+1} g_{j}^{(\beta)} u_{i, j-l+1}^{m}-\frac{e_{i, j}^{-, m}}{h_{2}^{\beta}} \sum_{k=0}^{N_{2}-i+2} g_{l}^{(\beta)} u_{i, j+l-1}^{m}=f_{i, j}^{m}, \tag{15}\\
1 \leq i \leq N_{1}, \quad 1 \leq j \leq N_{2}, \quad m=1,2, \ldots, M .
\end{gather*}
$$

Let $N=N_{1} N_{2}$. Introduce N-dimensional vectors u^{m} and f^{m} defined by

$$
\begin{align*}
u^{m} & :=\left[u_{1,1}^{m}, \cdots, u_{N_{1}, 1}^{m}, u_{1,2}^{m}, \cdots, u_{N_{1}, 2}^{m}, \cdots, u_{1, N_{2}}^{m}, \cdots, u_{N_{1}, N_{2}}^{m}\right]^{T}, \\
f^{m} & :=\left[f_{1,1}^{m}, \cdots, f_{N_{1}, 1}^{m}, f_{1,2}^{m}, \cdots, f_{N_{1}, 2}^{m}, \cdots, f_{1, N_{2}}^{m}, \cdots, f_{N_{1}, N_{2}}^{m}\right]^{T} . \tag{16}
\end{align*}
$$

The finite difference method (15) can be expressed in the matrix form

$$
\begin{equation*}
\left(I+\Delta t A^{m}\right) u^{m}=u^{m-1}+\Delta t f^{m} \tag{17}
\end{equation*}
$$

For $m=1,2, \ldots, M$, at time step t^{m} :
(1) solve the following equations in the x-direction (for each fixed y_{j})

$$
\begin{align*}
u_{i, j}^{m, *} & -\frac{d_{i, j}^{+, m} \Delta t}{h_{1}^{\alpha}} \sum_{k=0}^{i+1} g_{k}^{(\alpha)} u_{i-k+1, j}^{m, *}-\frac{d_{i, j}^{-, m}}{h_{1}^{\alpha}} \sum_{k=0}^{N_{1}-i+2} g_{k}^{(\alpha)} u_{i+k-1, j}^{m, *} \tag{18}\\
& =u_{i, j}^{m-1}+\Delta t f_{i, j}^{m}, \quad 1 \leq i \leq N_{1}, \quad 1 \leq j \leq N_{2}
\end{align*}
$$

(2) solve the following equations in the y-direction (for each fixed x_{i})

$$
\begin{gather*}
u_{i, j}^{m}-\frac{e_{i, j}^{+, m} \Delta t}{h_{2}^{\beta}} \sum_{l=0}^{j+1} g_{j}^{(\beta)} u_{i, j-l+1}^{m}-\frac{e_{i, j}^{-, m} \Delta t}{h_{2}^{\beta}} \sum_{k=0}^{N_{2}-i+2} g_{l}^{(\beta)} u_{i, j+l-1}^{m} \tag{19}\\
=u_{i, j}^{m, *}, \quad 1 \leq j \leq N_{2}, \quad 1 \leq i \leq N_{1}
\end{gather*}
$$

Let $u_{j}^{m}:=\left[u_{1, j}^{m}, u_{2, j}^{m}, \cdots, u_{N_{1}, j}^{m}\right]^{T}$ and $f_{j}^{m}:=\left[f_{1, j}^{m}, \cdots, f_{N_{1}, j}^{m}\right]^{T}$. Then (18) are written as fully decoupled one-dimensional systems

$$
\begin{equation*}
\left(I_{N_{1}}+\Delta t A_{j}^{m, x}\right) u_{j}^{m, *}=u_{j}^{m-1}+\Delta t f_{j}^{m}, \quad 1 \leq j \leq N_{2} \tag{20}
\end{equation*}
$$

Let $v_{i}^{m}:=\left[u_{i, 1}^{m}, u_{i, 2}^{m}, \cdots, u_{i, N_{2}}^{m}\right]^{T}$ and $v_{i}^{m, *}:=\left[u_{i, 1}^{m, *}, u_{i, 2}^{m, *}, \cdots, u_{i, N_{2}}^{m, *}\right]^{T}$ for $i=1, \ldots, N_{1}$ be the rearrangements of u_{j}^{m} and $u_{j}^{m, *}$ for $j=1, \ldots, N_{2}$. Then (21) can be rewritten as fully decoupled one-dimensional systems

$$
\begin{equation*}
\left(I_{N_{2}}+\Delta t B_{i}^{m, y}\right) v_{i}^{m}=v_{i}^{m, *}, \quad 1 \leq i \leq N_{1} \tag{21}
\end{equation*}
$$

- The ADI approach enables a direct application of the fast 1D solver to two- and three-dimensional space-fractional diffusion equations.
- The ADI approach does not need a direct decomposition of A^{m}.

A fast operator-splitting multistep ADI finite difference method

 (W. \& K. Wang, J. Comput. Phys., 2011)
Theorem

The fast ADI method can be performed in $O\left(N \log ^{2} N\right)$ of operations per time step and requires $O(N \log N)$ of memory to store for two- and three-dimensional space-fractional diffusion equations.

An efficient storage of the fast ADI method requires the storage of the coefficient matrices $A_{j}^{m, x}$ for $j=1, \ldots, N_{2}$ and $B_{i}^{m, y}$ for $i=1, \ldots, N_{1}$. This requires $N_{2} O\left(N_{1}\right)+N_{1} O\left(N_{2}\right)=O(N)$ of memory.
All the systems (20) can be solved in $N_{2} O\left(N_{1} \log ^{2} N_{1}\right)=O\left(N \log ^{2} N\right)$ of operations, and those in (21) can be solved in $N_{1} O\left(N_{2} \log ^{2} N_{2}\right)=$ $O\left(N \log ^{2} N\right)$ of operations.

- The same result holds true for 3D problems.
- No multiple substeps needed if a conjugate-gradient type of iterative solver is used to solve the one-dimensional systems.

Two-dimensional numerical experiments

- In the numerical experiments the data are given as follows
- $d_{+}(x, y, t)=d_{-}(x, y, t)=e_{+}(x, y, t)=e_{-}(x, y, t)=D=0.005$
- $f=0, \alpha=\beta=1.8, \Omega=(-1,1) \times(-1,1),[0, T]=[0,1]$.
- The true solution is the fundamental solution to (14) expressed via the inverse Fourier transform

$$
\begin{align*}
u(x, y, t)= & \frac{1}{\pi} \int_{0}^{\infty} e^{-2 D\left|\cos \left(\frac{\pi \alpha}{2}\right)\right|(t+0.5) \xi^{\alpha}} \cos (\xi x) d \xi \\
& \times \frac{1}{\pi} \int_{0}^{\infty} e^{-2 D\left|\cos \left(\frac{\pi \beta}{2}\right)\right|(t+0.5) \eta^{\beta}} \cos (\eta y) d \eta \tag{22}
\end{align*}
$$

- The initial condition $u_{o}(x, y)$ is chosen to be $u(x, y, 0)$.
- In the numerical experiments the Meerschaert \& Tadjeran scheme and the fast ADI method were implemented using Matlab.

$h=\Delta t$	$\left\\|u_{F D}-u\right\\|_{L^{1}}$	$\left\\|u_{F D}-u\right\\|_{L^{2}}$	$\left\\|u_{F D}-u\right\\|_{L^{\infty}}$
2^{-4}	3.0281×10^{-2}	7.0346×10^{-2}	5.7095×10^{-1}
2^{-5}	9.8231×10^{-3}	2.1051×10^{-2}	1.6409×10^{-1}
2^{-6}	3.9081×10^{-3}	7.3313×10^{-3}	5.5939×10^{-2}
2^{-7}	1.9647×10^{-3}	3.0910×10^{-3}	2.1663×10^{-2}
	$\left\\|u_{F F D}-u\right\\|_{L^{1}}$	$\left\\|u_{F F D}-u\right\\|_{L^{2}}$	$\left\\|u_{F F D}-u\right\\|_{L^{\infty}}$
2^{-4}	2.8115×10^{-2}	6.1891×10^{-2}	4.8644×10^{-1}
2^{-5}	8.4583×10^{-3}	1.6793×10^{-2}	1.2472×10^{-1}
2^{-6}	3.1232×10^{-3}	5.2155×10^{-3}	3.6594×10^{-2}
2^{-7}	1.5340×10^{-3}	2.1439×10^{-3}	1.2013×10^{-2}

Table : The (normalized) L^{1}, L^{2}, and L^{∞} errors of the fast ADI (FFD) method and traditional finite difference (FD) method with Gaussian elimination

$h=\Delta t$	CPU of finite difference (FD) with Gaussian elimination
2^{-4}	49 s
2^{-5}	$8.07 \times 10^{2} \mathrm{~s}=13 \mathrm{~m} 27 \mathrm{~s}$
2^{-6}	$6.43 \times 10^{4} \mathrm{~s}=17 \mathrm{~h} 51 \mathrm{~m}$
2^{-7}	$5.90 \times 10^{6} \mathrm{~s}=1639 \mathrm{~h} 42 \mathrm{~m}=2$ month and 8 days
	CPU of the fast ADI finite difference method (FFD)
2^{-4}	7.4 s
2^{-5}	$63.6 \mathrm{~s}=1 \mathrm{~m} 4 \mathrm{~s}$
2^{-6}	$5.88 \times 10^{2} \mathrm{~s}=9 \mathrm{~m} 48 \mathrm{~s}$
2^{-7}	$5.22 \times 10^{3} \mathrm{~s}=1 \mathrm{~h} 27 \mathrm{~m}$

Table: The consumed CPU of the fast ADI (FFD) method and the traditional finite difference (FD) method with Gaussian elimination.

Strength and weakness of ADI methods

- Strength: easy to implement
- Numerical experiments show the utility of ADI methods.
- ADI methods reduce the solution of multidimensional space-fractional diffusion equations to one-dimensional systems.
- Avoid the relatively complex multidimensional coefficient matrix A^{m}.
- Weakness: restrictive
- The ADI methods for space-fractional diffusion equations were proved to be unconditionally stable and convergent if the finite difference operators in the x - and y-directions commute.
- This condition is satisfied if $d_{ \pm}(x, y, t)$ are independent of y and $e_{ \pm}(x, y, t)$ are independent of x.

A steady-state space-fractional diffusion equation in conservative form

$$
\begin{gather*}
-D\left(K(x)\left(\theta_{0} D_{x}^{-\beta}+(1-\theta){ }_{x} D_{1}^{-\beta}\right) D u\right)=f(x), \quad x \in(0,1), \tag{23}\\
u(0)=u(1)=0 .
\end{gather*}
$$

- $2-\beta$ with $0<\beta<1$ represents the order of anomalous diffusion
- K is the diffusivity coefficient, $0 \leq \theta \leq 1$ indicates the relative weight of forward versus backward transition probability of the particles
- f is the source and sink term
- ${ }_{0} D_{x}^{-\beta} u(x)$ and ${ }_{x} D_{1}^{-\beta} u(x)$ are the left- and right-fractional integrals

$$
\left\{\begin{align*}
{ }_{0} D_{x}^{-\beta} u(x) & :=\frac{1}{\Gamma(\beta)} \int_{0}^{x}(x-s)^{\beta-1} u(s) d s \tag{24}\\
{ }_{x} D_{1}^{-\beta} u(x) & :=\frac{1}{\Gamma(\beta)} \int_{x}^{1}(s-x)^{\beta-1} u(s) d s
\end{align*}\right.
$$

$\Gamma(\cdot)$ is the Gamma function

Analysis of an FDE with constant diffusivity (Ervin \& Roop, NMPDE 2005)

- Galerkin formulation: given $f \in H^{-\left(1-\frac{\beta}{2}\right)}(0,1)$, seek $u \in H_{0}^{1-\frac{\beta}{2}}(0,1)$

$$
\begin{equation*}
B(u, v)=\langle f, v\rangle, \quad \forall v \in H_{0}^{1-\frac{\beta}{2}}(0,1) . \tag{25}
\end{equation*}
$$

Here $B: H_{0}^{1-\frac{\beta}{2}}(0,1) \times H_{0}^{1-\frac{\beta}{2}}(0,1) \rightarrow \mathbb{R}$ is defined to be

$$
\begin{aligned}
B(u, v): & : \theta K\left\langle{ }_{0} D_{x}^{-\beta} D u, D v\right\rangle+(1-\theta) K\left\langle{ }_{x} D_{1}^{-\beta} D u, D v\right\rangle \\
= & \theta K\left({ }_{0} D_{x}^{1-\beta / 2} u,{ }_{x} D_{1}^{1-\beta / 2} D v\right)_{L^{2}(0,1)} \\
& +(1-\theta) K\left({ }_{x} D_{1}^{1-\beta / 2} u,{ }_{0} D_{x}^{1-\beta / 2} v\right)_{L^{2}(0,1)}
\end{aligned}
$$

$\langle\cdot, \cdot\rangle$ is the duality pair between $H^{-\left(1-\frac{\beta}{2}\right)}(0,1)$ and $H_{0}^{1-\frac{\beta}{2}}(0,1)$.

- For $\theta=1 / 2, B(\cdot, \cdot)$ is symmetric. This problem reduces to fractional Laplacian which is well studied in harmonic analysis.

Analysis of an FDE with constant diffusivity (continued)

- The coercivity of $B(\cdot, \cdot)$ is derived as follows

$$
\begin{aligned}
B(u, u) & =K\left({ }_{0} D_{x}^{1-\beta / 2} u,{ }_{x} D_{1}^{1-\beta / 2} u\right)_{L^{2}(0,1)} \\
& =-\cos ((1-\beta / 2) \pi) K|u|_{H^{1-\beta / 2}(0,1)}^{2} \\
& =\cos (\beta \pi / 2) K|u|_{H^{1-\beta / 2}(0,1)}^{2}
\end{aligned}
$$

Theorem

$B(\cdot, \cdot)$ is coercive and continuous on $H_{0}^{1-\frac{\beta}{2}}(0,1) \times H_{0}^{1-\frac{\beta}{2}}(0,1)$. Hence, the Galerkin weak formulation (25) has a unique solution. Moreover,

$$
\|u\|_{H^{1-\frac{\beta}{2}}(0,1)} \leq(1 / \alpha)\|f\|_{H^{-\left(1-\frac{\beta}{2}\right)}(0,1)} .
$$

Galerkin finite element methods and their error estimates

- Let $S_{h}(0,1) \subset H_{0}^{1-\frac{\beta}{2}}(0,1)$ be the finite element space of piecewise polynomials of degree $m-1$. Find $u_{h} \in S_{h}(0,1)$ such that

$$
B\left(u_{h}, v_{h}\right)=\left\langle f, v_{h}\right\rangle, \quad \forall v_{h} \in S_{h}(0,1) .
$$

- The optimal-order error estimate holds for $u \in H^{m}(0,1) \cap H_{0}^{1-\frac{\beta}{2}}(0,1)$

$$
\left\|u_{h}-u\right\|_{L^{2}(0,1)}+h^{1-\frac{\beta}{2}}\left\|u_{h}-u\right\|_{H^{1-\frac{\beta}{2}}(0,1)} \leq C h^{m}\|u\|_{H^{m}(0,1)} .
$$

- The analysis was extended to DG and spectral methods.
- All of the analysis requires K to be positive constant.

Extensions to variable-coefficient problems

- Variable-coefficient models were derived in applications. Can the previous analysis be extended to cover these problems?
- In the context of variable diffusivity K

$$
\begin{aligned}
B(u, v) & =\theta\left\langle K_{0} D_{x}^{-\beta} D u, D v\right\rangle+(1-\theta)\left\langle K_{x} D_{1}^{-\beta} D u, D v\right\rangle \\
& \neq \theta\left\langle K D u,{ }_{x} D_{1}^{-\beta} D v\right\rangle+(1-\theta)\left\langle K D u,{ }_{0} D_{x}^{-\beta} D v\right\rangle \\
& \neq\left(K_{0} D_{x}^{-\beta / 2} D u,{ }_{x} D_{1}^{-\beta / 2} D v\right)_{L^{2}(0,1)}
\end{aligned}
$$

- Each corresponds to a fractional equation of a different form

$$
-D\left(K D^{1-\beta} u\right) \neq-D^{1-\beta}(K D u) \neq-D^{1-\beta / 2}\left(K D^{1-\beta / 2} u\right)
$$

- The last form seems to be mathematically preferred, but still cannot guarantee its coercivity

$$
\begin{aligned}
& \left(K_{0} D_{x}^{-\beta / 2} D u,{ }_{x} D_{1}^{-\beta / 2} D u\right)_{L^{2}(0,1)} \\
& \quad \nsupseteq K_{\min }\left({ }_{0} D_{x}^{-\beta / 2} D u,{ }_{x} D_{1}^{-\beta / 2} D u\right)_{L^{2}(0,1)} \\
& \quad=\cos (\beta \pi / 2) K_{\min }|u|_{H^{1-\beta / 2}(0,1)}^{2} .
\end{aligned}
$$

A counterexample

Lemma

There exist a $K(x)$ consisting of two positive constants and a function $w \in H_{0}^{1-\frac{\beta}{2}}(0,1)$ such that $B(w, w)<0$.

Let $K(x)$ and $w \in H_{0}^{1}(0,1) \subset H_{0}^{1-\frac{\beta}{2}}(0,1)$ be defined by

$$
\begin{gathered}
K(x):= \begin{cases}K_{l}, & x \in(0,1 / 2), \\
1, & x \in(1 / 2,1) .\end{cases} \\
w(x):= \begin{cases}2 x, & x \in(0,1 / 2], \\
2(1-x), & x \in[1 / 2,1) .\end{cases}
\end{gathered}
$$

Direct calculation gives

$$
{ }_{0} D_{x}^{1-\beta} w(x)= \begin{cases}\frac{2 x^{\beta}}{\Gamma(\beta+1)}, & x \in(0,1 / 2), \\ \frac{2\left(x^{\beta}-2(x-1 / 2)^{\beta}\right)}{\Gamma(\beta+1)}, & x \in(1 / 2,1) .\end{cases}
$$

Then we have

$$
B(w, w)=\frac{2^{1-\beta}}{\Gamma(\beta+2)}\left(K_{l}-\left(2^{\beta+1}-3\right)\right) .
$$

Since $0<\log _{2} 3-1<1$, choose $\log _{2} 3-1<\beta<1$ so that $2^{\beta+1}-3>0$. Then we select $K_{l}>0$ sufficiently small such that $K_{l}-\left(2^{\beta+1}-3\right)<0$. For such K and w, we have $B(w, w)<0$.

Characterization of the solution to fractional equations

- Consider a one-sided problem (problem (23) with $\theta=1$)

$$
\begin{equation*}
-D\left(K(x){ }_{0} D_{x}^{-\beta} D u\right)=f(x), \quad x \in(0,1), \quad u(0)=u(1)=0 . \tag{26}
\end{equation*}
$$

- mass balance of a fractional Darcy's law, physically reasonable

Theorem

Assume that $K \in C^{1, \alpha}[0,1]$ and $f \in C^{\alpha}[0,1]$. Then u is the unique solution to (26) if and only if it can be expressed as

$$
\begin{equation*}
u={ }_{0} D_{x}^{\beta} w_{f}-{ }_{0} D_{1}^{\beta} w_{f}\left({ }_{0} D_{1}^{\beta} w_{b}\right)^{-1}{ }_{0} D_{x}^{\beta} w_{b}, \tag{27}
\end{equation*}
$$

where w_{f} and w_{b} are the solutions to the following problems

$$
\begin{array}{lll}
-D\left(K(x) D w_{f}\right)=f, & x \in(0,1) ; & w_{f}(0)=w_{f}(1)=0 \\
-D\left(K(x) D w_{b}\right)=0, & x \in(0,1) ; & w_{b}(0)=0, w_{b}(1)=1 \tag{28}
\end{array}
$$

A Petrov-Galerkin weak formulation

- For a constant diffusivity coefficient K, the Galerkin formulation is coercive on the product space $H_{0}^{1-\beta / 2}(0,1) \times H_{0}^{1-\beta / 2}(0,1)$.
- In the context of a variable diffusivity coefficient K
- The Galerkin formulation is not coercive on any product space $H \times H$.
- A physically reasonable equation is expressed as the divergence of a fractional diffusive flux of order $1-\beta$.
- We propose a Petrov-Galerkin formulation imposed on $H_{0}^{1-\beta}(0,1) \times H_{0}^{1}(0,1)$: Seek $u \in H_{0}^{1-\beta}(0,1)$ such that

$$
\begin{equation*}
A(u, v):=\int_{0}^{1} K(x){ }_{0} D_{x}^{1-\beta} u D v d x=\langle f, v\rangle, \quad \forall v \in H_{0}^{1}(0,1) \tag{29}
\end{equation*}
$$

- Even for constant K, the Petrov-Galerkin formulation is different from the Galerkin formulation
- The latter is defined on $H_{0}^{1-\beta / 2}(0,1) \times H_{0}^{1-\beta / 2}(0,1)$ for any given

$$
f \in H^{-(1-\beta / 2)}(0,1)
$$

- The former is defined on $H_{0}^{1-\beta}(0,1) \times H_{0}^{1}(0,1)$ for any given

$$
f \in H^{-1}(0,1) .
$$

Weak coercivity and wellposedness of the Petrov-Galerkin formulation

Theorem

Assume $0 \leq \beta<1 / 2$ and $0<K_{\min } \leq K \leq K_{\max }<\infty$. The bilinear form $A(w, v)$ is weakly coercive

$$
\begin{aligned}
& \inf _{w \in H_{0}^{1-\beta}(0,1)} \sup _{v \in H_{0}^{1}(0,1)} \frac{A(w, v)}{\|w\|_{H^{1-\beta}(0,1)}\|v\|_{H^{1}(0,1)}} \geq \gamma(\beta)>0 \\
& \sup _{w \in H_{0}^{1-\beta}(0,1)} A(w, v)>0 \quad \forall v \in H_{0}^{1}(0,1) \backslash\{0\} .
\end{aligned}
$$

Thus, the Petrov-Galerkin formulation (29) has a unique weak solution $u \in H_{0}^{1-\beta}(0,1)$. Furthermore,

$$
\begin{equation*}
\|u\|_{H^{1-\beta}(0,1)} \leq \frac{K_{\max }}{\gamma}\|f\|_{H^{-1}(0,1)} . \tag{31}
\end{equation*}
$$

Thank You!

