Fractional acoustic wave equations from mechanical and thermal constitutive equations

Sverre Holm

Outline

- 2 Perspectives
- Non-fractional wave equations
 - Low- and high-frequency regions
- Fractional viscoelastic models
 - Kelvin-Voigt
 - Zener
- Fractional heat flow model

2 Perspectives

- 1. Attenuation Power Laws
 - Wave Equations
- 2. Constitutive Equations

Physics or mathematics?

1. Power Laws: P- and S- loss, ω^y

- Similar power laws
- Longitudinal, pressure: ^{dl}
 - Granite: y pprox 1
 - Liver: y \approx 1.3
- Shear:
 - YIG: y=2
 (Yttrium indium garnet)
 - Granite: y pprox 1
- Szabo and Wu, "A model for longitudinal and shear wave propagation in viscoelastic media", JASA (2000).

Data for shear and longitudinal wave loss which show power-law dependence over four decades of frequency.

1. Wave Equations with
Power Law Solutions

$$\nabla^{2}u - \frac{1}{c_{0}^{2}} \frac{\partial^{2}u}{\partial t^{2}} + \tau \frac{\partial}{\partial t} (-\nabla^{2})^{y/2} u = 0$$

$$\nabla^{2}u - \frac{1}{c_{0}^{2}} \frac{\partial^{2}u}{\partial t^{2}} + \tau \frac{\partial}{\partial t} (-\nabla^{2})^{y/2} u + \eta (-\nabla^{2})^{(y+1)/2} u = 0$$

$$\nabla^2 u - \frac{1}{c_0^2} \frac{\partial^2 u}{\partial t^2} - \frac{2\alpha_0}{\cos(\pi y/2)} \frac{\partial^{y+1} u}{\partial t^{y+1}} = 0$$

$$\nabla^2 u - \frac{1}{c_0^2} \frac{\partial^2 u}{\partial t^2} - \frac{2\alpha_0}{c_0 \cos(\pi y/2)} \frac{\partial^{y+1} u}{\partial t^{y+1}} - \frac{\alpha_0^2}{\cos^2(\pi y/2)} \frac{\partial^{2y} u}{\partial t^{2y}} = 0$$

1. Wave Equations with Power Law Solutions

$$\nabla^2 u - \frac{1}{c_0^2} \frac{\partial^2 u}{\partial t^2} + \tau_\sigma^\alpha \frac{\partial^\alpha}{\partial t^\alpha} \nabla^2 u = 0$$

$$\nabla^2 u - \frac{1}{c_0^2} \frac{\partial^2 u}{\partial t^2} + \tau_\sigma^\alpha \frac{\partial^\alpha}{\partial t^\alpha} \nabla^2 u - \frac{\tau_\epsilon^\alpha}{c_0^2} \frac{\partial^{\alpha+2} u}{\partial t^{\alpha+2}} = 0$$

$$\nabla^2 p - \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} + \tau_\sigma^\alpha \frac{\partial^\alpha}{\partial t^\alpha} \nabla^2 p + \tau_{th}^{2-\gamma} \frac{\partial^{2-\gamma}}{\partial t^{2-\gamma}} \nabla^2 p = -\frac{\beta_{NL}}{\rho_0 c_0^4} \frac{\partial^2 p^2}{\partial t^2}$$

3. Constitutive Equations

Non-fractional Fractional $\sigma(t) = E \left| \epsilon(t) + \tau_{\sigma} \frac{\partial \epsilon(t)}{\partial t} \right|$ $\sigma(t) = E \left| \epsilon(t) + \tau_{\sigma}^{\alpha} \frac{\partial^{\alpha} \epsilon(t)}{\partial t^{\alpha}} \right|$ $\sigma(t) + \tau_{\epsilon} \frac{\partial \sigma(t)}{\partial t} = E \left[\epsilon(t) + \tau_{\sigma} \frac{\partial \epsilon(t)}{\partial t} \right]$ $\sigma(t) + \tau_{\epsilon}^{\beta} \frac{\partial^{\beta} \sigma(t)}{\partial t^{\beta}} = E \left[\epsilon(t) + \tau_{\sigma}^{\alpha} \frac{\partial^{\alpha} \epsilon(t)}{\partial t^{\alpha}} \right]$ $\mathbf{q}(t) = -\tau_{th}^{1-\gamma} \kappa \mathbf{I}^{\gamma-1} \nabla T(t)$ $\mathbf{q} = -\kappa \nabla T$

Kelvin-Voigt constitutive equation

• Stress, σ vs strain ϵ

$$\sigma(t) = E\left[\epsilon(t) + \tau_{\sigma} \frac{\partial \epsilon(t)}{\partial t}\right]$$

- E : elastic modulus
- τ_{σ} : ratio of viscosity and elasticity retardation time
- Hooke + Newton = spring + damper

Viscous wave equation

- 1. Conservation of mass
- 2. Conservation of momentum
- 3. Kelvin-Voigt constitutive equation =>

$$\nabla^2 u - \frac{1}{c_0^2} \frac{\partial^2 u}{\partial t^2} + \tau_\sigma \frac{\partial}{\partial t} \nabla^2 u = 0$$

Dispersion equation, insert displacement
 u = exp{i(ωt - kx)}

$$k^2 - \omega^2 / c_0^2 + \tau_\sigma i \omega k^2 = 0$$

Attenuation, phase/group velocity - 2 regions

Causal since constitutive equation was causal

ifi

Application dependent cut-off

- Low frequency region:
 - Pressure waves in water, $au_{\sigma} \approx$ 1 ns
 - $\omega \tau_{\sigma} << 1$ for frequencies less than about 1 GHz
 - Application : Sonar (1. order model for water)
- High frequency region:
 - Shear waves in human tissue, $au_{\sigma} \approx$ 0.1 sec
 - $\omega \tau_{\sigma} >> 1$ for frequencies larger than about 10 Hz
 - Application: Elastography

Losses in a fluid

03

• Loss:
$$\delta = \delta_{me} + \delta_{th} = \frac{1}{\rho_0} \left(\zeta + \frac{4}{3}\eta\right) + \frac{\kappa}{\rho_0} \left(\frac{1}{c_v} - \frac{1}{c_p}\right)$$

- Mechanical:
 - η , ζ shear and bulk viscosity coefficients
- Thermal:

:6

- κ thermal conductivity
- c_v , c_p heat capacity per unit of mass at constant volume / pressure.
- Loss terms are additive, but only for low frequencies, Bhatia, Ultrasonic absorption, 1967 (ch. 4.5)

Fractional Kelvin-Voigt

• Stress, σ vs strain ϵ - Fractional Kelvin-Voigt

$$\sigma(t) = E\left[\epsilon(t) + \tau^{\alpha}_{\sigma} \frac{\partial^{\alpha} \epsilon(t)}{\partial t^{\alpha}}\right]$$

- M. Caputo, "Linear models of dissipation whose Q is almost frequency independent–II", Geophys. J. Roy. Astr. S. 1967
- Y. Rossikhin and M. Shitikova, "Applications of fractional calculus to dynamic problems of linear and nonlinear <u>hereditary</u> mechanics of solids", Appl. Mech. Rev., 1997
- $-\alpha$ =1 is normal viscoelastic case (figure)

A physical fractional device

- Capacitor soakage, dielectric absorption
- i = Cd^au/dt^a, a ≤ 1
- $Z = u/i = 1/C(j\omega)^a$
- Example in video:
 - 220 uF/63 Volt
 - 10 Volts for 60 sec
 - Shorted for 6 sec

<u>http://www.youtube.com/watch?v=vhHog_yCQ4Q</u>

ifi

Wave equation from fractional K-V

Fractional loss operator

Conservation laws =>

$$\nabla^2 u - \frac{1}{c_0^2} \frac{\partial^2 u}{\partial t^2} + \tau_\sigma^\alpha \frac{\partial^\alpha}{\partial t^\alpha} \nabla^2 u = 0$$

 M. Caputo, "Linear models of dissipation whose Q is almost frequency independent–II", Geophys. J. Roy. Astr. S. 1967

- Dispersion equation, $u = exp\{i(\omega t - kx)\}$

- imaginary part of k is loss: $k^2 \omega^2/c_0^2 + (\tau_\sigma i\omega)^{\alpha} k^2 = 0.$
- Holm & Sinkus, "A unifying fractional wave equation for compressional and shear waves," JASA, 2010.

Attenuation, fractional Kelvin-Voigt

 $\alpha = \beta = 0.1, 0.3, 0.7, \text{ and } 1$

MR Elastography, brain

Experimental and model wave speed and damping

 Klatt et al, Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity, Phys. Med. Biol 2007

Modifying Fourier's heat law

 Gurtin & Pipkin (Arch. Ration. Mech. Anal 1968):

- From $\mathbf{q} = -\kappa \nabla \mathbf{T}$

-To
$$q(t) = -\int_{-\infty}^{t} K(t-\tau)\nabla T(\tau)d\tau.$$

Fractional Fourier law

- Power law memory kernel (1 < $\gamma \leq$ 2): $K(t-\tau) = \frac{\chi}{\Gamma(\gamma-1)}(t-\tau)^{\gamma-2}$
- Gives fractional Fourier law (fract. integral)

$$\mathbf{q}(\mathbf{t}) = -\chi \mathbf{I}^{\gamma - 1} \nabla \mathbf{T}(\mathbf{t})$$

– Povstenko, Int. J. Solids Struct., 2007

- $\gamma \rightarrow$ 1 \Rightarrow standard Fourier law (kernel \rightarrow impulse)

• Fractional diffusion: $\frac{1}{2}$

$$\frac{1}{\alpha} \frac{\partial^{\gamma} T}{\partial^{\gamma} t} = \nabla^2 T$$

Fract. Kelvin-Voigt + Fourier law:

• Fract. Westervelt eq of 1. form, decoupled:

$$\nabla^2 u - \frac{1}{c_0^2} \frac{\partial^2 u}{\partial t^2} + \frac{\delta_{me}}{c_0^2} \frac{\partial^{\alpha}}{\partial t^{\alpha}} \nabla^2 u + \frac{\delta_{th}}{c_0^2} \frac{\partial^{2-\gamma}}{\partial t^{2-\gamma}} \nabla^2 u = -\frac{\beta}{\rho_0 c_0^4} \frac{\partial^2 p^2}{\partial t^2}$$
$$\delta_{me} = \frac{\tau^{\alpha-1}}{\rho_0} \left(\zeta + \frac{4}{3}\eta\right) \quad \delta_{th} = \frac{\kappa \tau_{th}^{1-\gamma}}{\rho_0} \left(\frac{1}{c_v} - \frac{1}{c_p}\right)$$

- Fract. Westervelt of 2. form, coupled $\gamma = 2 \alpha$: $\nabla^2 u - \frac{1}{c_0^2} \frac{\partial^2 u}{\partial t^2} + \left(\frac{\delta_{me}}{c_0^2} + \frac{\delta_{th}}{c_0^2}\right) \frac{\partial^{\alpha}}{\partial t^{\alpha}} \nabla^2 u = -\frac{\beta}{\rho_0 c_0^4} \frac{\partial^2 p^2}{\partial t^2}$
- Standard Westervelt equation for $\gamma = \alpha = 1$

ifi

Conclusion

- The constitutive equation, a material property, is what determines wave behavior
- Both the low and high-frequency regions are important
- Which one which is relevant depends on application

Fractional viscoelastic wave equations

- Fractional mechanical models:
 - Fract. Kelvin-Voigt: $\nabla^2 u \frac{1}{c_0^2} \frac{\partial^2 u}{\partial t^2} + \tau_{\sigma}^{\alpha} \frac{\partial^{\alpha}}{\partial t^{\alpha}} \nabla^2 u = 0$

- Fract. Zener:
$$\nabla^2 u - \frac{1}{c_0^2} \frac{\partial^2 u}{\partial t^2} + \tau_\sigma^\alpha \frac{\partial^\alpha}{\partial t^\alpha} \nabla^2 u - \frac{\tau_\epsilon^\beta}{c_0^2} \frac{\partial^{\beta+2} u}{\partial t^{\beta+2}} = 0$$

- Attenuation $\propto \omega^y$
 - Low frequencies: y = 1+ α
 - High/Intermediate frequencies: $y = 1-\alpha/2$
 - High frequencies (for Zener): y= 1-lpha

ifi

