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Fickian and anomalous diffusion processes

Diffusion processes

describe the spreading of particles due to their random movements
are ubiquitous in nature, natural and social sciences, and engineering

Since it was proposed in 1855, the classical diffusion equation

has been widely used in different disciplines
has generated satisfactory results in various applications

However, certain diffusion processes cannot be described by the
Fickian diffusion equation. They exhibit anomalous diffusion behavior

Photocopiers and laser printers played an important role in the study
In groundwater contaminant transport, remediation

is often not as effective as predicted by the classical diffusion equation
may take decades or centuries longer than previously thought

Increasingly more diffusion processes have been found to be
non-Fickian (Metzler & Klafter, Phys. Rep., 339:1-77, 2000)

signaling of biological cells, anomalous electrodiffusion in nerve cells
foraging behavior of animals, electrochemistry, physics, finance
fluid and continuum mechanics, viscoelastic and viscoplastic flow
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One-dimensional transient space-fractional diffusion equation

∂u

∂t
− d+(x, t)

∂αu

∂+xα
− d−(x, t)

∂αu

∂−xα
= f, x ∈ (xl, xr), t ∈ (0, T ],

u(xl, t) = u(xr, t) = 0, t ∈ [0, T ], u(x, 0) = u0(x), x ∈ [xl, xr].

(1)

1 < α < 2 is the order of the anomalous diffusion

d+ and d− are the left- and right-sided diffusivity coefficients

The left- and right-sided fractional derivatives are defined by

∂αu(x, t)

∂+xα
:= lim

h→0+

1

hα

b(x−xl)/hc∑
k=0

g
(α)
k u(x− kh, t),

∂αu(x, t)

∂−x
α := lim

h→0+

1

hα

b(xr−x)/hc∑
k=0

g
(α)
k u(x+ kh, t)

(2)

g
(α)
k := (−1)k

(
α
k

)
with

(
α
k

)
being the fractional binomial coefficients.
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Fractional finite difference method

The fully implicit finite difference method with a direct truncation of
the series in (2) is unconditionally unstable (Meerschaert & Tadjeran,
J. Comput. Appl. Math., 2004)!

They utilized a shifted Grünwald approximation to derive an
unconditionally stable finite difference method

umi − u
m−1
i

∆t
−
d+,mi

hα

i+1∑
k=0

g
(α)
k umi−k+1 −

d−,mi

hα

N−i+1∑
k=0

g
(α)
k umi+k−1 = fmi (3)

The finite difference method can be written in the matrix form

(I + ∆tAm)um = um−1 + ∆tfm. (4)

Am is a full (or dense) diagonally dominant M-matrix.

The scheme is only of first-order accuracy in space and time!
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Computational and memory cost of fractional numerical methods

The stiffness matrix Am is a dense or full matrix, traditionally
The scheme was inverted in O(N3) of operations per time step
The scheme was stored in O(N2) of memory

Each time the mesh size and time step are refined by half

The total number of unknowns increases 2 times for 1D problems

The computational work increases 23 × 2 = 16 times
The memory increases by 4 times.

The total number of unknowns increases 4 times for 2D problems

The computational work increases 43 × 2 = 128 times
The memory increases by 16 times.

The total number of unknowns increases 8 times for 3D problems

The computational work increases 83 × 2 = 1024 times
The memory increases by 64 times.

The significantly increased computational and memory cost of the
numerical methods calls for the development of fast and faithful
numerical methods with efficient memory storage.

Hong Wang, University of South Carolina (Department of Mathematics University of South Carolina hwang@math.sc.edu)Fractional PDEs, methods and analysis June 3-5, 2013 5 / 34



A fast two-step operator-splitting finite difference method

(W., K. Wang, & Sircar, J. Comput. Phys., 2010)

The development of a fast methods replies on the stiffness matrix
Am = [ami,j/h

α]Ni,j=1

ami,j =



−(d+,mi + d−,mi )g
(α)
1 > 0, j = i,

−(d+,mi g
(α)
2 + dm+1

−,i g
(α)
0 ) < 0, j = i− 1,

−(d+,mi g
(α)
0 + d−,mi g

(α)
2 ) < 0, j = i+ 1,

−d+,mi g
(α)
i−j+1 < 0, j < i− 1,

−d−,mi g
(α)
j−i+1 < 0, j > i+ 1.

(5)

1 Am is a full matrix

2 Am has a special structure

3 The information Am is sparse (≈ 3N).
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We utilize the following properties of g
(α)
k := (−1)k

(
α
k

)
to conclude

g
(α)
1 = −α < 0, 1 = g

(α)
0 > g

(α)
2 > g

(α)
3 > · · · > 0,

∞∑
k=0

g
(α)
k = 0,

m∑
k=0

g
(α)
k < 0 (m ≥ 1),

g
(α)
k =

Γ(k − α)

Γ(−α)Γ(k + 1)
=

1

Γ(−α)kα+1

(
1 +O

(1

k

)) (6)

ai,i±k/ai,i decay at a rate of 1/kα+1 as k →∞.

ami,i −
N∑

j=1,j 6=i

|ami,j |

= −(dm+,i + dm−,i)g
(α)
1 − dmi,+

i∑
k=0,k 6=1

g
(α)
k − dm−,i

N−i∑
k=0,k 6=1

g
(α)
k

> −(rm+1
+,i + rm+1

−,i )g
(α)
1 − (rm+1

i,+ + rm+1
−,i )

∞∑
k=0,k 6=1

g
(α)
k = 0.

(7)

Am is a strictly diagonally dominant M-matrix, so the scheme is
monotone.
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Based on the properties of the stiffness matrix Am of the difference method

(I + ∆tAm)um = um−1 + ∆tfm,

Split the stiffness matrix Am as Am = Amk + Amo with the properties

Amk contains the 2k + 1 diagonals of Am and is zero elsewhere
Amk approximates Am asymptotically as N →∞
Amo v can be computed efficiently for any vector v

Derivation of a fast operator-splitting finite difference method

Substitute the decomposition Am = Amk + Amo into (4).
Move Amo um to the right-hand side and approximate the um by
a linear extrapolation of um−2 and um−1.

(I + ∆tAmk )um = (I− 2∆tAmo )um−1 + ∆tAmo um−2 + ∆tfm, m ≥ 1,

(I + ∆tA1
k)u1 = (I−∆tA1

o)u0 + ∆tf 1.
(8)
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Lemma

Scheme (5) with k = logN has the approximation property∥∥Amo
∥∥
∞∥∥Am
∥∥
∞

=

∥∥Am − Amk
∥∥
∞∥∥Am

∥∥
∞

= O(log−αN)→ 0 as N →∞. (9)

∥∥Amo
∥∥
∞ = h−α max

i=1,...,N

(
d−,mi + d+,mi

) ∑
l>k=logN

g
(α)
l+1

= h−α max
i=1,...,N

(
d−,mi + d+,mi

)∑
l>k

1

Γ(−α)kα+1

(
1 +O

(1

k

))
= h−α max

i=1,...,N

(
d−,mi + d+,mi

)
O
( 1

kα

)
,

∥∥Am
∥∥
∞ > αh−α max

i=1,...,N

(
d−,mi + d+,mi

)
.

(10)

The ratio of the two preceding estimates gives the desired result.
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Lemma

The stiffness matrix Am can be stored in 3N + 2 of memory.

Am can be decomposed as

Am = h−α
(
diag(d+,mi )Ni=1Aα,NL + diag(d−,mi )Ni=1Aα,NR

)
(11)

with Aα,NL being defined below and Aα,NR = (Aα,NL )T

Aα,NL := −



g
(α)
1 g

(α)
0 0 . . . 0 0

g
(α)
2 g

(α)
1 g

(α)
0

. . .
. . . 0

... g
(α)
2 g

(α)
1

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

g
(α)
N−1

. . .
. . .

. . . g
(α)
1 g

(α)
0

g
(α)
N g

(α)
N−1 . . . . . . g

(α)
2 g

(α)
1


.

h, (d+,mi )Ni=1, (d−,mi )Ni=1, and Aα,NL contain 3N + 2 parameters.
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Lemma

Amv can be evaluated in O(N logN) operations for any vector v.

The matrix Aα,NL is embedded into a 2N × 2N circulant matrix C2N,L

C2N,L :=

[
Aα,NL Cα,NL

Cα,NL Aα,NL

]
, u2N =

[
v

0

]
,

Cα,NL := −



0 g
(α)
N . . . . . . g

(α)
3 g

(α)
2

0 0 g
(α)
N . . .

. . . g
(α)
3

0 0 0
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

0 . . . 0
. . . 0 g

(α)
N

g
(α)
0 0 . . . 0 0 0


.

(12)
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We can similarly define another 2N × 2N circulant matrix C2N,R

A circulant matrix C2N can be decomposed as

C2N = F−12N diag(F2Nc2N ) F2N (13)

where F2N is the 2N × 2N discrete Fourier transform matrix and c2N
is the first column vector of C2N .

F2Nu2N can be carried out in O(N logN) operations via FFT.

C2Nu2N can be evaluated in O(N logN) operations.

Aα,NL u and Aα,NR u can be evaluated in O(N logN) operations.

Amu can be evaluated in O(N logN) operations.

The right-hand side of the finite difference method (5) can be
evaluated in O(N logN) operations!

Theorem

The fast finite difference method (5) can be inverted in O(N log2N)
of operations per time step using O(N logN) of memory.
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Remarks on the fast finite difference method

It is not lossy, since no compression is involved.
Stability and convergence of the method yet to be proved
A fast conjugate gradient iterative solver can be used to solve the
original (single-step) finite difference method, which has proved
stability and convergence.

Development of other fast methods

A fast Crank-Nicolson scheme of similar computational and storage
cost (Basu & W., Int’l J. Numer. Anal. Modeling, 2012).
Crank-Nicolson scheme with a Richardson extrapolation in space
was originally developed by Tadjeran et al. to recover second-order
accuracy in space and time (J. Comput. Phys., 2006).
A Eulerian-Lagrangian method for space-fractional advection-diffusion
equation (K. Wang & W., Adv. Water Resources, 2011)
Finite and finite volume methods (W. & Du, J. Comput. Phys., 2013).
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Multidimensional transient space-fractional diffusion equations

∂u(x, y, t)

∂t
− d+(x, y, t)

∂αu(x, y, t)

∂+xα
− d−(x, y, t)

∂αu(x, y, t)

∂−xα

−e+(x, y, t)
∂βu(x, y, t)

∂+yβ
− e−(x, y, t)

∂βu(x, y, t)

∂−yβ
= f(x, y, t),

(x, y) ∈ Ω, 0 < t ≤ T,

u(x, y, t) = uD(x, y, t), (x, y) ∈ ∂Ω, t ∈ [0, T ],

u(x, y, 0) = uo(x, y), (x, y) ∈ Ω.

(14)

Here Ω := (xl, xr)× (yl, yr) is a rectangular domain. 1 < α, β < 2.
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A two-dimensional finite difference method and its ADI scheme

(Meerschaert et al., J. Comput. Phys., 2006)

umi,j − u
m−1
i,j

∆t
−
d+,mi,j

hα1

i+1∑
k=0

g
(α)
k umi−k+1,j −

d−,mi,j

hα1

N1−i+2∑
k=0

g
(α)
k umi+k−1,j

−
e+,mi,j

hβ2

j+1∑
l=0

g
(β)
j umi,j−l+1 −

e−,mi,j

hβ2

N2−i+2∑
k=0

g
(β)
l umi,j+l−1 = fmi,j ,

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, m = 1, 2, . . . ,M.

(15)

Let N = N1N2. Introduce N -dimensional vectors um and fm defined by

um :=
[
um1,1, · · · , umN1,1

, um1,2, · · · , umN1,2
, · · · , um1,N2

, · · · , umN1,N2

]T
,

f m :=
[
fm1,1, · · · , fmN1,1

, fm1,2, · · · , fmN1,2
, · · · , fm1,N2

, · · · , fmN1,N2

]T
.

(16)

The finite difference method (15) can be expressed in the matrix form

(I + ∆tAm)um = um−1 + ∆tfm. (17)
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For m = 1, 2, . . . ,M , at time step tm:

1 solve the following equations in the x-direction (for each fixed yj)

um,∗i,j −
d+,mi,j ∆t

hα1

i+1∑
k=0

g
(α)
k um,∗i−k+1,j −

d−,mi,j

hα1

N1−i+2∑
k=0

g
(α)
k um,∗i+k−1,j

= um−1i,j + ∆tfmi,j , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2,

(18)

2 solve the following equations in the y-direction (for each fixed xi)

umi,j −
e+,mi,j ∆t

hβ2

j+1∑
l=0

g
(β)
j umi,j−l+1 −

e−,mi,j ∆t

hβ2

N2−i+2∑
k=0

g
(β)
l umi,j+l−1

= um,∗i,j , 1 ≤ j ≤ N2, 1 ≤ i ≤ N1.

(19)
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Let umj := [um1,j , u
m
2,j , · · · , umN1,j

]T and fmj := [fm1,j , · · · , fmN1,j
]T . Then (18)

are written as fully decoupled one-dimensional systems(
IN1 + ∆tAm,xj

)
um,∗j = um−1j + ∆tfmj , 1 ≤ j ≤ N2. (20)

Let vmi := [umi,1, u
m
i,2, · · · , umi,N2

]T and vm,∗i := [um,∗i,1 , u
m,∗
i,2 , · · · , u

m,∗
i,N2

]T for

i = 1, . . . , N1 be the rearrangements of umj and um,∗j for j = 1, . . . , N2.
Then (21) can be rewritten as fully decoupled one-dimensional systems(

IN2 + ∆tBm,yi

)
vmi = vm,∗i , 1 ≤ i ≤ N1. (21)

The ADI approach enables a direct application of the fast 1D solver
to two- and three-dimensional space-fractional diffusion equations.

The ADI approach does not need a direct decomposition of Am.
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A fast operator-splitting multistep ADI finite difference method

(W. & K. Wang, J. Comput. Phys., 2011)

Theorem

The fast ADI method can be performed in O(N log2N) of operations
per time step and requires O(N logN) of memory to store for two- and
three-dimensional space-fractional diffusion equations.

An efficient storage of the fast ADI method requires the storage of the
coefficient matrices Am,xj for j = 1, . . . , N2 and Bm,yi for i = 1, . . . , N1.
This requires N2O(N1) +N1O(N2) = O(N) of memory.
All the systems (20) can be solved in N2O(N1 log2N1) = O(N log2N)
of operations, and those in (21) can be solved in N1O(N2 log2N2) =
O(N log2N) of operations.

The same result holds true for 3D problems.

No multiple substeps needed if a conjugate-gradient type of iterative
solver is used to solve the one-dimensional systems.
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Two-dimensional numerical experiments

In the numerical experiments the data are given as follows

d+(x, y, t) = d−(x, y, t) = e+(x, y, t) = e−(x, y, t) = D = 0.005
f = 0, α = β = 1.8, Ω = (−1, 1)× (−1, 1), [0, T ] = [0, 1].
The true solution is the fundamental solution to (14) expressed
via the inverse Fourier transform

u(x, y, t) =
1

π

∫ ∞
0

e−2D| cos(
πα
2 )|(t+0.5)ξα cos(ξx)dξ

× 1

π

∫ ∞
0

e−2D| cos(
πβ
2 )|(t+0.5)ηβ cos(ηy)dη.

(22)

The initial condition uo(x, y) is chosen to be u(x, y, 0).

In the numerical experiments the Meerschaert & Tadjeran scheme
and the fast ADI method were implemented using Matlab.
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h = ∆t ‖uFD − u‖L1 ‖uFD − u‖L2 ‖uFD − u‖L∞

2−4 3.0281× 10−2 7.0346× 10−2 5.7095× 10−1

2−5 9.8231× 10−3 2.1051× 10−2 1.6409× 10−1

2−6 3.9081× 10−3 7.3313× 10−3 5.5939× 10−2

2−7 1.9647× 10−3 3.0910× 10−3 2.1663× 10−2

‖uFFD − u‖L1 ‖uFFD − u‖L2 ‖uFFD − u‖L∞

2−4 2.8115× 10−2 6.1891× 10−2 4.8644× 10−1

2−5 8.4583× 10−3 1.6793× 10−2 1.2472× 10−1

2−6 3.1232× 10−3 5.2155× 10−3 3.6594× 10−2

2−7 1.5340× 10−3 2.1439× 10−3 1.2013× 10−2

Table : The (normalized) L1, L2, and L∞ errors of the fast ADI (FFD) method
and traditional finite difference (FD) method with Gaussian elimination
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h = ∆t CPU of finite difference (FD) with Gaussian elimination

2−4 49 s
2−5 8.07× 102 s = 13 m 27 s
2−6 6.43× 104 s = 17 h 51 m
2−7 5.90× 106 s = 1639 h 42 m = 2 month and 8 days

CPU of the fast ADI finite difference method (FFD)

2−4 7.4 s
2−5 63.6 s = 1 m 4 s
2−6 5.88× 102 s = 9 m 48 s
2−7 5.22× 103 s = 1 h 27 m

Table : The consumed CPU of the fast ADI (FFD) method and the traditional
finite difference (FD) method with Gaussian elimination.
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Strength and weakness of ADI methods

Strength: easy to implement

Numerical experiments show the utility of ADI methods.
ADI methods reduce the solution of multidimensional
space-fractional diffusion equations to one-dimensional systems.
Avoid the relatively complex multidimensional coefficient matrix Am.

Weakness: restrictive

The ADI methods for space-fractional diffusion equations were
proved to be unconditionally stable and convergent
if the finite difference operators in the x- and y-directions commute.
This condition is satisfied if d±(x, y, t) are independent of y and
e±(x, y, t) are independent of x.
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A steady-state space-fractional diffusion equation in conservative form

−D
(
K(x)

(
θ 0D

−β
x + (1− θ) xD

−β
1

)
Du
)

= f(x), x ∈ (0, 1),

u(0) = u(1) = 0.
(23)

2− β with 0 < β < 1 represents the order of anomalous diffusion

K is the diffusivity coefficient, 0 ≤ θ ≤ 1 indicates the relative weight
of forward versus backward transition probability of the particles

f is the source and sink term

0D
−β
x u(x) and xD

−β
1 u(x) are the left- and right-fractional integrals

0D
−β
x u(x) :=

1

Γ(β)

∫ x

0
(x− s)β−1u(s)ds,

xD
−β
1 u(x) :=

1

Γ(β)

∫ 1

x
(s− x)β−1u(s)ds

(24)

Γ(·) is the Gamma function
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Analysis of an FDE with constant diffusivity (Ervin & Roop, NMPDE 2005)

Galerkin formulation: given f ∈ H−(1−
β
2
)(0, 1), seek u ∈ H1−β

2
0 (0, 1)

B(u, v) = 〈f, v〉, ∀ v ∈ H1−β
2

0 (0, 1). (25)

Here B : H
1−β

2
0 (0, 1)×H1−β

2
0 (0, 1)→ R is defined to be

B(u, v) := θK
〈
0D
−β
x Du,Dv

〉
+ (1− θ)K

〈
xD
−β
1 Du,Dv

〉
= θK

(
0D

1−β/2
x u, xD

1−β/2
1 Dv

)
L2(0,1)

+(1− θ)K
(
xD

1−β/2
1 u, 0D

1−β/2
x v

)
L2(0,1)

〈·, ·〉 is the duality pair between H−(1−
β
2
)(0, 1) and H

1−β
2

0 (0, 1).

For θ = 1/2, B(·, ·) is symmetric. This problem reduces to fractional
Laplacian which is well studied in harmonic analysis.
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Analysis of an FDE with constant diffusivity (continued)

The coercivity of B(·, ·) is derived as follows

B(u, u) = K
(
0D

1−β/2
x u, xD

1−β/2
1 u

)
L2(0,1)

= − cos
(
(1− β/2)π

)
K|u|2

H1−β/2(0,1)

= cos
(
βπ/2

)
K|u|2

H1−β/2(0,1)
.

Theorem

B(·, ·) is coercive and continuous on H
1−β

2
0 (0, 1)×H1−β

2
0 (0, 1). Hence,

the Galerkin weak formulation (25) has a unique solution. Moreover,

‖u‖
H1−β2 (0,1)

≤ (1/α)‖f‖
H−(1−β2 )(0,1)

.
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Galerkin finite element methods and their error estimates

Let Sh(0, 1) ⊂ H1−β
2

0 (0, 1) be the finite element space of piecewise
polynomials of degree m− 1. Find uh ∈ Sh(0, 1) such that

B(uh, vh) = 〈f, vh〉, ∀vh ∈ Sh(0, 1).

The optimal-order error estimate holds for u ∈ Hm(0, 1)∩H1−β
2

0 (0, 1)

‖uh − u‖L2(0,1) + h1−
β
2 ‖uh − u‖

H1−β2 (0,1)
≤ Chm‖u‖Hm(0,1).

The analysis was extended to DG and spectral methods.

All of the analysis requires K to be positive constant.
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Extensions to variable-coefficient problems

Variable-coefficient models were derived in applications. Can the
previous analysis be extended to cover these problems?

In the context of variable diffusivity K

B(u, v) = θ
〈
K0D

−β
x Du,Dv

〉
+ (1− θ)

〈
KxD

−β
1 Du,Dv

〉
6= θ
〈
KDu, xD

−β
1 Dv

〉
+ (1− θ)

〈
KDu, 0D

−β
x Dv

〉
6=
(
K0D

−β/2
x Du, xD

−β/2
1 Dv

)
L2(0,1)

Each corresponds to a fractional equation of a different form

−D(KD1−βu) 6= −D1−β(KDu) 6= −D1−β/2(KD1−β/2u).
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The last form seems to be mathematically preferred, but still cannot
guarantee its coercivity(

K0D
−β/2
x Du, xD

−β/2
1 Du

)
L2(0,1)

6≥ Kmin

(
0D
−β/2
x Du, xD

−β/2
1 Du

)
L2(0,1)

= cos
(
βπ/2

)
Kmin|u|2H1−β/2(0,1)

.
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A counterexample

Lemma

There exist a K(x) consisting of two positive constants and a function

w ∈ H1−β
2

0 (0, 1) such that B(w,w) < 0.

Let K(x) and w ∈ H1
0 (0, 1) ⊂ H1−β

2
0 (0, 1) be defined by

K(x) :=

{
Kl, x ∈ (0, 1/2),

1, x ∈ (1/2, 1).

w(x) :=

{
2x, x ∈ (0, 1/2],

2(1− x), x ∈ [1/2, 1).
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Direct calculation gives

0D
1−β
x w(x) =


2xβ

Γ(β + 1)
, x ∈ (0, 1/2),

2
(
xβ − 2(x− 1/2)β

)
Γ(β + 1)

, x ∈ (1/2, 1).

Then we have

B(w,w) =
21−β

Γ(β + 2)

(
Kl −

(
2β+1 − 3

))
.

Since 0 < log2 3− 1 < 1, choose log2 3− 1 < β < 1 so that 2β+1 − 3 > 0.
Then we select Kl > 0 sufficiently small such that Kl −

(
2β+1 − 3

)
< 0.

For such K and w, we have B(w,w) < 0.
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Characterization of the solution to fractional equations

Consider a one-sided problem (problem (23) with θ = 1)

−D
(
K(x) 0D

−β
x Du

)
= f(x), x ∈ (0, 1), u(0) = u(1) = 0. (26)

mass balance of a fractional Darcy’s law, physically reasonable

Theorem

Assume that K ∈ C1,α[0, 1] and f ∈ Cα[0, 1]. Then u is the unique
solution to (26) if and only if it can be expressed as

u = 0D
β
xwf − 0D

β
1wf

(
0D

β
1wb

)−1
0D

β
xwb, (27)

where wf and wb are the solutions to the following problems

−D
(
K(x)Dwf

)
= f, x ∈ (0, 1); wf (0) = wf (1) = 0,

−D
(
K(x)Dwb

)
= 0, x ∈ (0, 1); wb(0) = 0, wb(1) = 1.

(28)
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A Petrov-Galerkin weak formulation

For a constant diffusivity coefficient K, the Galerkin formulation is

coercive on the product space H
1−β/2
0 (0, 1)×H1−β/2

0 (0, 1).
In the context of a variable diffusivity coefficient K

The Galerkin formulation is not coercive on any product space H ×H.
A physically reasonable equation is expressed as the divergence of a
fractional diffusive flux of order 1− β.
We propose a Petrov-Galerkin formulation imposed on
H1−β

0 (0, 1)×H1
0 (0, 1): Seek u ∈ H1−β

0 (0, 1) such that

A(u, v) :=

∫ 1

0

K(x) 0D
1−β
x uDvdx =

〈
f, v
〉
, ∀v ∈ H1

0 (0, 1) (29)

Even for constant K, the Petrov-Galerkin formulation is different
from the Galerkin formulation

The latter is defined on H
1−β/2
0 (0, 1)×H1−β/2

0 (0, 1) for any given
f ∈ H−(1−β/2)(0, 1)

The former is defined on H1−β
0 (0, 1)×H1

0 (0, 1) for any given
f ∈ H−1(0, 1).
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Weak coercivity and wellposedness of the Petrov-Galerkin formulation

Theorem

Assume 0 ≤ β < 1/2 and 0 < Kmin ≤ K ≤ Kmax <∞. The bilinear
form A(w, v) is weakly coercive

inf
w∈H1−β

0 (0,1)
sup

v∈H1
0 (0,1)

A(w, v)

‖w‖H1−β(0,1)‖v‖H1(0,1)
≥ γ(β) > 0,

sup
w∈H1−β

0 (0,1)

A(w, v) > 0 ∀ v ∈ H1
0 (0, 1) \ {0}.

(30)

Thus, the Petrov-Galerkin formulation (29) has a unique weak solution

u ∈ H1−β
0 (0, 1). Furthermore,

‖u‖H1−β(0,1) ≤
Kmax

γ
‖f‖H−1(0,1). (31)
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Thank You!
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